2026屆梧州市重點中學(xué)中考數(shù)學(xué)考前最后一卷含解析_第1頁
2026屆梧州市重點中學(xué)中考數(shù)學(xué)考前最后一卷含解析_第2頁
2026屆梧州市重點中學(xué)中考數(shù)學(xué)考前最后一卷含解析_第3頁
2026屆梧州市重點中學(xué)中考數(shù)學(xué)考前最后一卷含解析_第4頁
2026屆梧州市重點中學(xué)中考數(shù)學(xué)考前最后一卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆梧州市重點中學(xué)中考數(shù)學(xué)考前最后一卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在平面直角坐標(biāo)系中,以O(shè)為圓心,適當(dāng)長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧在第二象限交于點P.若點P的坐標(biāo)為(2a,b+1),則a與b的數(shù)量關(guān)系為A.a(chǎn)=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=12.下列運算正確的是()A.4x+5y=9xy B.(?m)3?m7=m10C.(x3y)5=x8y5 D.a(chǎn)12÷a8=a43.拒絕“餐桌浪費”,刻不容緩.節(jié)約一粒米的帳:一個人一日三餐少浪費一粒米,全國一年就可以節(jié)省斤,這些糧食可供9萬人吃一年.“”這個數(shù)據(jù)用科學(xué)記數(shù)法表示為()A. B. C. D..4.如圖1,點E為矩形ABCD的邊AD上一點,點P從點B出發(fā)沿BE→ED→DC運動到點C停止,點Q從點B出發(fā)沿BC運動到點C停止,它們運動的速度都是1cm/s.若點P、Q同時開始運動,設(shè)運動時間為t(s),△BPQ的面積為y(cm2),已知y與t之間的函數(shù)圖象如圖2所示.給出下列結(jié)論:①當(dāng)0<t≤10時,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22時,y=110﹣1t;④在運動過程中,使得△ABP是等腰三角形的P點一共有3個;⑤當(dāng)△BPQ與△BEA相似時,t=14.1.其中正確結(jié)論的序號是()A.①④⑤ B.①②④ C.①③④ D.①③⑤5.如圖,在菱形ABCD中,AB=BD,點E、F分別是AB、AD上任意的點(不與端點重合),且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H.給出如下幾個結(jié)論:①△AED≌△DFB;②S四邊形BCDG=32其中正確的結(jié)論個數(shù)為()A.4 B.3 C.2 D.16.計算3a2-a2的結(jié)果是()A.4a2B.3a2C.2a2D.37.如圖,菱形ABCD的邊長為2,∠B=30°.動點P從點B出發(fā),沿B-C-D的路線向點D運動.設(shè)△ABP的面積為y(B、P兩點重合時,△ABP的面積可以看作0),點P運動的路程為x,則y與x之間函數(shù)關(guān)系的圖像大致為()A. B. C. D.8.廣西2017年參加高考的學(xué)生約有365000人,將365000這個數(shù)用科學(xué)記數(shù)法表示為()A.3.65×103 B.3.65×104 C.3.65×105 D.3.65×1069.某公司有11名員工,他們所在部門及相應(yīng)每人所創(chuàng)年利潤如下表所示,已知這11個數(shù)據(jù)的中位數(shù)為1.部門人數(shù)每人所創(chuàng)年利潤(單位:萬元)11938743這11名員工每人所創(chuàng)年利潤的眾數(shù)、平均數(shù)分別是A.10,1 B.7,8 C.1,6.1 D.1,610.如圖所示,在平面直角坐標(biāo)系中,點A、B、C的坐標(biāo)分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應(yīng)點B1的坐標(biāo)是(1,2),則點A1,C1的坐標(biāo)分別是()A.A1(4,4),C1(3,2) B.A1(3,3),C1(2,1)C.A1(4,3),C1(2,3) D.A1(3,4),C1(2,2)11.如圖,AB∥CD,FE⊥DB,垂足為E,∠1=50°,則∠2的度數(shù)是()A.60° B.50° C.40° D.30°12.函數(shù)y=中,自變量x的取值范圍是()A.x>3 B.x<3 C.x=3 D.x≠3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖甲,對于平面上不大于90°的∠MON,我們給出如下定義:如果點P在∠MON的內(nèi)部,作PE⊥OM,PF⊥ON,垂足分別為點E、F,那么稱PE+PF的值為點P相對于∠MON的“點角距離”,記為d(P,∠MON).如圖乙,在平面直角坐標(biāo)系xOy中,點P在坐標(biāo)平面內(nèi),且點P的橫坐標(biāo)比縱坐標(biāo)大2,對于∠xOy,滿足d(P,∠xOy)=10,點P的坐標(biāo)是_____.14.