海南省??谑?025屆數學九上期末統(tǒng)考模擬試題含解析_第1頁
海南省海口市2025屆數學九上期末統(tǒng)考模擬試題含解析_第2頁
海南省??谑?025屆數學九上期末統(tǒng)考模擬試題含解析_第3頁
海南省海口市2025屆數學九上期末統(tǒng)考模擬試題含解析_第4頁
海南省??谑?025屆數學九上期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年九上數學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.二次函數的圖像如圖所示,它的對稱軸為直線,與軸交點的橫坐標分別為,,且.下列結論中:①;②;③;④方程有兩個相等的實數根;⑤.其中正確的有()A.②③⑤ B.②③ C.②④ D.①④⑤2.如圖,在菱形中,,,為中點,是上一點,為上一點,且,,交于點,關于下列結論,正確序號的選項是()①,②,③④A.①② B.①②③ C.①②④ D.①③④3.如圖,在平行四邊形中,點是邊上一點,且,交對角線于點,則等于()A. B. C. D.4.設A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=﹣(x+1)2+m上的三點,則y1,y2,y3的大小關系為()A.y3>y2>y1 B.y1>y2>y3 C.y1>y3>y2 D.y2>y1>y35.已知x1,x2是一元二次方程的兩根,則x1+x2的值是()A.0 B.2 C.-2 D.46.如圖,以點O為位似中心,將△ABC縮小后得到△A′B′C′,已知OB=3OB′,則△A′B′C′與△ABC的周長比為()A.1:3 B.1:4 C.1:8 D.1:97.有一個矩形苗圃園,其中一邊靠墻,另外三邊用長為的籬笆圍成.已知墻長為若平行于墻的一邊長不小于則這個苗圃園面積的最大值和最小值分別為()A. B.C. D.8.如圖,OA交⊙O于點B,AD切⊙O于點D,點C在⊙O上.若∠A=40°,則∠C為()A.20° B.25° C.30° D.35°9.的值為()A.2 B. C. D.10.若將半徑為6cm的半圓形紙片圍成一個圓錐的側面,則這個圓錐的底面圓半徑是()A.1cm B.2cm C.3cm D.4cm11.如圖,是坐標原點,菱形頂點的坐標為,頂點在軸的負半軸上,反比例函數的圖象經過頂點,則的值為()A. B. C. D.12.如圖,一塊直角三角板的30°角的頂點P落在⊙O上,兩邊分別交⊙O于A、B兩點,若⊙O的直徑為8,則弦AB長為()A. B. C.4 D.6二、填空題(每題4分,共24分)13.計算:(π﹣3)0+(﹣)﹣2﹣(﹣1)2=_____.14.如圖,AB是⊙O的直徑,AB=6,點C在⊙O上,∠CAB=30°,D為的中點,P是直徑AB上一動點,則PC+PD的最小值為_____.15.已知是,則的值等于____________.16.如圖,將面積為32的矩形ABCD沿對角線BD折疊,點A的對應點為點P,連接AP交BC于點E.