浙江省杭州市濱蘭中學2025屆九年級數(shù)學第一學期期末質量檢測模擬試題含解析_第1頁
浙江省杭州市濱蘭中學2025屆九年級數(shù)學第一學期期末質量檢測模擬試題含解析_第2頁
浙江省杭州市濱蘭中學2025屆九年級數(shù)學第一學期期末質量檢測模擬試題含解析_第3頁
浙江省杭州市濱蘭中學2025屆九年級數(shù)學第一學期期末質量檢測模擬試題含解析_第4頁
浙江省杭州市濱蘭中學2025屆九年級數(shù)學第一學期期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列事件是必然事件的是()A.若是的黃金分割點,則B.若有意義,則C.若,則D.拋擲一枚骰子,奇數(shù)點向上的概率是2.如圖,已知二次函數(shù)的圖象與軸交于點(-1,0),與軸的交點在(0,-2)和(0,-1)之間(不包括這兩點),對稱軸為直線,下列結論不正確的是()A. B. C. D.3.一枚質地均勻的骰子,其六個面上分別標有數(shù)字1,2,3,4,5,6,投擲一次,朝上一面的數(shù)字是偶數(shù)的概率為().A. B. C. D.4.中國人很早開始使用負數(shù),中國古代數(shù)學著作《九章算術》的“方程”一章,在世界數(shù)學史上首次正式引入負數(shù).如果收入100元記作+100元.那么﹣80元表示()A.支出20元 B.收入20元 C.支出80元 D.收入80元5.下列方程中,是關于x的一元二次方程的是()A.5x+5=2x﹣1 B.y2﹣7y=0C.a(chǎn)x2+bc+c=0 D.2x2+2x=x2-16.我市某家快遞公司,今年8月份與10月份完成投遞的快遞總件數(shù)分別為6萬件和8.64萬件,設該快遞公司這兩個月投遞總件數(shù)的月平均增長率為x,則下列方程正確的是()A.6(1+x)=8.64B.6(1+2x)=8.64C.6(1+x)2=8.64D.6+6(1+x)+6(1+x)2=8.647.已知反比例函數(shù)的圖象經(jīng)過點,則這個函數(shù)的圖象位于()A.第二、三象限 B.第一、三象限 C.第三、四象限 D.第二、四象限8.已知x=2是一元二次方程x2﹣2mx+4=0的一個解,則m的值為()A.2 B.0 C.0或2 D.0或﹣29.下列方程中不是一元二次方程的是()A. B. C. D.10.微信紅包是溝通人們之間感情的一種方式,已知小明在2016年”元旦節(jié)”收到微信紅包為300元,2018年為363元,若這兩年小明收到的微信紅包的年平均增長率為x,根據(jù)題意可列方程為(