如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點,且∠DAE=45°,將△ADC繞點A順時針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論:①∠EAF=45°;②△AED≌△AEF;③△ABE∽△ACD;④BE1+DC1=DE1.其中正確的是______.(填序號)15.已知點A(a,y1)、B(b,y2)在反比例函數(shù)y=的圖象上,如果a<b<0,那么y1與y2的大小關(guān)系是:y1__y2;16.如圖,小聰把一塊含有60°角的直角三角板的兩個頂點放在直尺的對邊上,并測得∠1=25°,則∠2的度數(shù)是_____.17.如果拋物線y=﹣x2+(m﹣1)x+3經(jīng)過點(2,1),那么m的值為_____.18.因式分解:9x﹣x2=_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,點P是平面直角坐標(biāo)系中第二象限內(nèi)的一點,過點P作PA⊥y軸于點A,點P繞點A順時針旋轉(zhuǎn)60°得到點P',我們稱點P'是點P的“旋轉(zhuǎn)對應(yīng)點”.(1)若點P(﹣4,2),則點P的“旋轉(zhuǎn)對應(yīng)點”P'的坐標(biāo)為;若點P的“旋轉(zhuǎn)對應(yīng)點”P'的坐標(biāo)為(﹣5,16)則點P的坐標(biāo)為;若點P(a,b),則點P的“旋轉(zhuǎn)對應(yīng)點”P'的坐標(biāo)為;(2)如圖2,點Q是線段AP'上的一點(不與A、P'重合),點Q的“旋轉(zhuǎn)對應(yīng)點”是點Q',連接PP'、QQ',求證:PP'∥QQ';(3)點P與它的“旋轉(zhuǎn)對應(yīng)點”P'的連線所在的直線經(jīng)過點(,6),求直線PP'與x軸的交點坐標(biāo).20.(6分)(1)計算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化簡,再求值:()+,其中a=﹣2+.21.(6分)隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2017年“五?一”長假期間旅游情況統(tǒng)計圖,根據(jù)以下信息解答下列問題:(1)2017年“五?一”期間,該市周邊景點共接待游客萬人,扇形統(tǒng)計圖中A景點所對應(yīng)的圓心角的度數(shù)是,并補全條形統(tǒng)計圖.(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預(yù)計2018年“五?一”節(jié)將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點旅游?(3)甲、乙兩個旅行團(tuán)在A、B、D三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.22.(8分)如圖,某校教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22o時,教學(xué)樓在建筑物的墻上留下高2m的影子CE;而當(dāng)光線與地面的夾角是45o時,教學(xué)樓頂A在地面上的影子F與墻角C有13m的距離(B、F、C在一條直線上).求教學(xué)樓AB的高度;學(xué)校要在A、E之間掛一些彩旗,請你求出A、E之間的距離(結(jié)果保留整數(shù)).23.(8分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象在第一象限交于點A(4,3),與y軸的負(fù)半軸交于點B,且OA=OB.(1)求一次函數(shù)y=kx+b和y=的表達(dá)式;(2)已知點C在x軸上,且△ABC的面積是8,求此時點C的坐標(biāo);(3)反比例函數(shù)y=(1≤x≤4)的圖象記為曲線C1,將C1向右平移3個單位長度,得曲線C2,則C1平移至C2處所掃過的面積是_________.(直接寫出答案)24.(10分)如圖,在⊙O中,AB是直徑,點C是圓上一點,點D是弧BC中點,過點D作⊙O切線DF,連接AC并延長交DF于點E.(1)求證:AE⊥EF;(2)若圓的半徑為5,BD=6求AE的長度.25.(10分)如圖,四邊形ABCD是邊長為2的正方形,以點A,B,C為圓心作圓,分別交BA,CB,DC的延長線于點E,F(xiàn),G.(1)求點D沿三條圓弧運動到點G所經(jīng)過的路線長;(2)判斷線段GB與DF的長度關(guān)系,并說明理由.26.(12分)某地區(qū)教育部門為了解初中數(shù)學(xué)課堂中學(xué)生參與情況,并按“主動質(zhì)疑、獨立思考、專注聽講、講解題目”四個項目進(jìn)行評價.檢測小組隨機抽查部分學(xué)校若干名學(xué)生,并將抽查學(xué)生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整).請根據(jù)統(tǒng)計圖中的信息解答下列問題:本次抽查的樣本容量是

