無錫市重點中學(xué)2025屆九上數(shù)學(xué)期末統(tǒng)考試題含解析_第1頁
無錫市重點中學(xué)2025屆九上數(shù)學(xué)期末統(tǒng)考試題含解析_第2頁
無錫市重點中學(xué)2025屆九上數(shù)學(xué)期末統(tǒng)考試題含解析_第3頁
無錫市重點中學(xué)2025屆九上數(shù)學(xué)期末統(tǒng)考試題含解析_第4頁
無錫市重點中學(xué)2025屆九上數(shù)學(xué)期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,在中,已知點在上,點在上,,,下列結(jié)論中正確的是()A. B. C. D.2.如圖,矩形ABCD是由三個全等矩形拼成的,AC與DE、EF、FG、HG、HB分別交于點P、Q、K、M、N,設(shè)△EPQ、△GKM、△BNC的面積依次為S1、S2、S1.若S1+S1=10,則S2的值為().A.6 B.8C.10 D.123.如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,連接CD,若⊙O的半徑,AC=2,則cosB的值是()A.B.C.D.4.小明同學(xué)以正六邊形三個不相鄰的頂點為圓心,邊長為半徑,向外作三段圓弧,設(shè)計了如圖所示的圖案,已知正六邊形的邊長為1,則該圖案外圍輪廓的周長為()A. B. C. D.5.若關(guān)于的方程的一個根是,則的值是()A. B. C. D.6.如圖,⊙O的直徑CD=10cm,AB是⊙O的弦,AB⊥CD,垂足為M,OM:OC=3:5,則AB的長為()A.cm B.8cm C.6cm D.4cm7.已知一斜坡的坡比為,坡長為26米,那么坡高為()A.米 B.米 C.13米 D.米8.若點,,在反比例函數(shù)(為常數(shù))的圖象上,則,,的大小關(guān)系是()A. B. C. D.9.函數(shù)y=ax2+1與(a≠0)在同一平面直角坐標(biāo)系中的圖象可能是()A. B. C. D.10.方程5x2﹣2=﹣3x的二次項系數(shù)、一次項系數(shù)、常數(shù)項分別是()A.5、3、﹣2 B.5、﹣3、﹣2 C.5、3、2 D.5、﹣3、211.定義:如果一個一元二次方程的兩個實數(shù)根的比值與另一個一元二次方程的兩個實數(shù)根的比值相等,我們稱這兩個方程為“相似方程”,例如,的實數(shù)根是3或6,的實數(shù)根是1或2,,則一元二次方程與為相似方程.下列各組方程不是相似方程的是()A.與 B.與C.與 D.與12.用配方法解方程,方程應(yīng)變形為()A. B. C. D.二、填空題(每題4分,共24分)13.小明身高1.76米,小亮身高1.6米,同一時刻他們站在太陽光下,小明的影子長為1米,則小亮的影長是_____米.14.若圓弧所在圓的半徑為12,所對的圓心角為60°,則這條弧的長為_____.15.已知反比例函數(shù)的圖象經(jīng)過點P(a+1,4),則a=_________________.16.如圖,A、B兩點在雙曲線y=上,分別經(jīng)過A、B兩點向坐標(biāo)軸作垂線段,已知S陰影=1,則S1+S2=_____.17.共享單車進入昆明市已兩年,為市民的低碳出行帶來了方便,據(jù)報道,昆明市共享單車投放量已達到240000輛,數(shù)字240000用科學(xué)記數(shù)法表示為_____.18.如圖,E是?ABCD的BC邊的中點,BD與AE相交于F,則△ABF與四邊形ECDF的面積之比等于_____.三、解答題(共78分)19.(8分)已知△ABC為等邊三角形,M為三角形外任意一點,把△ABM繞著點A按逆時針方向旋轉(zhuǎn)60°到△CAN的位置.(1)如圖①,若∠BMC=120°,BM=2,MC=3.求∠AMB的度數(shù)和求AM的長.(2)如圖②,若∠BMC=n°,試寫出AM、BM、CM之間的數(shù)量關(guān)系,并證明你的猜想.20.(8分)已知正比例函數(shù)y=k1x(k1≠0)與反比例函數(shù)的圖象交于A、B兩點,點A的坐標(biāo)為(2,1).(1)求正比例函數(shù)、反比例函數(shù)的表達式;(2)求點B的坐標(biāo).21.(8分)如圖,在某建筑物AC上,掛著一宣傳條幅BC,站在點F處,測得條幅頂端B的仰角為30°,往條幅方向前行20米到達點E處,測得條幅頂端B的仰角為60°,求宣傳條幅BC的長.(,結(jié)果精確到0.1米)22.(10分)(1)計算:|﹣1|+2sin45°﹣+tan260°;(2)已知:,求.23.(10分)一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2)、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.(1)從中任意摸出1個球,恰好摸到紅球的概率是;(2)先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.24.(10分)已知3是一元二次方程x2-2x+a=0的一個根,求a的值和方程的另一個根.25.(12分)我市要選拔一名教師參加省級評優(yōu)課比賽:經(jīng)筆試、面試,結(jié)果小潘和小丁并列第一,評委會決定通過摸球來確定人選.規(guī)則如下:在不透明的布袋里裝有除顏色之外均相同的2個紅球和1個藍球,小潘先取出一個球,記住顏色后放回,然后小丁再取出一個球.若兩次取出的球都是紅球,則小潘勝出;若兩次取出的球是一紅一藍,則小丁勝出.你認為這個規(guī)則對雙方公平嗎?請用列表法或畫樹狀圖的方法進行分析.26.為了創(chuàng)建文明城市,增弘環(huán)保意識,某班隨機抽取了8名學(xué)生(分別為A,B,C,D,E,F(xiàn),G,H),進行垃圾分類投放檢測,檢測結(jié)果如下表,其中“√”表示投放正確,“×”表示投放錯誤,學(xué)生垃圾類別ABCDEFGH可回收物√××√√×√√其他垃圾×√√√√×√√餐廚垃圾√√√√√√√√有害垃圾×√×××√×√(1)檢測結(jié)果中,有幾名學(xué)生正確投放了至少三類垃圾?請列舉出這幾名學(xué)生.(2)為進一步了解學(xué)生垃圾分類的投放情況,從檢測結(jié)果是“有害垃圾”投放錯誤的學(xué)生中隨機抽取2名進行訪談,求抽到學(xué)生A的概率.