)A.363(1+2x)=300 B.300(1+x2)=363C.300(1+x)2=363 D.300+x2=36311.不等式組的整數(shù)解有()A.4個 B.3個 C.2個 D.1個12.若關于x的一元二次方程有兩個不相等的實數(shù)根,那么k的取值范圍是()A.k≠0 B.k>4 C.k<4 D.k<4且k≠0二、填空題(每題4分,共24分)13.計算:2cos30°+tan45°﹣4sin260°=_____.14.如圖,一飛鏢游戲板由大小相等的小正方形格子構成,向游戲板隨機投擲一枚飛鏢,擊中黑色區(qū)域的概率是_____.15.如圖,以矩形ABCD的頂點A為圓心,線段AD長為半徑畫弧,交AB邊于F點;再以頂點C為圓心,線段CD長為半徑畫弧,交AB邊于點E,若AD=,CD=2,則DE、DF和EF圍成的陰影部分面積是_____.16.如圖,在中,,,,、分別是邊、上的兩個動點,且,是的中點,連接,,則的最小值為__________.17.如圖,以點為圓心,半徑為的圓與的圖像交于點,若,則的值為_______.18.如圖,在△ABC和△APQ中,∠PAB=∠QAC,若再增加一個條件就能使△APQ∽△ABC,則這個條件可以是________.三、解答題(共78分)19.(8分)我們不妨約定:如圖①,若點D在△ABC的邊AB上,且滿足∠ACD=∠B(或∠BCD=∠A),則稱滿足這樣條件的點為△ABC邊AB上的“理想點”.(1)如圖①,若點D是△ABC的邊AB的中點,AC=,AB=4.試判斷點D是不是△ABC邊AB上的“理想點”,并說明理由.(2)如圖②,在⊙O中,AB為直徑,且AB=5,AC=4.若點D是△ABC邊AB上的“理想點”,求CD的長.(3)如圖③,已知平面直角坐標系中,點A(0,2),B(0,-3),C為x軸正半軸上一點,且滿足∠ACB=45°,在y軸上是否存在一點D,使點A是B,C,D三點圍成的三角形的“理想點”,若存在,請求出點D的坐標;若不存在,請說明理由.20.(8分)如圖,聰聰想在自己家的窗口A處測量對面建筑物CD的高度,他首先量出窗口A到地面的距離(AB)為16m,又測得從A處看建筑物底部C的俯角α為30°,看建筑物頂部D的仰角β為53°,且AB,CD都與地面垂直,點A,B,C,D在同一平面內.(1)求AB與CD之間的距離(結果保留根號).(2)求建筑物CD的高度(結果精確到1m).(參考數(shù)據(jù):,,,)21.(8分)已知二次函數(shù)y=ax2+bx+3的圖象經(jīng)過點(-3,0),(2,-5).(1)試確定此二次函數(shù)的解析式;(2)請你判斷點P(-2,3)是否在這個二次函數(shù)的圖象上?22.(10分)如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A()和B(4,6),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.(1)求拋物線的解析式;(2)當C為拋物線頂點的時候,求的面積.(3)是否存在質疑的點P,使的面積有最大值,若存在,求出這個最大值,若不存在,請說明理由.23.(10分)從甲、乙兩臺包裝機包裝的質量為300g的袋裝食品中各抽取10袋,測得其實際質量如下(單位:g)甲:301,300,305,302,303,302,300,300,298,299乙:305,302,300,300,300,300,298,299,301,305(1)分別計算甲、乙這兩個樣本的平均數(shù)和方差;(2)比較這兩臺包裝機包裝質量的穩(wěn)定性.24.(10分)定義:在平面直角坐標系中,拋物線()與直線交于點、(點在點右邊),將拋物線沿直線翻折,翻折前后兩拋物線的頂點分別為點、,我們將兩拋物線之間形成的封閉圖形稱為驚喜線,四邊形稱為驚喜四邊形,對角線與之比稱為驚喜度(Degreeofsurprise),記作.(1)如圖(1)拋物線沿直線翻折后得到驚喜線.則點坐標,點坐標,驚喜四邊形屬于所學過的哪種特殊平行四邊形?,為.(2)如果拋物線()沿直線翻折后所得驚喜線的驚喜度為1,求的值.(3)如果拋物線沿直線翻折后所得的驚喜線在時,其最高點的縱坐標為16,求的值并直接寫出驚喜度.25.(12分)如圖所示,四邊形ABCD中,AD∥BC,∠A=90°,∠BCD<90°,AB=7,AD=2,BC=3,試在邊AB上確定點P的位置,使得以P、C、D為頂點的三角形是直角三角形.26.解方程:

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)必然事件是肯定會發(fā)生的事件,對每個選項進行判斷,即可得到答案.【詳解】解:A、若是的黃金分割點,則;則A為不可能事件;B、若有意義,則;則B為隨機事件;C、若,則,則C為不可能事件;D、拋擲一枚骰子,奇數(shù)點向上的概率是;則D為必然事件;故選:D.本題考查了必然事件的定義,解題的關鍵是熟練掌握定義.2、D【分析】根據(jù)二次函數(shù)的圖象和性質、各項系數(shù)結合圖象進行解答.【詳解】∵(-1,0),對稱軸為∴二次函數(shù)與x軸的另一個交點為將代入中,故A正確將代入中②①∴∵二次函數(shù)與軸的交點在(0,-2)和(0,-1)之間(不包括這兩點)∴∴∴,故B正確;∵二次函數(shù)與軸的交點在(0,-2)和(0,-1)之間(不包括這兩點)∴拋物線頂點縱坐標∵拋物線開口向上∴∴,故C正確∵二次函數(shù)與軸的交點在(0,-2)和(0,-1)之間(不包括這兩點)∴將代入中①②∴∴,故D錯誤,符合題意故答案為:D.本題主要考查了二次函數(shù)的圖象與函數(shù)解析式的關系,可以根據(jù)各項系數(shù)結合圖象進行解答.3、B【分析】朝上的數(shù)字為偶數(shù)的有3種可能,再根據(jù)概率公式即可計算.【詳解】依題意得P(朝上一面的數(shù)字是偶數(shù))=故選B.此題主要考查概率的計算,解題的關鍵是熟知概率公式進行求解.4、C【解析】試題分析:“+”表示收入,“—”表示支出,則—80元表示支出80元.考點:相反意義的量5、D【分析】根據(jù)一元二次方程的定義逐個判斷即可.【詳解】解:A、是關于x的一元一次方程,不是一元二次方程,故本選項不符合題意;B、是關于y的一元二次方程,不是關于x的一元二次方程,故本選項不符合題意;C、只有當a≠0時,是關于x的一元二次方程,故本選項不符合題意;D、是關于x的一元二次方程,故本選項符合題意;故選:D.本題考查了一元二次方程的定義,能熟記一元二次方程的定義的內容是解此題的關鍵.6、C【分析】設該快遞公司這兩個月投遞總件數(shù)的月平均增長率為x,根據(jù)今年8月份與10月份完成投遞的快遞總件數(shù),即可得出關于x的一元二次方程,此題得解.【詳解】解:設該快遞公司這兩個月投遞總件數(shù)的月平均增長率為x,根據(jù)題意得:6(1+x)2=8.1.故選:C.此題主要考查一元二次方程的應用,解題的關鍵是熟知增長率的問題.7、D【分析】首先將點P的坐標代入確定函數(shù)的表達式,再根據(jù)k>0時,函數(shù)圖象位于第一、三象限;k<0時函數(shù)圖象位于第二、四象限解答即可.【詳解】解:∵反比例函數(shù)的圖象經(jīng)過點P(-2,1),

∴k=-2<0,

∴函數(shù)圖象位于第二,四象限.故選:D.本題考查了反比例函數(shù)圖象上的點以及反比例函數(shù)圖象的性質,掌握基本概念和性質是解題的關鍵.8、A【解析】試題分析:∵x=1是一元二次方程x1﹣1mx+4=0的一個解,∴4﹣4m+4=0,∴m=1.故選A.考點:一元二次方程的解.9、C【分析】根據(jù)一元二次方程的定義進行排除選擇即可,一元二次方程的關鍵是方程中只包含一個未知數(shù),且未知數(shù)的指數(shù)為2.【詳解】根據(jù)一元二次方程的定義可知含有一個未知數(shù)且未知數(shù)的指數(shù)是2的方程為一元二次方程,所以A,B,D均符合一元二次方程的定義,C選項展開移項整理后不含有未知數(shù),不符合一元二次方程的定義,所以錯誤,故選C.本題考查的是一元二次方程的定義,熟知此定義是解題的關鍵.10、C【分析】這兩年小明收到的微信紅包的年平均增長率為x,則2017年收到300(1+x),2018年收到300(1+x)2,根據(jù)題意列方程解答即可.【詳解】由題意可得,300(1+x)2=363.故選C.本題考查了一元二次方程的應用---增長率問題;本題的關鍵是掌握增長率問題中的一般公式為a(1+x)n

=b,其中n為共增長了幾年,a為第一年的原始數(shù)據(jù),b是增長后的數(shù)據(jù),x是增長率.11、B【分析】先解出不等式組的解集,然后再把所有符合條件的整數(shù)解列舉出來即可.【詳解】解:解得,解得,∴不等式組的解集為:,整數(shù)解有1、2、3共3個,故選:B.本題考查了一元一次不等式組的的解法,先分別求出各不等式的解集,注意化系數(shù)為1時,如果兩邊同時除以一個負數(shù),不等號的方向要改變;再求各個不等式解集的公共部分,必要時,可用數(shù)軸來求公共解集.12、C【解析】根據(jù)判別式的意義得到△=(-1)2-1k>0,然后解不等式即可.【詳解】∵關于x的一元二次方程有兩個不相等的實數(shù)根,

∴解得:k<1.