;在扇形統(tǒng)計圖中,“主動質(zhì)疑”對應(yīng)的圓心角為

度;將條形統(tǒng)計圖補充完整;如果該地區(qū)初中學(xué)生共有60000名,那么在課堂中能“獨立思考”的學(xué)生約有多少人?27.(12分)如圖,在△ABC中,AB=AC,點P、D分別是BC、AC邊上的點,且∠APD=∠B,求證:AC?CD=CP?BP;若AB=10,BC=12,當(dāng)PD∥AB時,求BP的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題分析:根據(jù)作圖方法可得點P在第二象限角平分線上,則P點橫縱坐標(biāo)的和為0,即2a+b+1=0,∴2a+b=﹣1.故選B.2、D【解析】

各式計算得到結(jié)果,即可作出判斷.【詳解】解:A、4x+5y=4x+5y,錯誤;B、(-m)3?m7=-m10,錯誤;C、(x3y)5=x15y5,錯誤;D、a12÷a8=a4,正確;故選D.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.3、C【解析】

用科學(xué)記數(shù)法表示較大的數(shù)時,一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【詳解】32400000=3.24×107元.

故選C.【點睛】此題主要考查了用科學(xué)記數(shù)法表示較大的數(shù),一般形式為a×10n,其中1≤|a|<10,確定a與n的值是解題的關(guān)鍵.4、D【解析】

根據(jù)題意,得到P、Q分別同時到達(dá)D、C可判斷①②,分段討論PQ位置后可以判斷③,再由等腰三角形的分類討論方法確定④,根據(jù)兩個點的相對位置判斷點P在DC上時,存在△BPQ與△BEA相似的可能性,分類討論計算即可.【詳解】解:由圖象可知,點Q到達(dá)C時,點P到E則BE=BC=10,ED=4故①正確則AE=10﹣4=6t=10時,△BPQ的面積等于∴AB=DC=8故故②錯誤當(dāng)14<t<22時,故③正確;分別以A、B為圓心,AB為半徑畫圓,將兩圓交點連接即為AB垂直平分線則⊙A、⊙B及AB垂直平分線與點P運行路徑的交點是P,滿足△ABP是等腰三角形此時,滿足條件的點有4個,故④錯誤.∵△BEA為直角三角形∴只有點P在DC邊上時,有△BPQ與△BEA相似由已知,PQ=22﹣t∴當(dāng)或時,△BPQ與△BEA相似分別將數(shù)值代入或,解得t=(舍去)或t=14.1故⑤正確故選:D.【點睛】本題是動點問題的函數(shù)圖象探究題,考查了三角形相似判定、等腰三角形判定,應(yīng)用了分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想.5、B【解析】試題分析:①∵ABCD為菱形,∴AB=AD,∵AB=BD,∴△ABD為等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本選項正確;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點B、C、D、G四點共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,過點C作CM⊥GB于M,CN⊥GD于N(如圖1),則△CBM≌△CDN(AAS),∴S四邊形BCDG=S四邊形CMGN,S四邊形CMGN=2S△CMG,∵∠CGM=60°,∴GM=12CG,CM=32CG,∴S四邊形CMGN=2S△CMG=2×12×12CG×③過點F作FP∥AE于P點(如圖2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:12④當(dāng)點E,F(xiàn)分別是AB,AD中點時(如圖3),由(1)知,△ABD,△BDC為等邊三角形,∵點E,F(xiàn)分別是AB,AD中點,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC與△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本選項錯誤;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,為定值,故本選項正確;綜上所述,正確的結(jié)論有①③⑤,共3個,故選B.考點:四邊形綜合題.6、C【解析】【分析】根據(jù)合并同類項法則進(jìn)行計算即可得.【詳解】3a2-a2=(3-1)a2=2a2,故選C.【點睛】本題考查了合并同類項,熟記合并同類項的法則是解題的關(guān)鍵.合并同類項就是把同類項的系數(shù)相加減,字母和字母的指數(shù)不變.7、C【解析】