若BE=,則AP的長為_____.17.已知:如圖,,,分別切于,,點.若,則的周長為________.18.關于的一元二次方程有兩個不相等的實數根,則整數的最大值是______.三、解答題(共78分)19.(8分)如圖,AB=16,O為AB中點,點C在線段OB上(不與點O,B重合),將OC繞點O逆時針旋轉270°后得到扇形COD,AP,BQ分別切優(yōu)弧CD于點P,Q,且點P,Q在AB異側,連接OP.(1)求證:AP=BQ;(2)當BQ=時,求的長(結果保留);(3)若△APO的外心在扇形COD的內部,求OC的取值范圍.20.(8分)如圖,在平面直角坐標系中,方格紙中的每個小方格都是邊長為1個單位的正方形,△ABC的頂點均在格點上,點A、B、C的坐標分別為(1,﹣4)、(5,﹣4)、(4,﹣1).(1)以原點O為對稱中心,畫出△ABC關于原點O對稱的△A1B1C1,并寫出A1的坐標;(2)將△A1B1C1繞頂點A1逆時針旋轉90°后得到對應的△A1B2C2,畫出△A1B2C2,并求出線段A1C1掃過的面積.21.(8分)如圖,在中,點、、分別在邊、、上,,,.(1)當時,求的長;(2)設,,那么__________,__________(用向量,表示)22.(10分)如圖,菱形ABCD的對角線AC和BD交于點O,AB=10,∠ABC=60°,求AC和BD的長.23.(10分)如圖,是圓的直徑,平分,交圓于點,過點作直線,交的延長線于點,交的延長線于點.(1)求證:是圓的切線;(2)若,,求的長.24.(10分)如圖,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F兩點在BC上,且四邊形AEFD是平行四邊形.(1)AD與BC有何等量關系?請說明理由;(2)當AB=DC時,求證:四邊形AEFD是矩形.25.(12分)我們可以把一個假分數寫成一個整數加上一個真分數的形式,如=3+.同樣的,我們也可以把某些分式寫成類似的形式,如=3+.這種方法我們稱為“分離常數法”.(1)如果=1+,求常數a的值;(2)利用分離常數法,解決下面的問題:當m取哪些整數時,分式的值是整數?(3)我們知道一次函數y=x-1的圖象可以看成是由正比例函數y=x的圖象向下平移1個單位長度得到,函數y=的圖象可以看成是由反比例函數y=的圖象向左平移1個單位長度得到.那么請你分析說明函數y=的圖象是由哪個反比例函數的圖象經過怎樣的變換得到?26.如圖,在平面直角坐標系中,點B(12,10),過點B作x軸的垂線,垂足為A.作y軸的垂線,垂足為C.點D從O出發(fā),沿y軸正方向以每秒1個單位長度運動;點E從O出發(fā),沿x軸正方向以每秒3個單位長度運動;點F從B出發(fā),沿BA方向以每秒2個單位長度運動.當點E運動到點A時,三點隨之停止運動,運動過程中△ODE關于直線DE的對稱圖形是△O′DE,設運動時間為t.(1)用含t的代數式分別表示點E和點F的坐標;(2)若△ODE與以點A,E,F為頂點的三角形相似,求t的值;(3)當t=2時,求O′點在坐標.

