福建省羅源第二中學(xué)2024年九上數(shù)學(xué)期末聯(lián)考試題含解析_第1頁
福建省羅源第二中學(xué)2024年九上數(shù)學(xué)期末聯(lián)考試題含解析_第2頁
福建省羅源第二中學(xué)2024年九上數(shù)學(xué)期末聯(lián)考試題含解析_第3頁
福建省羅源第二中學(xué)2024年九上數(shù)學(xué)期末聯(lián)考試題含解析_第4頁
福建省羅源第二中學(xué)2024年九上數(shù)學(xué)期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.方程x2﹣x=0的解為()A.x1=x2=1 B.x1=x2=0 C.x1=0,x2=1 D.x1=1,x2=﹣12.一個等腰梯形的兩底之差為12,高為6,則等腰梯形的銳角為()A.30° B.45° C.60° D.75°3.下列運算中正確的是()A.a(chǎn)2÷a=a B.3a2+2a2=5a4C.(ab2)3=ab5 D.(a+b)2=a2+b24.若關(guān)于x的一元二次方程kx2+2x–1=0有實數(shù)根,則實數(shù)k的取值范圍是A.k≥–1 B.k>–1C.k≥–1且k≠0 D.k>–1且k≠05.一元二次方程的根的情況為()A.沒有實數(shù)根B.只有一個實數(shù)根C.有兩個不相等的實數(shù)根D.有兩個相等的實數(shù)根6.如圖,在△ABC中,DE∥BC,AD=8,DB=4,AE=6,則EC的長為()A.1 B.2 C.3 D.47.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,那么下列說法正確的是()A.a(chǎn)>0,b>0,c>0 B.a(chǎn)<0,b>0,c>0 C.a(chǎn)<0,b>0,c<0 D.a(chǎn)<0,b<0,c>08.在一個箱子里放有1個自球和2個紅球,它們除顏色外其余都相同,從箱子里任意摸出1個球,摸到白球的概率是()A.1 B. C. D.9.如圖,O是矩形ABCD對角線AC的中點,M是AD的中點,若BC=8,OB=5,則OM的長為()A.1 B.2 C.3 D.410.在一個不透明的袋子里裝有一個黑球和一個白球,它們除顏色外都相同,隨機從中摸出一個球,記下顏色后放回袋子中,充分搖勻后,在隨機摸出一個球,兩次都摸到黑球的概率是()A. B. C. D.11.一塊蓄電池的電壓為定值,使用此蓄電池為電源時,電流I(A)與電阻R(Ω)之間的函數(shù)關(guān)系如圖所示,如果以此蓄電池為電源的用電器限制電流不得超過10A,那么此用電器的可變電阻應(yīng)(

)A.不小于4.8Ω B.不大于4.8Ω C.不小于14Ω D.不大于14Ω12.方程x2=3x的解為()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3二、填空題(每題4分,共24分)13.一個不透明的袋中裝有除顏色外均相同的8個黑球、4個白球和若干個紅球.每次搖勻后隨機摸出一個球,記下顏色后再放回袋中,通過大量重復(fù)摸球試驗后,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定于0.4,由此可估計袋中約有紅球_____個.14.如圖,為等邊三角形,點在外,連接、.若,,,則__________.15.已知△ABC在坐標平面內(nèi)三頂點的坐標分別為A(0,2)、B(3,3)、C(2,1).以B為位似中心,畫出△A1B1C1與△ABC相似,兩三角形位于點B同側(cè)且相似比是3,則點C的對應(yīng)頂點C1的坐標是_____.16.若,則______.17.如圖,正六邊形ABCDEF內(nèi)接于⊙O,⊙O的半徑為6,則這個正六邊形的邊心距OM的長為__.18.計算:____________三、解答題(共78分)19.(8分)某商場經(jīng)營某種品牌的玩具,購進時的單價30元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是40元時,銷售是600件,而銷售單價每漲1元,就會少售出10件玩具.(1)若設(shè)該種品腳玩具上x元(0<x<60)元,銷售利潤為w元,請求出w關(guān)于x的函數(shù)關(guān)系式;(2)若想獲得最大利潤,應(yīng)將銷售價格定為多少,并求出此時的最大利潤.20.(8分)如圖,為等腰三角形,,是底邊的中點,與腰相切于點.(1)求證:與相切;(2)已知,,求的半徑.21.(8分)解方程:.如圖,在平面直角坐標系中,的頂點坐標分別為.以點為位似中心畫出的位似圖形,使得與的位似比為,并寫出點的坐標.