故答案為:C.本題考查的知識點是一元二次方程根的情況與判別式△的關系,解題關鍵是熟記一元二次方程根的情況與判別式△的關系:(1)△>0方程有兩個不相等的實數(shù)根;(2)△=0方程有兩個相等的實數(shù)根;(3)△<0方程沒有實數(shù)根.二、填空題(每題4分,共24分)13、1【分析】首先計算乘方,然后計算乘法,最后從左向右依次計算,求出算式的值是多少即可.【詳解】解:2cos30°+tan45°﹣4sin260°=2×+1﹣4×=3+1﹣4×=4﹣3=1故答案為:1.此題主要考查了實數(shù)的運算,要熟練掌握,解答此題的關鍵是要明確:在進行實數(shù)運算時,和有理數(shù)運算一樣,要從高級到低級,即先算乘方、開方,再算乘除,最后算加減,有括號的要先算括號里面的,同級運算要按照從左到右的順序進行.另外,有理數(shù)的運算律在實數(shù)范圍內仍然適用.14、【分析】利用黑色區(qū)域的面積除以游戲板的面積即可.【詳解】解:黑色區(qū)域的面積=3×3﹣×3×1﹣×2×2﹣×3×1=4,∴擊中黑色區(qū)域的概率==.故答案是:.本題考查了幾何概率:求概率時,已知和未知與幾何有關的就是幾何概率.計算方法是長度比,面積比,體積比等.15、2π+2﹣4【分析】如圖,連接EC.首先證明△BEC是等腰直角三角形,根據(jù)S陰=S矩形ABCD-(S矩形ABCD-S扇形ADF)-(S矩形ABCD-S扇形CDE-S△EBC)=S扇形ADF+S扇形CDE+S△EBC-S矩形ABCD計算即可.【詳解】如圖,連接EC.∵四邊形ABCD是矩形,∴AD=BC=2,CD=AB=EC=2,∠B=∠A=∠DCB=90°,∴BE===2,∴BC=BE=2,∴∠BEC=∠BCE=45°,∴∠ECD=45°,∴S陰=S矩形ABCD﹣(S矩形ABCD﹣S扇形ADF)﹣(S矩形ABCD﹣S扇形CDE﹣S△EBC)=S扇形ADF+S扇形CDE+S△EBC﹣S矩形ABCD=+×2×2﹣2×2,=2π+2﹣4.故答案為:2π+2﹣4.本題考查扇形的面積公式,矩形的性質等知識,解題的關鍵是熟練掌握基本知識,學會用分割法求陰影部分面積.16、【分析】先在CB上取一點F,使得CF=,再連接PF、AF,然后利用相似三角形的性質和勾股定理求出AF,即可解答.【詳解】解:如圖:在CB上取一點F,使得CF=,再連接PF、AF,∵∠DCE=90°,DE=4,DP=PE,∴PC=DE=2,∵,∴又∵∠PCF=∠BCP,∴△PCF∽△BCP,∴∴PA+PB=PA+PF,∵PA+PF≥AF,AF=∴PA+PB≥.∴PA+PB的最小值為,故答案為.本題考查了勾股定理、相似三角形的判定和性質等知識,正確添加常用輔助線、構造相似三角形是解答本題的關鍵.17、【分析】過點B作BM⊥x軸,過點A作AN⊥y軸,先證△BOM≌△AON,由此可求出∠BOM的度數(shù),再設B(a,b),根據(jù)銳角三角函數(shù)的定義即可求出a、b的值,即可求出答案.【詳解】解:如圖,過點B作BM⊥x軸,過點A作AN⊥y軸,∵點B、A均在反比例函數(shù)的圖象上,OA=OB,

∴點B和點A關于y=x對稱,

∴AN=BM,ON=OM,

∴△BOM≌△AON,

∴∠BOM=∠AON=∵∴∠BOM==30°,

設B(a,b),則OM=a=OB?cos30°=2×=,BM=b=OB×sin30°=2×=1,

∴k=ab=×1=故答案為.本題考查的是反比例函數(shù)綜合題反比例函數(shù)圖象上點的坐標特征,根據(jù)題意作出輔助線構造出直角三角形,根據(jù)直角三角函數(shù)求得B的坐標是解題的關鍵.18、∠P=∠B(答案不唯一)【分析】要使△APQ∽△ABC,在這兩三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,還需的條件可以是∠B=∠P或∠C=∠Q或.【詳解】解:這個條件為:∠B=∠P