參考答案一、選擇題(每題4分,共48分)1、A【分析】利用拋物線開口方向得到a<0,利用對稱軸位置得到b>0,利用拋物線與y軸的交點在x軸下方得c<0,則可對①進行判斷;根據二次函數的對稱性對②③進行判斷;利用拋物線與直線y=2的交點個數對④進行判斷,利用函數與坐標軸的交點列出不等式即可判斷⑤.【詳解】∵拋物線開口向下,∴a<0,∵對稱軸為直線∴b=-2a>0∵拋物線與y軸的交點在x軸下方,∴c<-1,∴abc>0,所以①錯誤;∵,對稱軸為直線∴故,②正確;∵對稱軸x=1,∴當x=0,x=2時,y值相等,故當x=0時,y=c<0,∴當x=2時,y=,③正確;如圖,作y=2,與二次函數有兩個交點,故方程有兩個不相等的實數根,故④錯誤;∵當x=-1時,y=a-b+c=3a+c>0,當x=0時,y=c<-1∴3a>1,故,⑤正確;故選A.本題考查了二次函數圖象與系數的關系:對于二次函數y=ax2+bx+c(a≠0),二次項系數a決定拋物線的開口方向和大?。攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置.當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數項c決定拋物線與y軸交點位置:拋物線與y軸交于(0,c).也考查了二次函數的性質.2、B【分析】依據,,即可得到;依據,即可得出;過作于,依據,根據相似三角形的性質得到;依據,,可得,進而得到.【詳解】解:∵菱形中,,.∴,,∴,故①正確;∴,又∵,為中點,,∴,即,又∵,∴∵,∴,∴,∴,故②正確;如圖,過作于,則,∴,,,∴中,,又∵,∴,故③正確;∵,,,,∴,,∴,∴,故④錯誤;故選:B.此題考查相似三角形的判定與性質、菱形的性質、等邊三角形的性質的綜合運用.解題關鍵在于掌握判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用.3、A【分析】根據平行四邊形的性質和相似三角形的性質解答即可.【詳解】解:∵四邊形是平行四邊形,,∴AD∥BC,AD=BC=3ED,∴∠EDB=∠CBD,∠DEF=∠BCF,∴△DFE∽△BFC,∴.故選:A.本題考查了平行四邊形的性質和相似三角形的判定和性質,屬于??碱}型,熟練掌握相似三角形的判定和性質是解題的關鍵.4、B【分析】本題要比較y1,y2,y3的大小,由于y1,y2,y3是拋物線上三個點的縱坐標,所以可以根據二次函數的性質進行解答:先求出拋物線的對稱軸,再由對稱性得A點關于對稱軸的對稱點A'的坐標,再根據拋物線開口向下,在對稱軸右邊,y隨x的增大而減小,便可得出y1,y2,y3的大小關系.【詳解】∵拋物線y=﹣(x+1)2+m,如圖所示,∴對稱軸為x=﹣1,∵A(﹣2,y1),∴A點關于x=﹣1的對稱點A'(0,y1),∵a=﹣1<0,∴在x=﹣1的右邊y隨x的增大而減小,∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,∴y1>y2>y3,故選:B.本題考查了二次函數圖象上點的坐標的特征,解題的關鍵是能畫出二次函數的大致圖象,據圖判斷.5、B【解析】∵x1,x1是一元二次方程的兩根,∴x1+x1=1.故選B.6、A【分析】以點O為位似中心,將△ABC縮小后得到△A′B′C′,OB=1OB′,可得△A′B′C′與△ABC的位似比,然后由相似三角形的性質可得△A′B′C′與△ABC的周長比.【詳解】∵以點O為位似中心,將△ABC縮小后得到△A′B′C′,OB=1OB′,,∴△A′B′C′與△ABC的位似比為:1:1,∴△A′B′C′與△ABC的周長比為:1:1.故選:A.此題考查了位似圖形的性質.此題難度不大,注意三角形的周長比等于相似比.7、C【分析】設垂直于墻面的長為xm,則平行于墻面的長為(20-2x)m,這個苗圃園的面積為ym2,根據二次函數的圖象及性質求最值即可.【詳解】解:設垂直于墻面的長為xm,則平行于墻面的長為(20-2x)m,這個苗圃園的面積為ym2由題意可得y=x(20-2x)=-2(x-5)2+50,且8≤20-2x≤15解得:2.5≤x≤6∵-2<0,二次函數圖象的對稱軸為直線x=5∴當x=5時,y取最大值,最大值為50;當x=2.5時,y取最小值,最小值為37.5;故選C.此題考查的是二次函數的應用,掌握二次函數的圖象及性質是解題關鍵.8、B【分析】根據切線的性質得到∠ODA=90°,根據直角三角形的性質求出∠DOA,根據圓周角定理計算即可.【詳解】解:∵切于點∴∴∵∴∴故選:B本題考查了切線的性質:圓心與切點的連線垂直切線、圓周角定理以及直角三角形兩銳角互余的性質,結合圖形認真推導即可得解.9、D【解析】根據特殊角的三角函數值及負指數冪的定義求解即可.【詳解】故選:D本題考查了特殊角的三角函數值及負指數冪的定義,比較簡單,掌握定義仔細計算即可.10、C【分析】根據圓錐的底面圓周長是扇形的弧長列式求解即可.【詳解】設圓錐的底面半徑是r,由題意得,,∴r=3cm.故選C.本題考查了圓錐的計算,正確理解圓錐的側面展開圖與原來的扇形之間的關系是解決本題的關鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.11、C【分析】根據點C的坐標以及菱形的性質求出點B的坐標,然后利用待定系數法求出k的值即可.【詳解】∵,

