版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、解答題1.如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn),其中滿足,D為直線AB與軸的交點(diǎn),C為線段AB上一點(diǎn),其縱坐標(biāo)為.(1)求的值;(2)當(dāng)為何值時(shí),和面積的相等;(3)若點(diǎn)C坐標(biāo)為(-2,1),點(diǎn)M(m,-3)在第三象限內(nèi),滿足,求m的取值范圍.(注:表示的面積)解析:(1);(2)當(dāng)時(shí),和面積的相等;(3)m的取值范圍是【分析】(1)利用非負(fù)數(shù)的性質(zhì)求出a,b,c即可.(2)設(shè)點(diǎn)D的坐標(biāo)為(0,y),根據(jù)面積關(guān)系,構(gòu)建方程求出y,再根據(jù)△BOC和△AOD面積的相等,構(gòu)建方程求出t即可.(3)分兩種情形:①當(dāng)-2<m<0時(shí),如圖1中,②當(dāng)m≤-2時(shí),如圖2中,根據(jù)S△MOC≥5,構(gòu)建不等式求解即可.【詳解】解:(1)∵|a-2|+(b-3)2+=0,又∵|a-2|≥0,(b-3)2≥0,≥0,∴,∴a=2,b=3,c=-4;(2)設(shè)點(diǎn)D的坐標(biāo)為(0,y),則S△BOD=×BO×OD=×4×y=2y,S△AOD=xA?OD=×2y=y,S△AOB=×OB?yA=×4×3=6,∵S△BOD+S△AOD=S△AOB,即2y+y=6,解得y=2,即點(diǎn)D的坐標(biāo)為(0,2),∴S△BOC=BO?yc=×4t=2t,S△AOD=xA?OD=×2×2=2,∵△BOC和△AOD面積的相等,即2t=2,解得t=1,∴當(dāng)t=1時(shí),△BOC和△AOD面積的相等;(3)①當(dāng)-2<m<0時(shí),如圖1中,過點(diǎn)C作CF⊥軸于點(diǎn)F,過點(diǎn)M作GE⊥軸于點(diǎn)E,過點(diǎn)C作CG⊥軸交GE于點(diǎn)G,則四邊形CGEF為矩形,∵SCGEF=2×4=8,S△CFO=×2×1=1,S△EMO=×(0?m)×3=?m,S△CMG=×(m+2)×4=2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=8?1?(?m)?2(m+2)=3?m,∵S△MOC≥5,即3?m≥5,解得m≤-4,這與-2<m<0矛盾.②當(dāng)m≤-2時(shí),如圖2中,過點(diǎn)C作GF⊥軸于點(diǎn)F,過點(diǎn)M作ME⊥軸于點(diǎn)E,過點(diǎn)M作MG⊥軸交GF于點(diǎn)G,則四邊形MEFG為矩形,∵SGMEF=(0-m)×4=-4m,S△CFO=×2×1=1,S△EMO=×(0?m)×3=?m,S△CMG=×(?2?m)×4=?2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=?4m?1?(?m)?[?2(m+2)]=3?m,∵S△MOC≥5,即3?m≥5,解得m≤-4,綜上所述,m的取值范圍是m≤-4.【點(diǎn)睛】本題考查了坐標(biāo)與圖形的性質(zhì),三角形的面積,非負(fù)數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù),構(gòu)建方程解決問題,屬于中考?jí)狠S題.2.如圖1,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),邊長(zhǎng)為2的正方形ABCD(點(diǎn)D與點(diǎn)O重合)和邊長(zhǎng)為4的正方形EFGH的邊CO和GH都在x軸上,且點(diǎn)H坐標(biāo)為(7,0).正方形ABCD以3個(gè)單位長(zhǎng)度/秒的速度沿著x軸向右運(yùn)動(dòng),記正方形ABCD和正方形EFGH重疊部分的面積為S,假設(shè)運(yùn)動(dòng)時(shí)間為t秒,且t<4.(1)點(diǎn)F的坐標(biāo)為;(2)如圖2,正方形ABCD向右運(yùn)動(dòng)的同時(shí),動(dòng)點(diǎn)P在線段FE上,以1個(gè)單位長(zhǎng)度/秒的速度從F到E運(yùn)動(dòng).連接AP,AE.①求t為何值時(shí),AP所在直線垂直于x軸;②求t為何值時(shí),S=S△APE.