參考答案一、選擇題(每題4分,共48分)1、B【分析】由,得∠CMN=∠CNM,從而得∠AMB=∠∠ANC,結(jié)合,即可得到結(jié)論.【詳解】∵,∴∠CMN=∠CNM,∴180°-∠CMN=180°-∠CNM,即:∠AMB=∠∠ANC,∵,∴,故選B.本題主要考查相似三角形的判定定理,掌握“對應(yīng)邊成比例,夾角相等的兩個三角形相似”是解題的關(guān)鍵.2、D【分析】根據(jù)矩形的性質(zhì)和平行四邊形的性質(zhì)判斷出△AQE∽△AMG∽△ACB,得到,,再通過證明得到△PQE∽△KMG∽△NCB,利用面積比等于相似比的平方,得到S1、S2、S1的關(guān)系,進而可得到答案.【詳解】解:∵矩形ABCD是由三個全等矩形拼成的,

∴AE=EG=GB=DF=FH=HC,∠AEQ=∠AGM=∠ABC=90°,AB∥CD,AD∥EF∥GH∥BC∴∠AQE=∠AMG=∠ACB,

∴△AQE∽△AMG∽△ACB,

∴,∵EG=DF=GB=FHAB∥CD,(已證)∴四邊形DEGF,四邊形FGBH是平行四邊形,∴DE∥FG∥HB∴∠QPE=∠MKG=∠CNB,∴△PQE∽△KMG∽△NCB

∴,

∴,

∵S1+S1=10,∴S2=2.