22.(10分)如圖,在中,,,于點,是上的點,于點,,交于點.(1)求證:;(2)當?shù)拿娣e最大時,求的長.23.(10分)如圖,已知△ABC中,AB=BC,以AB為直徑的⊙O交AC于點D,過D作DE⊥BC,垂足為E,連結(jié)OE,CD=,∠ACB=30°.(1)求證:DE是⊙O的切線;(2)分別求AB,OE的長.24.(10分)已知四邊形為的內(nèi)接四邊形,直徑與對角線相交于點,作于,與過點的直線相交于點,.(1)求證:為的切線;(2)若平分,求證:;(3)在(2)的條件下,為的中點,連接,若,的半徑為,求的長.25.(12分)拋物線過點(0,-5)和(2,1).(1)求b,c的值;(2)當x為何值時,y有最大值?26.如圖1,拋物線y=-x2+bx+c的頂點為Q,與x軸交于A(-1,0)、B(5,0)兩點,與y軸交于點C.(1)求拋物線的解析式及其頂點Q的坐標;(2)在該拋物線的對稱軸上求一點P,使得△PAC的周長最小,請在圖中畫出點P的位置,并求點P的坐標;(3)如圖2,若點D是第一象限拋物線上的一個動點,過D作DE⊥x軸,垂足為E.①有一個同學(xué)說:“在第一象限拋物線上的所有點中,拋物線的頂點Q與x軸相距最遠,所以當點D運動至點Q時,折線D-E-O的長度最長”,這個同學(xué)的說法正確嗎?請說明理由.②若DE與直線BC交于點F.試探究:四邊形DCEB能否為平行四邊形?若能,請直接寫出點D的坐標;若不能,請簡要說明理由.

參考答案一、選擇題(每題4分,共48分)1、C【解析】通過提取公因式對等式的左邊進行因式分解,然后解兩個一元一次方程即可.【詳解】解:∵x2﹣x=0,∴x(x﹣1)=0,∴x=0或x﹣1=0,∴x1=0,x2=1,故選:C.本題考查了一元二次方程的解法,屬于基本題型,熟練掌握分解因式的方法是解題的關(guān)鍵.2、B【解析】作梯形的兩條高線,證明△ABE≌△DCF,則有BE=FC,然后判斷△ABE為等腰直角三角形求解.【詳解】如圖,作AE⊥BC、DF⊥BC,四邊形ABCD為等腰梯形,AD∥BC,BC?AD=12,AE=6,∵四邊形ABCD為等腰梯形,∴AB=DC,∠B=∠C,∵AD∥BC,AE⊥BC,DF⊥BC,∴AEFD為矩形,∴AE=DF,AD=EF,∴△ABE≌△DCF,∴BE=FC,∴BC?AD=BC?EF=2BE=12,∴BE=6,∵AE=6,∴△ABE為等腰直角三角形,∴∠B=∠C=45°.故選B.此題考查等腰梯形的性質(zhì),解題關(guān)鍵在于畫出圖形.3、A【分析】根據(jù)合并同類項的法則,同底數(shù)冪的乘法與除法以,積的乘方和完全平方公式的知識求解即可求得答案.【詳解】解:A、,故A選項正確;B、,故B選項錯誤;C、,故C選項錯誤;D、,故D選項錯誤.故選:A.本題考查合并同類項的法則,同底數(shù)冪的乘法與除法以,積的乘方和完全平方公式等知識,熟練掌握相關(guān)運算法則是解題的關(guān)鍵.4、C【解析】解:∵一元二次方程kx2﹣2x﹣1=1有兩個實數(shù)根,∴△=b2﹣4ac=4+4k≥1,且k≠1,解得:k≥﹣1且k≠1.故選C.點睛:此題考查了一元二次方程根的判別式,根的判別式的值大于1,方程有兩個不相等的實數(shù)根;根的判別式的值等于1,方程有兩個相等的實數(shù)根;根的判別式的值小于1,方程沒有實數(shù)根.5、A【分析】根據(jù)根的判別式即可求出答案.【詳解】由題意可知:△=4﹣4×5=﹣16<1.故選:A.本題考查了一元二次方程根的判別式,解答本題的關(guān)鍵是熟練掌握一元二次方程根的判別式.6、C【分析】根據(jù)平行線所截的直線形成的線段的比例關(guān)系,可得,代數(shù)解答即可.【詳解】解:由題意得,,,解得.本題考查了平行線截取直線所得的對應(yīng)線段的比例關(guān)系,理解掌握該比例關(guān)系列出比例式是解答關(guān)鍵.7、B【分析】利用拋物線開口方向確定a的符號,利用對稱軸方程可確定b的符號,利用拋物線與y軸的交點位置可確定c的符號.