∵∠PAB=∠QAC,

∴∠PAQ=∠BAC

∵∠B=∠P,

∴△APQ∽△ABC,故答案為:∠B=∠P或∠C=∠Q或.本題考查了相似三角形的判定與性質的運用,掌握相似三角形的判定與性質是解題的關鍵.三、解答題(共78分)19、(1)是,理由見解析;(2);(3)D(0,42)或D(0,6)【分析】(1)依據(jù)邊長AC=,AB=4,D是邊AB的中點,得到AC2=,可得到兩個三角形相似,從而得到∠ACD=∠B;(2)由點D是△ABC的“理想點”,得到∠ACD=∠B或∠BCD=∠A,分兩種情況證明均得到CD⊥AB,再根據(jù)面積法求出CD的長;(3)使點A是B,C,D三點圍成的三角形的“理想點”,應分兩種情況討論,利用三角形相似分別求出點D的坐標即可.【詳解】(1)D是△ABC邊AB上的“理想點”,理由:∵AB=4,點D是△ABC的邊AB的中點,∴AD=2,∵AC2=8,,∴AC2=,又∵∠A=∠A,∴△ADC∽△ACB,∴∠ACD=∠B,∴D是△ABC邊AB上的“理想點”.(2)如圖②,∵點D是△ABC的“理想點”,∴∠ACD=∠B或∠BCD=∠A,當∠ACD=∠B時,∵∠ACD+∠BCD=90,∴∠BCD+∠B=90,∴∠CDB=90,當∠BCD=∠A時,同理可得CD⊥AB,在Rt△ABC中,∵∠ACB=90,AB=5,AC=4,∴BC==3,∵,∴,∴.(3)如圖③,存在.過點A作MA⊥AC交CB的延長線于點M,∵∠MAC=∠AOC=90,∠ACM=45,∴∠AMC=∠ACM=45,∴AM=AC,∵∠MAH+∠CAO=90,∠CAO+∠ACO=90,∴∠MAH=∠ACO,∴△AHM≌△COA∴MH=OA,OC=AH,設C(a,0),∵A(0,2),B(0,-3),∴OA=MH=2,OB=3,AB=5,OC=AH=a,BH=a-5,∵MH∥OC,∴,∴,解得a=6或a=-1(舍去),經(jīng)檢驗a=6是原分式方程的解,∴C(6,0),OC=6.①當∠D1CA=∠ABC時,點A是△BCD1的“理想點”,設D1(0,m),∵∠D1CA=∠ABC,∠CD1A=∠CD1B,∴△D1AC∽△D1CB,∴,∴,解得m=42,∴D1(0,42);②當∠BCA=∠CD2B時,點A是△BCD2“理想點”,可知:∠CD2O=45,∴OD2=OC=6,∴D2(0,6).綜上,滿足條件的點D的坐標為D(0,42)或D(0,6).此題考查相似三角形的判定及性質,通過證明三角形相似得到點是三角形某條邊上的“理想點”,通過點是三角形的“理想點”,從而證明出三角形相似,由此得到點的坐標,相互反推的思想的利用,注意后者需分情況進行討論.20、(1);(2)51m【分析】(1)作于M,根據(jù)矩形的性質得到,,根據(jù)正切的定義求出AM;(2)根據(jù)正切的定義求出DM,結合圖形計算,得到答案.【詳解】解:(1)作于M,則四邊形ABCM為矩形,,,在中,,則,答:AB與CD之間的距離;(2)在中,,則,,答:建筑物CD的高度約為51m.本題考查的是解直角三角形的應用-仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數(shù)的定義是解題的關鍵.21、(1)y=﹣x2﹣2x+1;(2)點P(﹣2,1)在這個二次函數(shù)的圖象上,【分析】(1)根據(jù)給定點的坐標,利用待定系數(shù)法求出二次函數(shù)解析式即可;