故選:D.本題考查了矩形的性質(zhì)、平行四邊形的性質(zhì)、三角形相似的性質(zhì)的綜合應(yīng)用,能找到對應(yīng)邊的比是解答此題的關(guān)鍵.3、B【解析】要求cosB,必須將∠B放在直角三角形中,由圖可知∠D=∠B,而AD是直徑,故∠ACD=90°,所以可進行等角轉(zhuǎn)換,即求cosD.在Rt△ADC中,AC=2,AD=2r=3,根據(jù)勾股定理可求得,所以.4、C【分析】根據(jù)正六邊形的邊長相等,每個內(nèi)角為120度,可知圖案外圍輪廓的周長為三個半徑為1、圓心角為240度的弧長之和.【詳解】由題意可知:

∵正六邊形的內(nèi)角,∴扇形的圓心角,

∵正六邊形的邊長為1,

∴該圖案外圍輪廓的周長,

故選:C.本題考查了弧長的計算公式,正多邊形和圓,正六邊形的性質(zhì),正確的識別圖形是解題的關(guān)鍵.5、A【分析】把代入方程,即可求出的值.【詳解】解:∵方程的一個根是,∴,∴,故選:A.本題考查了一元二次方程的解,以及解一元一次方程,解題的關(guān)鍵是熟練掌握解方程的步驟.6、B【分析】由于⊙O的直徑CD=10cm,則⊙O的半徑為5cm,又已知OM:OC=3:5,則可以求出OM=3,OC=5,連接OA,根據(jù)勾股定理和垂徑定理可求得AB.【詳解】解:如圖所示,連接OA.⊙O的直徑CD=10cm,則⊙O的半徑為5cm,即OA=OC=5,又∵OM:OC=3:5,所以O(shè)M=3,∵AB⊥CD,垂足為M,OC過圓心∴AM=BM,在Rt△AOM中,,∴AB=2AM=2×4=1.故選:B.本題考查了垂徑定理和勾股定理的應(yīng)用,構(gòu)造以半徑、弦心距和弦長的一半為三邊的直角三角形,是解題的關(guān)鍵.7、C【分析】根據(jù)坡比算出坡角,再根據(jù)坡角算出坡高即可.【詳解】解:設(shè)坡角為∵坡度∴.∴.坡高=坡長.故選:C.本題考查三角函數(shù)的應(yīng)用,關(guān)鍵在于理解題意,利用三角函數(shù)求出坡角.8、D【分析】根據(jù)反比例函數(shù)的性質(zhì),可以判斷出x1,x2,x3的大小關(guān)系,本題得以解決.【詳解】解:∵反比例函數(shù)(m為常數(shù)),m2+1>0,

∴在每個象限內(nèi),y隨x的增大而減小,

∵點A(x1,-6),B(x2,-2),C(x3,2)在反比例函數(shù)(m為常數(shù))的圖象上,∵,

∴x2<x1<x3,故選:D.本題考查反比例函數(shù)圖象上點的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用反比例函數(shù)的性質(zhì)解答.9、B【解析】試題分析:分a>0和a<0兩種情況討論:當(dāng)a>0時,y=ax2+1開口向上,頂點坐標(biāo)為(0,1);位于第一、三象限,沒有選項圖象符合;當(dāng)a<0時,y=ax2+1開口向下,頂點坐標(biāo)為(0,1);位于第二、四象限,B選項圖象符合.故選B.考點:1.二次函數(shù)和反比例函數(shù)的圖象和性質(zhì);2.分類思想的應(yīng)用.10、A【分析】直接利用一元二次方程中各部分的名稱分析得出答案.【詳解】解:5x1﹣1=﹣3x整理得:5x1+3x﹣1=0,則二次項系數(shù)、一次項系數(shù)、常數(shù)項分別是:5、3、﹣1.故選:A.此題主要考查了一元二次方程的一般形式,正確認識各部分是解題關(guān)鍵.11、C【分析】根據(jù)“相似方程”的定義逐項分析即可.【詳解】A.∵,∴.∴x1=4,x2=-4,∵,∴x1=5,x2=-5.∵4:(-4)=5:(5),∴與是相似方程,故不符合題意;B.∵,∴x1=x2=6.∵,∴(x+2)2=0,∴x1=x2=-2.∵6:6=(-2):(-2),∴與是相似方程,故不符合題意;C.∵,∴,∴x1=0,x2=7.∵,∴,∴(x-2)(x+3)=0,∴x1=2,x2=-3.∵0:7≠2:(-3),∴與不是相似方程,符合題意;D.∵,∴x1=-2,x2=-8.∵,∴(x-1)(x-4)=0,∴x1=1,x2=4.∵(-2):(-8)=1:4,∴與是相似方程,故不符合題意;故選C.本題考查了新定義運算,以及一元二次方程的解法,正確理解“相似方程”的定義是解答本題的關(guān)鍵.12、D【分析】常數(shù)項移到方程的右邊,兩邊配上一次項系數(shù)一半的平方,寫成完全平方式即可得.【詳解】解:∵,