解析:(1)(3,4);(2)①t=時(shí),AP所在直線垂直于x軸;②當(dāng)t為或時(shí),S=S△APE.【分析】(1)根據(jù)直角坐標(biāo)系得出點(diǎn)F的坐標(biāo)即可;(2)①根據(jù)AP所在直線垂直于x軸,得出關(guān)于t的方程,解答即可;②分和兩種情況,利用面積公式列出方程即可求解.【詳解】(1)由直角坐標(biāo)系可得:F坐標(biāo)為:(3,4);故答案為:(3,4);(2)①要使AP所在直線垂直于x軸.如圖1,只需要Px=Ax,則t+3=3t,解得:,所以即時(shí),AP所在直線垂直于x軸;②由題意知,OH=7,所以當(dāng)時(shí),點(diǎn)D與點(diǎn)H重合,所以要分以下兩種情況討論:情況一:當(dāng)時(shí),GD=3t﹣3,PF=t,PE=4﹣t,∵S=S△APE,∴BC×GD=,即:2×(3t﹣3)=,解得:;情況二:當(dāng)時(shí),如圖2,HD=3t﹣7,PF=t,PE=4﹣t,∵S=S△APE,∴BC×CH=,即:2×[2﹣(3t﹣7)]=,解得:,綜上所述,當(dāng)t為或時(shí),S=S△APE.【點(diǎn)睛】本題考查了平面直角坐標(biāo)系中點(diǎn)的移動(dòng),一元一次方程的應(yīng)用等問題,理解題意,分類討論是解題關(guān)鍵.3.如圖,在下面直角坐標(biāo)系中,已知,,三點(diǎn),其中,,滿足關(guān)系式.(1)求,,的值;(2)如果在第二象限內(nèi)有一點(diǎn),請(qǐng)用含的式子表示四邊形的面積;(3)在(2)的條件下,是否存在點(diǎn),使四邊形的面積與三角形的面積相等?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.解析:(1)a=2,b=3,c=4;(2)S四邊形ABOP=3-m;(3)存在,P(-3,).【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì),即可解答;(2)四邊形ABOP的面積=△APO的面積+△AOB的面積,即可解答;(3)存在,根據(jù)面積相等求出m的值,即可解答.【詳解】解:(1)由已知可得:a-2=0,b-3=0,c-4=0,解得:a=2,b=3,c=4;(2)∵a=2,b=3,c=4,∴A(0,2),B(3,0),C(3,4),∴OA=2,OB=3,∵S△ABO=×2×3=3,S△APO=×2×(-m)=-m,∴S四邊形ABOP=S△ABO+S△APO=3+(-m)=3-m(3)存在,∵S△ABC=×4×3=6,若S四邊形ABOP=S△ABC=3-m=6,則m=-3,∴存在點(diǎn)P(-3,)使S四邊形ABOP=S△ABC.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì),解決本題的關(guān)鍵是根據(jù)非負(fù)數(shù)的性質(zhì)求出a,b,c.4.如圖,在平面直角坐標(biāo)系中,同時(shí)將點(diǎn)A(﹣1,0)、B(3,0)向上平移2個(gè)單位長(zhǎng)度再向右平移1個(gè)單位長(zhǎng)度,分別得到A、B的對(duì)應(yīng)點(diǎn)C、D.連接AC,BD(1)求點(diǎn)C、D的坐標(biāo),并描出A、B、C、D點(diǎn),求四邊形ABDC面積;(2)在坐標(biāo)軸上是否存在點(diǎn)P,連接PA、PC使S△PAC=S四邊形ABCD?若存在,求點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由.解析:(1)(0,2),(4,2),見解析,ABDC面積:8;(2)存在,P的坐標(biāo)為(7,0)或(﹣9,0)或(0,18)或(0,﹣14).【解析】【分析】(1)根據(jù)向右平移橫坐標(biāo)加,向上平移縱坐標(biāo)加寫出點(diǎn)C、D的坐標(biāo)即可,再根據(jù)平行四邊形的面積公式列式計(jì)算即可得解;(2)分點(diǎn)P在x軸和y軸上兩種情況,依據(jù)S△PAC=S四邊形ABCD求解可得.【詳解】(1)由題意知點(diǎn)C坐標(biāo)為(﹣1+1,0+2),即(0,2),點(diǎn)D的坐標(biāo)為(3+1,0+2),即(4,2),如圖所示,S四邊形ABDC=2×4=8;(2)當(dāng)P在x軸上時(shí),∵S△PAC=S四邊形ABCD,∴,∵OC=2,∴AP=8,∴點(diǎn)P的坐標(biāo)為(7,0)或(﹣9,0);當(dāng)P在y軸上時(shí),∵S△PAC=S四邊形ABCD,∴,∵OA=1,∴CP=16,∴點(diǎn)P的坐標(biāo)為(0,18)或(0,﹣14);綜上,點(diǎn)P的坐標(biāo)為(7,0)或(﹣9,0)或(0,18)或(0,﹣14).