【詳解】∵拋物線開口向下,∴a<0,∵拋物線的對稱軸在y軸的右側(cè),∴x=﹣>0,∴b>0,∵拋物線與y軸的交點在x軸上方,∴c>0,故選B.本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:對于二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大?。寒攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點位置:拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定:△=b2﹣4ac>0時,拋物線與x軸有2個交點;△=b2﹣4ac=0時,拋物線與x軸有1個交點;△=b2﹣4ac<0時,拋物線與x軸沒有交點.8、C【解析】結(jié)合題意求得箱子中球的總個數(shù),再根據(jù)概率公式即可求得答案.【詳解】依題可得,箱子中一共有球:(個),∴從箱子中任意摸出一個球,是白球的概率.故答案為:C.此題考查了概率公式的應(yīng)用.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.9、C【分析】由O是矩形ABCD對角線AC的中點,可求得AC的長,然后運用勾股定理求得AB、CD的長,又由M是AD的中點,可得OM是△ACD的中位線,即可解答.【詳解】解:∵O是矩形ABCD對角線AC的中點,OB=5,∴AC=2OB=10,∴CD=AB===6,∵M是AD的中點,∴OM=CD=1.故答案為C.本題考查了矩形的性質(zhì)、直角三角形的性質(zhì)以及三角形中位線的性質(zhì),掌握直角三角形斜邊上的中線等于斜邊的一半是解題的關(guān)鍵.10、A【詳解】解:畫樹狀圖得:∵共有4種等可能的結(jié)果,兩次都摸到黑球的只有1種情況,∴兩次都摸到黑球的概率是.故選A.11、A【分析】先由圖象過點(1,6),求出U的值.再由蓄電池為電源的用電器限制電流不得超過10A,求出用電器的可變電阻的取值范圍.【詳解】解:由物理知識可知:I=UR,其中過點(1,6),故U=41,當I≤10時,由R≥4.1故選A.本題考查反比例函數(shù)的圖象特點:反比例函數(shù)y=kx的圖象是雙曲線,當k>0時,它的兩個分支分別位于第一、三象限;當k<012、D【分析】根據(jù)因式分解法解一元二次方程,即可求解.【詳解】∵x2﹣1x=0,∴x(x﹣1)=0,∴x=0或x﹣1=0,解得:x1=0,x2=1.故選:D.本題主要考查一元二次方程的解法,掌握因式分解法解方程,是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、8【解析】試題分析:設(shè)紅球有x個,根據(jù)概率公式可得,解得:x=8.考點:概率.14、1【分析】作∠ABD的角平分線交DC于E,連接AE,作于F,延長BE交AD于R,先證明,可得,再通過等腰三角形的中線定理得,利用三角函數(shù)求出DF,F(xiàn)C的值,即可求出CD的值.【詳解】作∠ABD的角平分線交DC于E,連接AE,作于F,延長BE交AD于R∵∴∴A,E,C,D四點共圓∴∴∴∵,∴∴∵,∴∴,∴,∵,∴∴∴∴∴故答案為:1.本題考查了三角形的綜合問題,掌握角平分線的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)以及判定定理、銳角三角函數(shù)是解題的關(guān)鍵.15、(0,-3)【解析】根據(jù)把原三角形的三邊對應(yīng)的縮小或放大一定的比例即可得到對應(yīng)的相似圖形在改變的過程中保持形狀不變(大小可變)即可得出答案.