∴,即,

故選:D.本題考查配方法解一元二次方程,熟練掌握完全平方公式和配方法的基本步驟是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】利用同一時刻實際物體與影長的比值相等進而求出即可.【詳解】設(shè)小亮的影長為xm,由題意可得:,解得:x=.故答案為:.此題主要考查了相似三角形的應(yīng)用,正確利用物體高度與影長的關(guān)系是解題關(guān)鍵.14、4π【分析】直接利用弧長公式計算即可求解.【詳解】l==4π,故答案為:4π.本題考查弧長計算公式,解題的關(guān)鍵是掌握:弧長l=(n是弧所對應(yīng)的圓心角度數(shù))15、-3【分析】直接將點P(a+1,4)代入求出a即可.【詳解】直接將點P(a+1,4)代入,則,解得a=-3.本題主要考查反比例函數(shù)圖象上點的坐標(biāo)特征,熟練掌握反比例函數(shù)知識和計算準確性是解決本題的關(guān)鍵,難度較小.16、1.【分析】根據(jù)題意,想要求S1+S2,只要求出過A、B兩點向x軸、y軸作垂線段與坐標(biāo)軸所構(gòu)成的矩形的面積即可,而矩形的面積為雙曲線y=的系數(shù)k,由此即可求解.【詳解】∵點A、B是雙曲線y=上的點,分別經(jīng)過A、B兩點向x軸、y軸作垂線段,則根據(jù)反比例函數(shù)的圖象的性質(zhì)得兩個矩形的面積都等于|k|=4,∴S1+S2=4+4﹣1×2=1.故答案為1.本題主要考查反比例函數(shù)系數(shù)k的幾何意義,解題的關(guān)鍵是熟練掌握根據(jù)反比例函數(shù)系數(shù)k的幾何意義求出矩形的面積.17、2.4×1【解析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).【詳解】將240000用科學(xué)記數(shù)法表示為:2.4×1.故答案為2.4×1.此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.18、【分析】△ABF和△ABE等高,先判斷出,進而算出,△ABF和△AFD等高,得,由,即可解出.【詳解】解:∵四邊形ABCD為平行四邊形,∴AD∥BC,AD=BC,又∵E是?ABCD的BC邊的中點,∴,∵△ABE和△ABF同高,∴,∴S△ABE=S△ABF,設(shè)?ABCD中,BC邊上的高為h,∵S△ABE=×BE×h,S?ABCD=BC×h=2×BE×h,∴S?ABCD=4S△ABE=4×S△ABF=6S△ABF,∵△ABF與△ADF等高,∴,∴S△ADF=2S△ABF,∴S四邊形ECDF=S?ABCD﹣S△ABE﹣S△ADF=S△ABF,∴,故答案為:.本題考查了相似三角的面積類題型,運用了線段成比例求面積之間的比值,靈活運用線段比是解決本題的關(guān)鍵.三、解答題(共78分)19、(1)60°,5;(2)AM=BM+CM【分析】(1)由旋轉(zhuǎn)性質(zhì)可得△ABM≌△CAN,根據(jù)全等三角形的性質(zhì)和等邊三角形的判定可得△AMN是等邊三角形,繼而求出∠AMN=60°,根據(jù)∠BMC=120°,∠AMN=∠AMC=60°,繼而求出∠AMB;AM=MN=MC+CN.