【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì),三角形的面積,坐標(biāo)與圖形變化﹣平移,熟記各性質(zhì)是解題的關(guān)鍵.5.如圖①,在平面直角坐標(biāo)系中,點(diǎn),,其中,是16的算術(shù)平方根,,線段由線段平移所得,并且點(diǎn)與點(diǎn)A對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng).(1)點(diǎn)A的坐標(biāo)為;點(diǎn)的坐標(biāo)為;點(diǎn)的坐標(biāo)為;(2)如圖②,是線段上不同于的任意一點(diǎn),求證:;(3)如圖③,若點(diǎn)滿足,點(diǎn)是線段OA上一動(dòng)點(diǎn)(與點(diǎn)、A不重合),連交于點(diǎn),在點(diǎn)運(yùn)動(dòng)的過程中,是否總成立?請(qǐng)說明理由.解析:(1),,;(2)證明見解析;(3)成立,理由見解析【分析】(1)根據(jù)算術(shù)平方根、立方根得、;再根據(jù)直角坐標(biāo)系、平移的性質(zhì)分析,即可得到答案;(2)根據(jù)平移的性質(zhì),得;根據(jù)平行線性質(zhì),分別推導(dǎo)得,,從而完成證明;(3)結(jié)合題意,根據(jù)平行線的性質(zhì),推導(dǎo)得、;結(jié)合(2)的結(jié)論,通過計(jì)算即可完成證明.【詳解】(1)連接∵是16的算術(shù)平方根∴∴∴∵∴∴∴∵線段由線段平移所得,并且點(diǎn)與點(diǎn)A對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng)∴,∴故答案為:,,;(2)∵線段由線段平移所得∴,∴∵∴∵∴∴(3)∵∴∵∴∵∴,即∵∴∴∵∴∵,∴由(2)的結(jié)論得:,∵,∴∴∵∴∴∴在點(diǎn)運(yùn)動(dòng)的過程中,總成立.【點(diǎn)睛】本題考查了算術(shù)平方根、立方根、平行線、平移、直角坐標(biāo)系的知識(shí);解題的關(guān)鍵是熟練掌握直角坐標(biāo)系、平移、平行線的性質(zhì),從而完成求解.6.如圖所示,A(1,0),點(diǎn)B在y軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,點(diǎn)C的坐標(biāo)為(﹣3,2).(1)直接寫出點(diǎn)E的坐標(biāo);(2)在四邊形ABCD中,點(diǎn)P從點(diǎn)O出發(fā),沿OB→BC→CD移動(dòng),若點(diǎn)P的速度為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)解決以下問題;①當(dāng)t為多少秒時(shí),點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);②當(dāng)t為多少秒時(shí),三角形PEA的面積為2,求此時(shí)P的坐標(biāo)解析:(1)(-2,0);(2)①4秒;②(0,)或(-3,)【分析】(1)根據(jù)BC=AE=3,OA=1,推出OE=2,可得結(jié)論.(2)①判斷出PB=CD,即可得出結(jié)論;②根據(jù)△PEA的面積以及AE求出點(diǎn)P到AE的距離,結(jié)合點(diǎn)P的路線可得坐標(biāo).【詳解】解:(1)∵C(-3,2),A(1,0),∴BC=3,OA=1,∵BC=AE=3,∴OE=AE-AO=2,∴E(-2,0);(2)①∵點(diǎn)C的坐標(biāo)為(-3,2)∴BC=3,CD=2,∵點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);∴點(diǎn)P在線段BC上,∴PB=CD=2,即t=(2+2)÷1=4;∴當(dāng)t=4秒時(shí),點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);②∵△PEA的面積為2,A(1,0),E(-2,0),∴AE=3,設(shè)點(diǎn)P到AE的距離為h∴,∴h=,即點(diǎn)P到AE的距離為,∴點(diǎn)P的坐標(biāo)為(0,)或(-3,).