先分別求出點P從點B出發(fā),沿B→C→D向終點D勻速運動時,當(dāng)0<x≤2和2<x≤4時,y與x之間的函數(shù)關(guān)系式,即可得出函數(shù)的圖象.【詳解】由題意知,點P從點B出發(fā),沿B→C→D向終點D勻速運動,則

當(dāng)0<x≤2,y=x,

當(dāng)2<x≤4,y=1,

由以上分析可知,這個分段函數(shù)的圖象是C.

故選C.8、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】解:將365000這個數(shù)用科學(xué)記數(shù)法表示為3.65×1.故選C.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.9、D【解析】

根據(jù)中位數(shù)的定義即可求出x的值,然后根據(jù)眾數(shù)的定義和平均數(shù)公式計算即可.【詳解】解:這11個數(shù)據(jù)的中位數(shù)是第8個數(shù)據(jù),且中位數(shù)為1,,則這11個數(shù)據(jù)為3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,所以這組數(shù)據(jù)的眾數(shù)為1萬元,平均數(shù)為萬元.故選:.【點睛】此題考查的是中位數(shù)、眾數(shù)和平均數(shù),掌握中位數(shù)的定義、眾數(shù)的定義和平均數(shù)公式是解決此題的關(guān)鍵.10、A【解析】分析:根據(jù)B點的變化,確定平移的規(guī)律,將△ABC向右移5個單位、上移1個單位,然后確定A、C平移后的坐標(biāo)即可.詳解:由點B(﹣4,1)的對應(yīng)點B1的坐標(biāo)是(1,2)知,需將△ABC向右移5個單位、上移1個單位,則點A(﹣1,3)的對應(yīng)點A1的坐標(biāo)為(4,4)、點C(﹣2,1)的對應(yīng)點C1的坐標(biāo)為(3,2),故選A.點睛:此題主要考查了平面直角坐標(biāo)系中的平移,關(guān)鍵是根據(jù)已知點的平移變化總結(jié)出平移的規(guī)律.11、C【解析】試題分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故選C.考點:平行線的性質(zhì).12、D【解析】由題意得,x﹣1≠0,解得x≠1.故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(6,4)或(﹣4,﹣6)【解析】

設(shè)點P的橫坐標(biāo)為x,表示出縱坐標(biāo),然后列方程求出x,再求解即可.【詳解】解:設(shè)點P的橫坐標(biāo)為x,則點P的縱坐標(biāo)為x-2,由題意得,

當(dāng)點P在第一象限時,x+x-2=10,

解得x=6,

∴x-2=4,

∴P(6,4);

當(dāng)點P在第三象限時,-x-x+2=10,

解得x=-4,

∴x-2=-6,

∴P(-4,-6).

