形如分式函數(shù)y=x^3.(x^2+1)圖像示意圖畫法步驟及性質(zhì)解析C7_第1頁
形如分式函數(shù)y=x^3.(x^2+1)圖像示意圖畫法步驟及性質(zhì)解析C7_第2頁
形如分式函數(shù)y=x^3.(x^2+1)圖像示意圖畫法步驟及性質(zhì)解析C7_第3頁
形如分式函數(shù)y=x^3.(x^2+1)圖像示意圖畫法步驟及性質(zhì)解析C7_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

函數(shù)y=eq\f(123x3,119x2+225)的圖像畫法及性質(zhì)解析主要內(nèi)容:本文主要函數(shù)y=eq\f(123x3,119x2+225)的定義域、值域、單調(diào)性、奇偶性、凸凹性等性質(zhì)異同點(diǎn),并簡(jiǎn)要畫出函數(shù)y=eq\f(123x3,119x2+225)的圖像示意圖。函數(shù)的定義域:∵分母119x2+225≥225>0,即分母為正的實(shí)數(shù),再取倒數(shù)函數(shù)有意義?!嗪瘮?shù)的定義域?yàn)槿w實(shí)數(shù),即定義域均為:(-∞,+∞)。函數(shù)的單調(diào)性:用導(dǎo)數(shù)工具解析單調(diào)性為:∵y=eq\f(123x3,119x2+225),∴eq\f(dy,dx)=eq\f(3*123x2*(119x2+225)-2*119*123x?,(119x2+225)2)=eq\f(123x2(119x2+3*225),(119x2+225)2)>0,可知函數(shù)y在定義域上為單調(diào)增函數(shù)。函數(shù)的凸凹性:eq\f(dy,dx)=123*eq\f(119x?+3*225x2,(119x2+225)2);eq\f(d2y,dx2)=123*eq\f((4*119x3+6*225x)(119x2+225)2-(119x?+3*225x2)*4*119x(119x2+225),(119x2+225)?)=2*123x*eq\f((2*119x2+3*225)(119x2+225)-2*119(119x?+3*225x2),(119x2+225)3)=-2*225*123x*eq\f(119x2-3*2252,(119x2+225)3).令eq\f(d2y,dx2)=0,則x=0或者119x2-3*2252=0,求出x=±eq\f(15,119)eq\r(357)≈±2.38,函數(shù)y凸凹性為:(1)當(dāng)x∈[-2.38,0]∪(2.38,+∞)時(shí),eq\f(d2y,dx2)≤0,則函數(shù)y為凸函數(shù);(2)當(dāng)x∈(-∞,-2.38)∪(0,2.38]時(shí),eq\f(d2y,dx2)>0,則函數(shù)y為凹函數(shù)。函數(shù)的奇偶性:因?yàn)閒(x)=eq\f(123x3,119x2+225),所以f(-x)=eq\f(123(-x)3,119(-x)2+225)=-eq\f(123x3,119x2+225)=-f(x).所以函數(shù)f(x)為奇函數(shù),圖像關(guān)于原點(diǎn)對(duì)稱。函數(shù)的極限:Lim(x→-∞)eq\f(123x3,119x2+225)=-∞,Lim(x→+∞)eq\f(123x3,119x2+225)=+∞,Lim(x→0+)eq\f(123x3,119x2+225)=0,Lim(x→0-)eq\f(123x3,119x2+225)=0.函數(shù)的特征點(diǎn)圖表:x-4.76-3.57-2.38-1.1901.192.383.574.76123x3-13265.57-5596.41-1658.20-207.270207.271658.205596.4113265.57119x2+2252921.251741.64899.06393.52225393.52899.061741.642921.25y-4.541-3.213-1.844-0.52700.5271.843.2134.541函數(shù)的圖像示意圖:y=eq\f(123x3,119x2+225)y(4.76,4.541)(1.19,0.527)(-1.19,-0.527)o

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論