【點(diǎn)睛】本題考查坐標(biāo)與圖形變化-平移,三角形的面積等知識(shí),解本題的關(guān)鍵是由線段和部分點(diǎn)的坐標(biāo),得出其它點(diǎn)的坐標(biāo).7.如圖1,已知直線m∥n,AB是一個(gè)平面鏡,光線從直線m上的點(diǎn)O射出,在平面鏡AB上經(jīng)點(diǎn)P反射后,到達(dá)直線n上的點(diǎn)Q.我們稱OP為入射光線,PQ為反射光線,鏡面反射有如下性質(zhì):入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,即∠OPA=∠QPB.(1)如圖1,若∠OPQ=82°,求∠OPA的度數(shù);(2)如圖2,若∠AOP=43°,∠BQP=49°,求∠OPA的度數(shù);(3)如圖3,再放置3塊平面鏡,其中兩塊平面鏡在直線m和n上,另一塊在兩直線之間,四塊平面鏡構(gòu)成四邊形ABCD,光線從點(diǎn)O以適當(dāng)?shù)慕嵌壬涑龊?,其傳播路徑為O→P→Q→R→O→P→…試判斷∠OPQ和∠ORQ的數(shù)量關(guān)系,并說明理由.解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根據(jù)∠OPA=∠QPB.可求出∠OPA的度數(shù);(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度數(shù),轉(zhuǎn)化為(1)來解決問題;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,從而∠OPQ=∠ORQ.【詳解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和入射角等于反射角的規(guī)定,解決本題的關(guān)鍵是注意問題的設(shè)置環(huán)環(huán)相扣、前為后用的設(shè)置目的.8.已知:直線AB∥CD,M,N分別在直線AB,CD上,H為平面內(nèi)一點(diǎn),連HM,HN.(1)如圖1,延長(zhǎng)HN至G,∠BMH和∠GND的角平分線相交于點(diǎn)E.求證:2∠MEN﹣∠MHN=180°;(2)如圖2,∠BMH和∠HND的角平分線相交于點(diǎn)E.①請(qǐng)直接寫出∠MEN與∠MHN的數(shù)量關(guān)系:;②作MP平分∠AMH,NQ∥MP交ME的延長(zhǎng)線于點(diǎn)Q,若∠H=140°,求∠ENQ的度數(shù).(可直接運(yùn)用①中的結(jié)論)解析:(1)見解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)過點(diǎn)E作EP∥AB交MH于點(diǎn)Q,利用平行線的性質(zhì)、角平分線性質(zhì)、鄰補(bǔ)角和為180°,角與角之間的基本運(yùn)算、等量代換等即可得證.(2)①過點(diǎn)H作GI∥AB,利用(1)中結(jié)論2∠MEN﹣∠MHN=180°,利用平行線的性質(zhì)、角平分線性質(zhì)、鄰補(bǔ)角和為180°,角與角之間的基本運(yùn)算、等量代換等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),進(jìn)而用等量代換得出2∠MEN+∠MHN=360°.②過點(diǎn)H作HT∥MP,由①的結(jié)論得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行線性質(zhì)得∠ENQ+∠ENH+∠NHT=180°,由角平分線性質(zhì)及鄰補(bǔ)角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.繼續(xù)使用等量代換可得∠ENQ度數(shù).【詳解】解:(1)證明:過點(diǎn)E作EP∥AB交MH于點(diǎn)Q.如答圖1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=∠GND.(兩直線平行,內(nèi)錯(cuò)角相等)∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:過點(diǎn)H作GI∥AB.如答圖2由(1)可得∠MEN=(∠BMH+∠HND),由圖可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案為:2∠MEN+∠MHN=360°.②:由①的結(jié)論得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.