(2)【詳解】解∵把△ABM繞著點A按逆時針方向旋轉(zhuǎn)60到△ACN的位置,所以∠NAM=60°,因為AN=AM,所以△AMN是等邊三角形,所以∠AMN=60°,因為∠BMC=120°,∠AMN=∠AMC=60°,所以∠AMB=∠BMG-∠AMG=120°-60°=60°,∵把△ABM繞著點A按逆時針方向旋轉(zhuǎn)60°到△ACN的位置,所以△ABM≌△CAN,所以BM=CN=2,△AMN是等邊三角形AM=MN=MC+CN=3+2=5,故答案為60°,5;(2)AM=BM+CM,∵把△ABM繞著點A按逆時針方向旋轉(zhuǎn)60°到△ACN的位置,所以△ABM≌△CAN,因為AN=AM,所以△AMN是等邊三角形,所以∠AMN=60°,因為∠BMC=n°,∠AMN=∠AMC=60°,所以∠MNA=∠MAN,所以MA=MN,所以AM=BM+CM.本題主要考的三角形的旋轉(zhuǎn)及等邊三角形的應(yīng)用以及三角形全等性質(zhì)的使用,解決本題的關(guān)鍵是要熟練掌握旋轉(zhuǎn)性質(zhì)和全等三角形的性質(zhì).20、(1)正比例函數(shù)、反比例函數(shù)的表達式為:,;(2)B點坐標(biāo)是(-2,-1)【解析】試題分析:(1)把點A、B的坐標(biāo)分別代入函數(shù)y=k1x(k1≠0)與函數(shù)中求出k1和k2的值,即可得到兩個函數(shù)的解析式;(2)把(1)中所得兩個函數(shù)的解析式組成方程組,解方程組即可得到點B的坐標(biāo).試題解析:解:(1)把點A(2,1)分別代入y=k1x與可得:,k2=2,∴正比例函數(shù)、反比例函數(shù)的表達式分別為:,;(2)由題意得方程組:,解得:,,∴點B的坐標(biāo)是(-2,-1).21、宣傳條幅BC的長為17.3米.【解析】試題分析:先由∠F=30°,∠BEC=60°解得∠EBF=30°=∠F,從而可得BE=FE=20米,再在Rt△BEC中由sin∠BEC=即可解得BC的值.試題解析:∵∠BEC=∠F+∠EBF,∠F=30°,∠BEC=60°,∴∠EBF=60°-30°=30°=∠F,∴BE=FE=20(米).∵在Rt△BEC中,sin∠BEC=,∴BC=BE×≈10×1.732=17.32≈17.3(米).22、(1)2;(2)【分析】(1)利用絕對值的意義、特殊角的三角函數(shù)值和二次根式的性質(zhì)進行計算,再合并即可;

(2)先根據(jù)分式的除法將所求式子進行變形,再將已知式子的值代入即可得出結(jié)果.【詳解】解:(1)原式=﹣1+2×﹣2+()2=﹣1+﹣2+3=2;(2)∵,∴.本題考查了特殊角的三角函數(shù)值、二次根式的混合運算以及比例的性質(zhì)和分式的除法法則,掌握基本運算法則,能靈活運用比例的性質(zhì)進行變形是解此題的關(guān)鍵.23、(1)(2)【解析】試題分析:(1)因為總共有4個球,紅球有2個,因此可直接求得紅球的概率;(2)根據(jù)題意,列表表示小球摸出的情況,然后找到共12種可能,而兩次都是紅球的情況有2種,因此可求概率.試題解析:解:(1).(2)用表格列出所有可能的結(jié)果:第二次

第一次

紅球1

紅球2

白球

黑球

紅球1

(紅球1,紅球2)

(紅球1,白球)

(紅球1,黑球)

紅球2

(紅球2,紅球1)

(紅球2,白球)

(紅球2,黑球)

白球

(白球,紅球1)

(白球,紅球2)

(白球,黑球)

黑球

(黑球,紅球1)

(黑球,紅球2)

(黑球,白球)

由表

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論