故答案為:(6,4)或(-4,-6).【點睛】本題主要考查了點的坐標(biāo),讀懂題目信息,理解“點角距離”的定義并列出方程是解題的關(guān)鍵.14、①②④【解析】

①根據(jù)旋轉(zhuǎn)得到,對應(yīng)角∠CAD=∠BAF,由∠EAF=∠BAF+∠BAE=∠CAD+∠BAE即可判斷②由旋轉(zhuǎn)得出AD=AF,∠DAE=∠EAF,及公共邊即可證明③在△ABE∽△ACD中,只有AB=AC、∠ABE=∠ACD=45°兩個條件,無法證明④先由△ACD≌△ABF,得出∠ACD=∠ABF=45°,進(jìn)而得出∠EBF=90°,然后在Rt△BEF中,運用勾股定理得出BE1+BF1=EF1,等量代換后判定④正確【詳解】由旋轉(zhuǎn),可知:∠CAD=∠BAF.∵∠BAC=90°,∠DAE=45°,∴∠CAD+∠BAE=45°,∴∠BAF+∠BAE=∠EAF=45°,結(jié)論①正確;②由旋轉(zhuǎn),可知:AD=AF在△AED和△AEF中,∴△AED≌△AEF(SAS),結(jié)論②正確;③在△ABE∽△ACD中,只有AB=AC,、∠ABE=∠ACD=45°兩個條件,無法證出△ABE∽△ACD,結(jié)論③錯誤;④由旋轉(zhuǎn),可知:CD=BF,∠ACD=∠ABF=45°,∴∠EBF=∠ABE+∠ABF=90°,∴BF1+BE1=EF1.∵△AED≌△AEF,EF=DE,又∵CD=BF,∴BE1+DC1=DE1,結(jié)論④正確.故答案為:①②④【點睛】本題考查了相似三角形的判定,全等三角形的判定與性質(zhì),勾股定理,熟練掌握定理是解題的關(guān)鍵15、>【解析】

根據(jù)反比例函數(shù)的性質(zhì)求解.【詳解】反比例函數(shù)y=的圖象分布在第一、三象限,在每一象限y隨x的增大而減小,而a<b<0,所以y1>y2故答案為:>【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.也考查了反比例函數(shù)的性質(zhì).16、35°【解析】分析:先根據(jù)兩直線平行,內(nèi)錯角相等求出∠3,再根據(jù)直角三角形的性質(zhì)用∠2=60°-∠3代入數(shù)據(jù)進(jìn)行計算即可得解.詳解:∵直尺的兩邊互相平行,∠1=25°,∴∠3=∠1=25°,∴∠2=60°-∠3=60°-25°=35°.故答案為35°.點睛:本題考查了平行線的性質(zhì),三角板的知識,熟記平行線的性質(zhì)是解題的關(guān)鍵.17、2【解析】

把點(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.【詳解】∵拋物線y=﹣x2+(m﹣1)x+3經(jīng)過點(2,1),∴1=-4+2(m-1)+3,解得m=2,故答案為2.【點睛】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是找出二次函數(shù)圖象上的點的坐標(biāo)滿足的關(guān)系式.18、x(9﹣x)【解析】試題解析:故答案為點睛:常見的因式分解的方法:提取公因式法,公式法,十字相乘法.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)見解析;(3)直線PP'與x軸的交點坐標(biāo)(﹣,0)【解析】