過點(diǎn)H作HT∥MP.如答圖2∵M(jìn)P∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).∵M(jìn)P平分∠AMH,∴∠PMH=∠AMH=(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.∵∠ENH=∠HND.∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°.∴∠ENQ+(HND+∠BMH)=130°.∴∠ENQ+∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【點(diǎn)睛】本題考查了平行線的性質(zhì),角平分線的性質(zhì),鄰補(bǔ)角,等量代換,角之間的數(shù)量關(guān)系運(yùn)算,輔助線的作法,正確作出輔助線是解題的關(guān)鍵,本題綜合性較強(qiáng).9.閱讀下面材料:小亮同學(xué)遇到這樣一個(gè)問題:已知:如圖甲,ABCD,E為AB,CD之間一點(diǎn),連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D.(1)小亮寫出了該問題的證明,請(qǐng)你幫他把證明過程補(bǔ)充完整.證明:過點(diǎn)E作EFAB,則有∠BEF=.∵ABCD,∴,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)請(qǐng)你參考小亮思考問題的方法,解決問題:如圖乙,已知:直線ab,點(diǎn)A,B在直線a上,點(diǎn)C,D在直線b上,連接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直線交于點(diǎn)E.①如圖1,當(dāng)點(diǎn)B在點(diǎn)A的左側(cè)時(shí),若∠ABC=60°,∠ADC=70°,求∠BED的度數(shù);②如圖2,當(dāng)點(diǎn)B在點(diǎn)A的右側(cè)時(shí),設(shè)∠ABC=α,∠ADC=β,請(qǐng)你求出∠BED的度數(shù)(用含有α,β的式子表示).解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根據(jù)平行線的判定定理與性質(zhì)定理解答即可;(2)①如圖1,過點(diǎn)E作EF∥AB,當(dāng)點(diǎn)B在點(diǎn)A的左側(cè)時(shí),根據(jù)∠ABC=60°,∠ADC=70°,參考小亮思考問題的方法即可求∠BED的度數(shù);②如圖2,過點(diǎn)E作EF∥AB,當(dāng)點(diǎn)B在點(diǎn)A的右側(cè)時(shí),∠ABC=α,∠ADC=β,參考小亮思考問題的方法即可求出∠BED的度數(shù).【詳解】解:(1)過點(diǎn)E作EF∥AB,則有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案為:∠B;EF;CD;∠D;(2)①如圖1,過點(diǎn)E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度數(shù)為65°;②如圖2,過點(diǎn)E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.答:∠BED的度數(shù)為180°﹣.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),解決本題的關(guān)鍵是熟練掌握平行線的判定與性質(zhì).10.已知直線,點(diǎn)P為直線、所確定的平面內(nèi)的一點(diǎn).(1)如圖1,直接寫出、、之間的數(shù)量關(guān)系;(2)如圖2,寫出、、之間的數(shù)量關(guān)系,并證明;(3)如圖3,點(diǎn)E在射線上,過點(diǎn)E作,作,點(diǎn)G在直線上,作的平分線交于點(diǎn)H,若,,求的度數(shù).