【詳解】把原三角形的三邊對應(yīng)的縮小或放大一定的比例即可得到對應(yīng)的相似圖形,所畫圖形如圖所示,C1坐標為(0,-3).本題考查了相似變換作圖的知識,注意圖形的相似變換不改變圖形中每一個角的大小;圖形中的每條線段都擴大(或縮小)相同的倍數(shù).16、-1【分析】由可得,,再代入代數(shù)式計算即可.【詳解】∵,∴,∴原式=,故填:-1.本題考查比例的基本性質(zhì),屬于基礎(chǔ)題型.17、3【解析】連接OB,∵六邊形ABCDEF是⊙O內(nèi)接正六邊形,∴∠BOM==30°,∴OM=OB?cos∠BOM=6×=3,故答案為3.18、1【分析】根據(jù)分式混合運算的法則計算即可.【詳解】解:原式====1,故答案為:1.本題考查了分式混合運算,主要考查學(xué)生的計算能力,掌握分式混合運算的法則是解題的關(guān)鍵.三、解答題(共78分)19、(1)w=﹣10x2+1300x﹣30000;(2)最大利潤是1元,此時玩具的銷售單價應(yīng)定為65元.【分析】(1)利用銷售單價每漲1元,就會少售出10件玩具,再結(jié)合每件玩具的利潤乘以銷量=總利潤進而求出即可;(2)利用每件玩具的利潤乘以銷量=總利潤得出函數(shù)關(guān)系式,進而求出最值即可.【詳解】(1)根據(jù)題意得:w=[600﹣10(x﹣40)](x﹣30)=﹣10x2+1300x﹣30000;(2)w=[600﹣10(x﹣40)](x﹣30)=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+1.∵a=﹣10<0,∴對稱軸為x=65,∴當x=65時,W最大值=1(元)答:商場銷售該品牌玩具獲得的最大利潤是1元,此時玩具的銷售單價應(yīng)定為65元.本題考查了二次函數(shù)的應(yīng)用,得出w與x的函數(shù)關(guān)系式是解題的關(guān)鍵.20、(1)詳見解析;(2)⊙O的半徑為.【分析】(1)欲證AC與圓O相切,只要證明圓心O到AC的距離等于圓的半徑即可,即連接OD,過點O作OE⊥AC于E點,證明OE=OD.(2)根據(jù)已知可求OA的長,再由等積關(guān)系求出OD的長.【詳解】證明:(1)連結(jié),過點作于點,∵切于,∴,∴,又∵是的中點,∴,∵,∴,∴,∴,即是的半徑,∴與相切.(2)連接,則,又為BC的中點,∴,∴在中,,∴由等積關(guān)系得:,∴,即O的半徑為.本題考查的是圓的切線的性質(zhì)和判定,欲證切線,作垂直O(jiān)E⊥AC于E,證半徑OE=OD;還考查了利用面積相等來求OD.21、(1);(2)見解析,點的坐標為;點的坐標為.【分析】⑴根據(jù)配方法解出即可;⑵根據(jù)相似比找到對應(yīng)的點,即可.【詳解】解:,,,..(解法不唯一)解:如圖,即為所求.點的坐標為;點的坐標為.此題主要考查了解一元二次方程的配方法及位似圖形的性質(zhì),熟練掌握相關(guān)知識是解題的關(guān)鍵.22、(1)見解析;(2)5【分析】(1)根據(jù)相似三角形的判定方法即可求;(2)設(shè),的面積為,由等腰三角形性質(zhì)和平行線分線段成比例,可求出,再根據(jù)的面積可以得出關(guān)于的函數(shù)關(guān)系式,由二次函數(shù)性質(zhì)可得的面積為最大時的值即可.【詳解】解:(1)證明:,,,,.(2)解:設(shè),則,∵,,,∴,在Rt△ABG中,,∵∴,即,∴,,,即,的面積當?shù)拿娣e最大時,,即的長為.本題考查相似三角形的判定和性質(zhì),三角形的面積公式,可利用數(shù)形結(jié)合思想根據(jù)題目提供的條件轉(zhuǎn)化為函數(shù)關(guān)系式.23、(1)證明見解析;(2)AB=2,OE=.【分析】(1)根據(jù)AB是直徑即可求得∠ADB=90°,再根據(jù)題意可求出OD⊥DE,即得出結(jié)論;(2)根據(jù)三角函數(shù)的定義,即可求得BC,進而得到AB,再在Rt△CDE中,根據(jù)直角三角形的性質(zhì),可求得DE,再由勾股定理求出OE即可.