(1)①當(dāng)P(-4,2)時,OA=2,PA=4,由旋轉(zhuǎn)知,∠P'AH=30°,進(jìn)而P'H=P'A=2,AH=P'H=2,即可得出結(jié)論;②當(dāng)P'(-5,16)時,確定出P'A=10,AH=5,由旋轉(zhuǎn)知,PA=PA'=10,OA=OH-AH=16-5,即可得出結(jié)論;③當(dāng)P(a,b)時,同①的方法得,即可得出結(jié)論;(2)先判斷出∠BQQ'=60°,進(jìn)而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出結(jié)論;(3)先確定出yPP'=x+3,即可得出結(jié)論.【詳解】解:(1)如圖1,①當(dāng)P(﹣4,2)時,∵PA⊥y軸,∴∠PAH=90°,OA=2,PA=4,由旋轉(zhuǎn)知,P'A=4,∠PAP'=60°,∴∠P'AH=30°,在Rt△P'AH中,P'H=P'A=2,∴AH=P'H=2,∴OH=OA+AH=2+2,∴P'(﹣2,2+2),②當(dāng)P'(﹣5,16)時,在Rt△P'AH中,∠P'AH=30°,P'H=5,∴P'A=10,AH=5,由旋轉(zhuǎn)知,PA=PA'=10,OA=OH﹣AH=16﹣5,∴P(﹣10,16﹣5),③當(dāng)P(a,b)時,同①的方法得,P'(,b﹣a),故答案為:(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)如圖2,過點Q作QB⊥y軸于B,∴∠BQQ'=60°,由題意知,△PAP'是等邊三角形,∴∠PAP'=∠PP'A=60°,∵QB⊥y軸,PA⊥y軸,∴QB∥PA,∴∠P'QQ'=∠PAP'=60°,∴∠P'QQ'=60°=∠PP'A,∴PP'∥QQ';(3)設(shè)yPP'=kx+b',由題意知,k=,∵直線經(jīng)過點(,6),∴b'=3,∴yPP'=x+3,令y=0,∴x=﹣,∴直線PP'與x軸的交點坐標(biāo)(﹣,0).【點睛】此題是幾何變換綜合題,主要考查了含30度角的直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),等邊三角形的判定和性質(zhì),待定系數(shù)法,解本題的關(guān)鍵是理解新定義.20、(1)-1;(2).【解析】

(1)根據(jù)零指數(shù)冪的意義、特殊角的銳角三角函數(shù)以及負(fù)整數(shù)指數(shù)冪的意義即可求出答案;(2)先化簡原式,然后將a的值代入即可求出答案.【詳解】(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1;(2)原式=+=當(dāng)a=﹣2+時,原式==.【點睛】本題考查了學(xué)生的運算能力,解題的關(guān)鍵是熟練運用運算法則,本題屬于基礎(chǔ)題型.21、(1)50,108°,補圖見解析;(2)9.6;(3).【解析】

(1)根據(jù)A景點的人數(shù)以及百分表進(jìn)行計算即可得到該市周邊景點共接待游客數(shù);先求得A景點所對應(yīng)的圓心角的度數(shù),再根據(jù)扇形圓心角的度數(shù)=部分占總體的百分比×360°進(jìn)行計算即可;根據(jù)B景點接待游客數(shù)補全條形統(tǒng)計圖;(2)根據(jù)E景點接待游客數(shù)所占的百分比,即可估計2018年“五?一”節(jié)選擇去E景點旅游的人數(shù);(3)根據(jù)甲、乙兩個旅行團(tuán)在A、B、D三個景點中各選擇一個景點,畫出樹狀圖,根據(jù)概率公式進(jìn)行計算,即可得到同時選擇去同一景點的概率.【詳解】解:(1)該市周邊景點共接待游客數(shù)為:15÷30%=50(萬人),A景點所對應(yīng)的圓心角的度數(shù)是:30%×360°=108°,B景點接待游客數(shù)為:50×24%=12(萬人),補全條形統(tǒng)計圖如下:(2)∵E景點接待游客數(shù)所占的百分比為:×100%=12%,∴2018年“五?一”節(jié)選擇去E景點旅游的人數(shù)約為:80×12%=9.6(萬人);(3)畫樹狀圖可得:∵共有9種可能出現(xiàn)的結(jié)果,這些結(jié)果出現(xiàn)的可能性相等,其中同時選擇去同一個景點的結(jié)果有3種,∴同時選擇去同一個景點的概率=.【點睛】本題考查列表法與樹狀圖法;用樣本估計總體;扇形統(tǒng)計圖;條形統(tǒng)計圖.22、(1)2m(2)27m【解析】