解析:(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點(diǎn)P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內(nèi)角互補(bǔ),即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據(jù)∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過點(diǎn)P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點(diǎn)睛】此題考查了平行線的性質(zhì)以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.11.如圖,已知,是的平分線.(1)若平分,求的度數(shù);(2)若在的內(nèi)部,且于,求證:平分;(3)在(2)的條件下,過點(diǎn)作,分別交、于點(diǎn)、,繞著點(diǎn)旋轉(zhuǎn),但與、始終有交點(diǎn),問:的值是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍.解析:(1)90°;(2)見解析;(3)不變,180°【分析】(1)根據(jù)鄰補(bǔ)角的定義及角平分線的定義即可得解;(2)根據(jù)垂直的定義及鄰補(bǔ)角的定義、角平分線的定義即可得解;(3),過,分別作,,根據(jù)平行線的性質(zhì)及平角的定義即可得解.【詳解】解(1),分別平分和,,,,;(2),,即,,是的平分線,,,又,,又在的內(nèi)部,平分;(3)如圖,不發(fā)生變化,,過,分別作,,則有,,,,,,,,,,,,不變.【點(diǎn)睛】此題考查了平行線的性質(zhì),熟記平行線的性質(zhì)及作出合理的輔助線是解題的關(guān)鍵.12.如圖1,把一塊含30°的直角三角板ABC的BC邊放置于長(zhǎng)方形直尺DEFG的EF邊上.(1)根據(jù)圖1填空:∠1=°,∠2=°;(2)現(xiàn)把三角板繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)n°.①如圖2,當(dāng)n=25°,且點(diǎn)C恰好落在DG邊上時(shí),求∠1、∠2的度數(shù);②當(dāng)0°<n<180°時(shí),是否會(huì)存在三角板某一邊所在的直線與直尺(有四條邊)某一邊所在的直線垂直?如果存在,請(qǐng)直接寫出所有n的值和對(duì)應(yīng)的那兩條垂線;如果不存在,請(qǐng)說明理由.解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②見解析【分析】(1)根據(jù)鄰補(bǔ)角的定義和平行線的性質(zhì)解答;(2)①根據(jù)鄰補(bǔ)角的定義求出∠ABE,再根據(jù)兩直線平行,同位角相等可得∠1=∠ABE,根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)求出∠BCG,然后根據(jù)周角等于360°計(jì)算即可得到∠2;②結(jié)合圖形,分AB、BC、AC三條邊與直尺垂直討論求解.【詳解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案為:120,90;(2)①如圖2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②當(dāng)n=30°時(shí),∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);當(dāng)n=90°時(shí),∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);當(dāng)n=120°時(shí),∴AB⊥DE(GF).【點(diǎn)睛】本題考查了平行線角的計(jì)算,垂線的定義,主要利用了平行線的性質(zhì),直角三角形的性質(zhì),讀懂題目信息并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.13.已知,如圖:射線分別與直線、相交于、兩點(diǎn),的角平分線與直線相交于點(diǎn),射線交于點(diǎn),設(shè),且.(1)________,________;直線與的位置關(guān)系是______;(2)如圖,若點(diǎn)是射線上任意一點(diǎn),且,試找出與之間存在一個(gè)什么確定的數(shù)量關(guān)系?并證明你的結(jié)論.(3)若將圖中的射線繞著端點(diǎn)逆時(shí)針方向旋轉(zhuǎn)(如圖)分別與、相交于點(diǎn)和點(diǎn)時(shí),作的角平分線與射線相交于點(diǎn),問在旋轉(zhuǎn)的過程中的值變不變?若不變,請(qǐng)求出其值;若變化,請(qǐng)說明理由.