(2)代入x=-2求出y值,將其與1比較后即可得出結論.【詳解】(1)設二次函數(shù)的解析式為y=ax2+bx+1;∵二次函數(shù)的圖象經(jīng)過點(﹣1,0),(2,﹣5),則有:解得;∴y=﹣x2﹣2x+1.(2)把x=-2代入函數(shù)得y=﹣(﹣2)2﹣2×(﹣2)+1=﹣4+4+1=1,∴點P(﹣2,1)在這個二次函數(shù)的圖象上,考查待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)圖象上點的坐標特征,掌握待定系數(shù)法求二次函數(shù)解析式是解題的關鍵.22、(1);(2)(3)存在,(m為點P的橫坐標)當m=時,【分析】(1)把A、B坐標代入二次函數(shù)解析式,求出a、b,即可求得解析式;(2)根據(jù)第(1)問求出的函數(shù)解析式可得出C點的坐標,根據(jù)C、P兩點橫坐標一樣可得出P點的坐標,將△BCE的面積分成△PCE與△PCB,以PC為底,即可求出△BCE的面積.(3)設動點P的坐標為(m,m+2),點C的坐標為(m,),表示出PC的長度,根據(jù),構造二次函數(shù),然后求出二次函數(shù)的最大值,并求出此時m的值即可.【詳解】解:(1)∵A()和B(4,6)在拋物線y=ax2+bx+6上,∴解得:,∴拋物線的解析式;(2)∵二次函數(shù)解析式為,∴頂點C坐標為,∵PC⊥x,點P在直線y=x+2上,∴點P的坐標為,∴PC=6;∵點E為直線y=x+2與x軸的交點,∴點E的坐標為∵=∴.(3)存在.設動點P的坐標是,點C的坐標為,∵∴∵,∴函數(shù)開口向下,有最大值∴當時,△ABC的面積有最大值為.本題考查二次函數(shù)的綜合應用.(1)中考查利用待定系數(shù)發(fā)求函數(shù)解析式,注意求出函數(shù)解析式后要再驗算一遍,因為第一問的結果涉及后面幾問的計算,所以一定要保證正確;(2)中考查三角形面積的計算,坐標系中三角形面積要以坐標軸或者平行于坐標軸的邊為底,如果沒有的話要利用割補法進行計算;(3)在(2)的基礎上,求動點形成的三角形面積的最值,要設動點的坐標,然后構造相應的函數(shù)解析式,再分析最值.23、(1)甲平均數(shù)301,乙平均數(shù)301,甲方差3.2,乙方差4.2;(2)甲包裝機包裝質量的穩(wěn)定性好,見解析【分析】(1)根據(jù)平均數(shù)就是對每組數(shù)求和后除以數(shù)的個數(shù);根據(jù)方差公式計算即可;(2)方差大說明這組數(shù)據(jù)波動大,方差小則波動小,就比較穩(wěn)定.依此判斷即可.【詳解】解:(1)=(1+0+5+2+3+2+0+0﹣2﹣1)+300=301,=(5+2+0+0+0+0﹣2﹣1+1+5)+300=301,=[(301﹣301)2+(301﹣300)2+(301﹣305)2+(301﹣302)2+(301﹣303)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2]=3.2;=[(301﹣305)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2+(301﹣301)2+(301﹣305)2]=4.2;(2)∵<,∴甲包裝機包裝質量的穩(wěn)定性好.本題考查了平均數(shù)和方差,正確掌握平均數(shù)及方差的求解公式是解題的關鍵.24、(1);;菱形;2;(2);(3),或,.【分析】(1)當y=0時可求出點A坐標為,B坐標為,AB=4,根據(jù)四邊形四邊相等可知該四邊形為菱形,由可知拋物線頂點坐標為(1,-4),所以B,AB=8,即可得到為2;(2)驚喜度為1即,利用拋物線解析式分別求出各點坐標,從而得到AC和BD的長,計算即可求出m;(3)先求出頂點坐標,對稱軸為直線,討論對稱軸直線是否在這個范圍內,分3中情況分別求出最大值為16是m的值.【詳解】解:(1)在拋物線上,當y=0時,,解得,,,∵點在點右邊,∴A點的坐標為,B點的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論