(1)首先構(gòu)造直角三角形△AEM,利用,求出即可.(2)利用Rt△AME中,,求出AE即可.【詳解】解:(1)過點E作EM⊥AB,垂足為M.設(shè)AB為x.在Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+1.在Rt△AEM中,∠AEM=22°,AM=AB-BM=AB-CE=x-2,又∵,∴,解得:x≈2.∴教學(xué)樓的高2m.(2)由(1)可得ME=BC=x+1≈2+1=3.在Rt△AME中,,∴AE=MEcos22°≈.∴A、E之間的距離約為27m.23、(1),;(2)點C的坐標(biāo)為或;(3)2.【解析】試題分析:(1)由點A的坐標(biāo)利用反比例函數(shù)圖象上點的坐標(biāo)特征即可求出a值,從而得出反比例函數(shù)解析式;由勾股定理得出OA的長度從而得出點B的坐標(biāo),由點A、B的坐標(biāo)利用待定系數(shù)法即可求出直線AB的解析式;

(2)設(shè)點C的坐標(biāo)為(m,0),令直線AB與x軸的交點為D,根據(jù)三角形的面積公式結(jié)合△ABC的面積是8,可得出關(guān)于m的含絕對值符號的一元一次方程,解方程即可得出m值,從而得出點C的坐標(biāo);

(3)設(shè)點E的橫坐標(biāo)為1,點F的橫坐標(biāo)為6,點M、N分別對應(yīng)點E、F,根據(jù)反比例函數(shù)解析式以及平移的性質(zhì)找出點E、F、M、N的坐標(biāo),根據(jù)EM∥FN,且EM=FN,可得出四邊形EMNF為平行四邊形,再根據(jù)平行四邊形的面積公式求出平行四邊形EMNF的面積S,根據(jù)平移的性質(zhì)即可得出C1平移至C2處所掃過的面積正好為S.試題解析:(1)∵點A(4,3)在反比例函數(shù)y=的圖象上,∴a=4×3=12,∴反比例函數(shù)解析式為y=;∵OA==1,OA=OB,點B在y軸負(fù)半軸上,∴點B(0,﹣1).把點A(4,3)、B(0,﹣1)代入y=kx+b中,得:,解得:,∴一次函數(shù)的解析式為y=2x﹣1.(2)設(shè)點C的坐標(biāo)為(m,0),令直線AB與x軸的交點為D,如圖1所示.令y=2x﹣1中y=0,則x=,∴D(,0),∴S△ABC=CD?(yA﹣yB)=|m﹣|×[3﹣(﹣1)]=8,解得:m=或m=.故當(dāng)△ABC的面積是8時,點C的坐標(biāo)為(,0)或(,0).(3)設(shè)點E的橫坐標(biāo)為1,點F的橫坐標(biāo)為6,點M、N分別對應(yīng)點E、F,如圖2所示.令y=中x=1,則y=12,∴E(1,12),;令y=中x=4,則y=3,∴F(4,3),∵EM∥FN,且EM=FN,∴四邊形EMNF為平行四邊形,∴S=EM?(yE﹣yF)=3×(12﹣3)=2.C1平移至C2處所掃過的面積正好為平行四邊形EMNF的面積.故答案為2.【點睛】運用了反比例函數(shù)圖象上點的坐標(biāo)特征、待定系數(shù)法求函數(shù)解析式、三角形的面積以及平行四邊形的面積,解題的關(guān)鍵是:(1)利用待定系數(shù)法求出函數(shù)解析式;(2)找出關(guān)于m的含絕對值符號的一元一次方程;(3)求出平行四邊形EMNF的面積.本題屬于中檔題,難度不小,解決(3)時,巧妙的借助平行四邊的面積公式求出C1平移至C2處所掃過的面積,此處要注意數(shù)形結(jié)合的重要性.24、(1)詳見解析;(2)AE=6.1.【解析】

(1)連接OD,利用切線的性質(zhì)和三角形的內(nèi)角和證明OD∥EA,即可證得結(jié)論;(2)利用相似三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論