解析:(1)35,35,平行;(2)∠FMN+∠GHF=180°,證明見解析;(3)不變,2【分析】(1)根據(jù)(α-35)2+|β-α|=0,即可計(jì)算α和β的值,再根據(jù)內(nèi)錯(cuò)角相等可證AB∥CD;(2)先根據(jù)內(nèi)錯(cuò)角相等證GH∥PN,再根據(jù)同旁內(nèi)角互補(bǔ)和等量代換得出∠FMN+∠GHF=180°;(3)作∠PEM1的平分線交M1Q的延長(zhǎng)線于R,先根據(jù)同位角相等證ER∥FQ,得∠FQM1=∠R,設(shè)∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EPM1=2∠R,即可得=2.【詳解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;(2)∠FMN+∠GHF=180°;理由:由(1)得AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°;(3)的值不變,為2,理由:如圖3中,作∠PEM1的平分線交M1Q的延長(zhǎng)線于R,∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠FQM1=∠R,設(shè)∠PER=∠REB=x,∠PM1R=∠RM1B=y,則有:,可得∠EPM1=2∠R,∴∠EPM1=2∠FQM1,∴==2.【點(diǎn)睛】本題主要考查平行線的判定與性質(zhì),熟練掌握內(nèi)錯(cuò)角相等證平行,平行線同旁內(nèi)角互補(bǔ)等知識(shí)是解題的關(guān)鍵.14.如圖1,點(diǎn)在直線、之間,且.(1)求證:;(2)若點(diǎn)是直線上的一點(diǎn),且,平分交直線于點(diǎn),若,求的度數(shù);(3)如圖3,點(diǎn)是直線、外一點(diǎn),且滿足,,與交于點(diǎn).已知,且,則的度數(shù)為______(請(qǐng)直接寫出答案,用含的式子表示).解析:(1)見解析;(2)10°;(3)【分析】(1)過點(diǎn)E
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025恒豐銀行南京分行社會(huì)招聘29人備考題庫含答案詳解
- 2025內(nèi)蒙古蒙水水資源股份有限公司招聘緊缺專業(yè)人員8人備考題庫有完整答案詳解
- 2026東風(fēng)越野車有限公司招聘14人備考題庫(湖北)及1套完整答案詳解
- 2026內(nèi)蒙古鄂爾多斯市東勝區(qū)第八小學(xué)語文教師招聘?jìng)淇碱}庫(含答案詳解)
- 2026江蘇蘇州工業(yè)園區(qū)翰林幼兒園后勤輔助人員招聘1人備考題庫及一套參考答案詳解
- 2025浙江嘉興市海寧市投資促進(jìn)中心有限公司招聘2人備考題庫參考答案詳解
- 2026廣西北海市動(dòng)物衛(wèi)生監(jiān)督所招錄公益性崗位人員6人備考題庫及完整答案詳解一套
- 2026中咨(北京)項(xiàng)目管理發(fā)展有限公司社會(huì)招聘2人備考題庫參考答案詳解
- 2026江蘇連云港東海高新區(qū)產(chǎn)業(yè)投資集團(tuán)有限公司及子公司招聘專業(yè)技術(shù)人員4人備考題庫及參考答案詳解一套
- 2026河北保定工數(shù)聯(lián)合(雄安)大數(shù)據(jù)科技有限公司招聘3人備考題庫含答案詳解
- 電力電子技術(shù)(廣東工業(yè)大學(xué))智慧樹知到期末考試答案章節(jié)答案2024年廣東工業(yè)大學(xué)
- 汽車網(wǎng)絡(luò)與新媒體營銷課件
- DB32T3834-2020水利工程螺桿式啟閉機(jī)檢修技術(shù)規(guī)程
- 提高臥床患者踝泵運(yùn)動(dòng)的執(zhí)行率
- AQ-T7009-2013 機(jī)械制造企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化規(guī)范
- 傷寒論條文(全398條)
- 2023年上海鐵路局人員招聘筆試題庫含答案解析
- 資料3b SIG康美包無菌灌裝流程及特征分段介紹
- 鉗工技能訓(xùn)練(第4版)PPT完整全套教學(xué)課件
- 電力工程課程設(shè)計(jì)-某機(jī)床廠變電所設(shè)計(jì)
- Unit 2 Reading and Thinking教學(xué)課件(英語選擇性必修第一冊(cè)人教版)
評(píng)論
0/150
提交評(píng)論