【詳解】(1)連接BD,OD.∵AB是直徑,∴∠ADB=90°.又∵AB=BC,∴AD=CD.∵OA=OB,∴OD∥BC.∵DE⊥BC,∴∠DEC=90°.∵OD∥BC,∴∠ODE=∠DEC=90°,∴OD⊥DE,∴DE是⊙O的切線.(2)在Rt△CBD中CD,∠ACB=30°,∴BC2,∴AB=2,∴ODAB=1.在Rt△CDE中,CD,∠ACB=30°,∴DECD.在Rt△ODE中,OE.本題考查了切線的判定、勾股定理、圓周角定理以及解直角三角形,是一道綜合題,難度不大.24、(1)證明見解析(2)證明見解析(3)【分析】(1)根據(jù)直徑所對的圓周角為90°,得到∠ADC=90°,根據(jù)直角三角形兩銳角互余得到∠DAC+∠DCA=90°,再根據(jù)同弧或等弧所對的圓周角相等,可得到∠FAD+∠DAC=90°,即可得出結(jié)論;(2)連接OD.根據(jù)圓周角定理和角平分線定義可得∠DOA=∠DOC,即可得出結(jié)論;(3)連接OD交CF于M,作EP⊥AD于P.可求出AD=4,AF∥OM.根據(jù)三角形中位線定理得出OM=AF.證明△ODE≌△OCM,得到OE=OM.設(shè)OM=m,用m表示出OE,AE,AP,DP.通過證明△EAN∽△DPE,根據(jù)相似三角形對應(yīng)邊成比例,求出m的值,從而求得AN,AE的值.在Rt△NAE中,由勾股定理即可得出結(jié)論.【詳解】(1)∵AC為⊙O的直徑,∴∠ADC=90°,∴∠DAC+∠DCA=90°.∵,∴∠ABD=∠DCA.∵∠FAD=∠ABD,∴∠FAD=∠DCA,∴∠FAD+∠DAC=90°,∴CA⊥AF,∴AF為⊙O的切線.(2)連接OD.∵,∴∠ABD=∠AOD.∵,∴∠DBC=∠DOC.∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠DOA=∠DOC,∴DA=DC.(3)連接OD交CF于M,作EP⊥AD于P.∵AC為⊙O的直徑,∴∠ADC=90°.∵DA=DC,∴DO⊥AC,∴∠FAC=∠DOC=90°,AD=DC==4,∴∠DAC=∠DCA=45°,AF∥OM.∵AO=OC,∴OM=AF.∵∠ODE+∠DEO=90°,∠OCM+∠DEO=90°,∴∠ODE=∠OCM.∵∠DOE=∠COM,OD=OC,∴△ODE≌△OCM,∴OE=OM.設(shè)OM=m,∴OE=m,,,∴.∵∠AED+∠AEN=135°,∠AED+∠ADE=135°,∴∠AEN=∠ADE.∵∠EAN=∠DPE,∴△EAN∽△DPE,∴,∴,∴,∴,,由勾股定理得:.本題是圓的綜合題.考查了圓周角定理,切線的判定,相似三角形的判定與性質(zhì),三角形的中位線定理等知識.用含m的代數(shù)式表示出相關(guān)線段的長是解答本題的關(guān)鍵.25、(1)b,c的值分別為5,-5;(2)當時有最大值【分析】(1)把點代入求解即可得到b,c的值;(2)代入二次函數(shù)一般式中頂點坐標的橫坐標求解公式進行求解即可.【詳解】解:(1)∵拋物線過點(0,-5)和(2,1),∴,解得,∴b,c的值分別為5,-5.(2)a=-1,b=5,∴當x=時y有最大值.本題考查了利用待定系數(shù)法求解析式,熟記二次函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.26、(1)y-(x-2)2+9,Q(2,9);(2)(2,3);作圖見解析;(3)①不正確,理由見解析;②不能,理由見解析.【分析】(1)將A(-1,0)、B(1,0)分別代入y=-x2+bx+c中即可確定b、c的值,然后配方后

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論