∴,∵四邊形OABC是菱形,

∴AO=CB=OC=AB=5,

則點B的橫坐標為,

故B的坐標為:,

將點B的坐標代入得,,

解得:.

故選:C.本題考查了菱形的性質以及利用待定系數法求反比例函數解析式,解答本題的關鍵是根據菱形的性質求出點B的坐標.12、C【分析】連接AO并延長交⊙O于點D,連接BD,根據圓周角定理得出∠D=∠P=30°,∠ABD=90°,再由直角三角形的性質即可得出結論.【詳解】連接AO并延長交⊙O于點D,連接BD,∵∠P=30°,∴∠D=∠P=30°.∵AD是⊙O的直徑,AD=8,∴∠ABD=90°,∴AB=AD=1.故選:C.此題考查圓周角定理,同弧所對的圓周角相等,直徑所對的圓周角是直角,由于三角板的直角邊不經過圓心,所以連接出直徑的輔助線是解題的關鍵.二、填空題(每題4分,共24分)13、1【分析】直接利用零指數冪的性質以及負整數指數冪的性質分別化簡,得出答案.【詳解】原式=1+1﹣1=1.故答案為:1.本題主要考查零指數冪的性質以及負整數指數冪的性質,牢記負整數指數冪的計算方法,是解題的關鍵.14、3【分析】作出D關于AB的對稱點D',則PC+PD的最小值就是CD'的長度.在△COD'中根據邊角關系即可求解.【詳解】作出D關于AB的對稱點D',連接OC,OD',CD'.又∵點C在⊙O上,∠CAB=30°,D為的中點,∴∠BAD'∠CAB=15°,∴∠CAD'=45°,∴∠COD'=90°.∴△COD'是等腰直角三角形.∵OC=OD'AB=3,∴CD'=3.故答案為:3.本題考查了圓周角定理以及路程的和最小的問題,正確作出輔助線是解答本題的關鍵.15、【分析】已知等式左邊通分并利用同分母分式的減法法則計算,整理得到a-b與ab的關系,代入原式計算即可求出值.【詳解】解:∵,∴則,

故對答案為:.此題考查了分式的加減法,以及分式的值,熟練掌握運算法則是解本題的關鍵.16、【解析】設AB=a,AD=b,則ab=32,構建方程組求出a、b值即可解決問題.【詳解】設AB=a,AD=b,則ab=32,由∽可得:,∴,∴,∴,,設PA交BD于O,在中,,∴,∴,故答案為.【點睛】本題考查翻折變換、矩形的性質、勾股定理、相似三角形的判定與性質等知識,熟練掌握和應用相關的性質定理是解題的關鍵.17、【分析】根據切線長定理由PA、PB分別切⊙O于A、B得到PB=PA=10cm,由于DC與⊙O相切于E,再根據切線長定理得到CA=CE,DE=DB,然后三角形周長的定義得到△PDC的周長=PD+DC+PC=PD+DB+CA+PC,然后用等線段代換后得到三角形PDC的周長等于PA+PB.【詳解】∵PA、PB分別切⊙O于A、B,

∴PB=PA=10cm,

∵CA與CE為⊙的切線,

∴CA=CE,

同理得到DE=DB,

∴△PDC的周長=PD+DC+PC=PD+DB+CA+PC

∴△PDC的周長=PA+PB=20cm,

故答案為20cm.本題考查了切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線,平分兩條切線的夾角.18、1【分析】若一元二次方程有兩不等實數根,則而且根的判別式△,建立關于的不等式,求出的取值范圍.【詳解】解:一元二次方程有兩個不相等的實數根,△且,解得且,故整數的最大值為1,故答案為:1.本題考查了一元二次方程的定義及根的判別式,特別要注意容易忽略方程是一元二次方程的前提即二次項系數不為2.三、解答題(共78分)19、(1)詳見解析;(2);(3)4<OC<1.【分析】(1)連接OQ,由切線性質得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性質即可得證.(2)由(1)中全等三角形性質得∠AOP=∠BOQ,從而可得P、O、Q三點共線,在Rt△BOQ中,根據余弦定義可得cosB=,由特殊角的三角函數值可得∠B=30°,∠BOQ=60°,根據直角三角形的性質得OQ=4,結合題意可得∠QOD度數,由弧長公式即可求得答案.(3)由直角三角形性質可得△APO的外心是OA的中點,結合題意可得OC取值范圍.【詳解】(1)證明:連接OQ.∵AP、BQ是⊙O的切線,∴OP⊥AP,OQ⊥BQ,∴∠APO=∠BQO=90°,在Rt△APO和Rt△BQO中,,∴Rt△APO≌Rt△BQO,∴AP=BQ.(2)∵Rt△APO≌Rt△BQO,∴∠AOP=∠BOQ,∴P、O、Q三點共線,∵在Rt△BOQ中,cosB=,∴∠B=30°,∠BOQ=60°,∴OQ=OB=4,∵∠COD=90°,∴∠QOD=90°+60°=150°,∴優(yōu)弧QD的長=,(3)解:設點M為Rt△APO的外心,則M為OA的中點,

∵OA=1,

∴OM=4,

∴當△APO的外心在扇形COD的內部時,OM<OC,

∴OC的取值范圍為4<OC<1.本題考查了三角形的外接圓與外心、弧長的計算、扇形面積的計算、旋轉的性質以及全等三角形的判定與性質,解題的關鍵是:(1)利用全等三角形的判定定理HL證出Rt△APO≌Rt△BQO;(2)通過解直角三角形求出圓的半徑;(3)牢記直角三角形外心為斜邊的中點是解題的關鍵.20、(1)詳見解析;(2)圖詳見解析,【分析】(1)利用關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分,分別找出A、B、C的對應點,順次連接,即得到相應的圖形;(2)根據題意,作出對應點,然后順次連接即可得到圖形,再根據扇形的面積公式即可求出面積.【詳解】解:(1)如圖所示,△A1B1C1即為所求,點A1的坐標為:(-1,4);(2)如圖所示,△A1B2C2即為所求;.所以,線段A1C1掃過的面積=.本題考查的是旋轉變換作圖.無論是何種變換都需先找出各關鍵點的對應點,然后順次連接即可.21、(1);(2),【分析】(1)利用平行線分線段成比例定理求解即可.

(2)利用三角形法則求解即可.【詳解】(1)∵DE∥BC,EF∥AB,

∴四邊形DEFB是平行四邊形,

∴DE=BF=5,

∵AD:AB=DE:BC=1:3,

∴BC=15,

∴CF=BC-BF=15-5=1.

(2)∵AD:AB=1:3,

∴,

∵EF=BD,EF∥BD,

∴,

∵CF=2DE,

∴,

∴.此題考查平面向量,平行向量等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.22、AC=10,BD=10【分析】根據菱形的性質可得Rt△ABO中,∠ABO=∠ABD=∠ABC=30°,則可得AO和BO的長,根據AC=2AO,BD=2BO可得AC和BD的長;【詳解】解:∵四邊形ABCD是菱形,∴AC⊥BD,OA=OC=AC,OB=OD=BD,∠ABD=∠ABC=30°,在Rt△ABO中,AB=10,∠ABO=∠ABD=30°,∴AO=AB=5,BO=AB=5,∴AC=2AO=10,BD=2BO=10.本題主要考查了菱形的性質,解直角三角形,掌握菱形的性質,解直角三角形是解題的關鍵.23、(1)證明見解析;(2)AE=.【分析】(1)由題意連接OE,由角平分線的性質并結合平行線的性質進行分析故可得CD是⊙O的切線;(2)根據題意設r是⊙O的半徑,在Rt△CEO中,,進而有OE∥AD可得△CEO∽△CDA,可得比例關系式,代入進行求解即可.【詳解】解:(1)證明:連結,∵平分,∴∵,∴,∴,∴∵,∴,∴是圓的切線.(2)設是圓的半徑,在中,即.解得.∵,∴∽∴即,解得,∴=.本題考查圓相關,熟練掌握并利用圓的切線定理以及相似三角形的性質進行分析是解題的關鍵.24、(1),理由見解析;(2)見解析【分析】(1)由四邊形AEFD是平行四邊形可得AD=EF,根據條件可證四邊形ABED是平行四邊形,四邊形AFCD是平行四邊形,所以AD=BE,AD=FC,所以AD=BC;(2)根據矩形的判定和定義,對角線相等的平行四邊形是矩形.只要證明AF=DE即可得出結論.【詳解】證明:(1)AD=BC理由如下:

∵AD∥BC,AB∥DE,AF∥DC,

∴四邊形ABED和四邊形AFCD都是平行四邊形.

∴AD=BE,AD=FC,

又∵四邊形AEFD是平行四邊形,

∴AD=EF.

∴AD=BE=EF=FC.∴;(2)證明:∵四邊形ABED和四邊形AFCD都是平行四邊形,

∴DE=AB,AF=DC.

∵AB=DC,

∴DE=AF.

又∵四邊形AEFD是平行四邊形,

∴平行四邊形AEFD是矩形.考點:1.平行四邊形的判定與性質;2.矩形的判定.25、(1)a=-4;(2)m=4或m=-2或m=2或m=0;(3)y=.【解析】(1)依據定義進行判斷即可;(2)首先將原式變形為-3-,然后依據m-1能夠被3整數列方程求解即可;(3)先將函數y=化為y=+3,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論