考點(diǎn)解析滬科版9年級下冊期末試題及答案詳解【典優(yōu)】_第1頁
考點(diǎn)解析滬科版9年級下冊期末試題及答案詳解【典優(yōu)】_第2頁
考點(diǎn)解析滬科版9年級下冊期末試題及答案詳解【典優(yōu)】_第3頁
考點(diǎn)解析滬科版9年級下冊期末試題及答案詳解【典優(yōu)】_第4頁
考點(diǎn)解析滬科版9年級下冊期末試題及答案詳解【典優(yōu)】_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、一個黑色布袋中裝有3個紅球和2個白球,這些球除顏色外其它都相同,從袋子中隨機(jī)摸出一個球,這個球是白球的概率是()A. B. C. D.2、如圖,是的直徑,弦,垂足為,若,則()A.5 B.8 C.9 D.103、如圖,邊長為5的等邊三角形中,M是高所在直線上的一個動點(diǎn),連接,將線段繞點(diǎn)B逆時針旋轉(zhuǎn)得到,連接.則在點(diǎn)M運(yùn)動過程中,線段長度的最小值是()A. B.1 C.2 D.4、下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.5、下面的圖形中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.6、下列圖形中,既是中心對稱圖形也是軸對稱圖形的是()A. B. C. D.7、擲一枚質(zhì)地均勻的骰子,向上一面的點(diǎn)數(shù)大于2且小于5的概率是()A. B. C. D.8、如圖,從⊙O外一點(diǎn)P引圓的兩條切線PA,PB,切點(diǎn)分別是A,B,若∠APB=60°,PA=5,則弦AB的長是()A. B. C.5 D.5第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如果一個扇形的弧長等于它所在圓的半徑,那么此扇形叫做“完美扇形”.已知某個“完美扇形”的周長等于6,那么這個扇形的面積等于_____.2、如圖,在⊙O中,弦AB⊥OC于E點(diǎn),C在圓上,AB=8,CE=2,則⊙O的半徑AO=___________.3、如圖,將半徑為的圓形紙片沿一條弦折疊,折疊后弧的中點(diǎn)與圓心重疊,則弦的長度為________.4、圖①所示,平整的地面上有一個不規(guī)則圖案(圖中陰影部分),小明想了解該圖案的面積是多少,他采取了以下辦法:用一個長為6m,寬為4m的長方形,將不規(guī)則圖案圍起來,然后在適當(dāng)位置隨機(jī)地朝長方形區(qū)域扔小球,并記錄小球落在不規(guī)則圖案上的次數(shù)(球扔在界線上或長方形區(qū)域外不計(jì)實(shí)驗(yàn)結(jié)果),他將若干次有效實(shí)驗(yàn)的結(jié)果繪制成了②所示的折線統(tǒng)計(jì)圖,由此他估計(jì)不規(guī)則圖案的面積大約為_____m2.5、一個直角三角形的斜邊長cm,兩條直角邊長的和是6cm,則這個直角三角形外接圓的半徑為______cm,直角三角形的面積是________.6、如圖AB為⊙O的直徑,點(diǎn)P為AB延長線上的點(diǎn),過點(diǎn)P作⊙O的切線PE,切點(diǎn)為M,過A、B兩點(diǎn)分別作PE垂線AC、BD,垂足分別為C、D,連接AM,則下列結(jié)論正確的是______(寫所有正確論的號)①AM平分∠CAB;②;③若AB=4,∠APE=30°,則的長為;④若AC=3BD,則有tan∠MAP=.7、不透明袋子中裝有5個球,其中有2個紅球、3個黑球,這些球除顏色外無其他差別.從袋子中隨機(jī)取出1個球,則它是黑球的概率是________.三、解答題(7小題,每小題0分,共計(jì)0分)1、綜合與實(shí)踐“利用尺規(guī)作圖三等分一個任意角”曾是數(shù)學(xué)史上一大難題,之后被數(shù)學(xué)家證明是不可能完成的.人們根據(jù)實(shí)際需要,發(fā)明了一種簡易操作工具——三分角器.圖1是它的示意圖,其中與半圓的直徑在同一直線上,且的長度與半圓的半徑相等;與垂直于點(diǎn),足夠長.使用方法如圖2所示,若要把三等分,只需適當(dāng)放置三分角器,使經(jīng)過的頂點(diǎn),點(diǎn)落在邊上,半圓與另一邊恰好相切,切點(diǎn)為,則,就把三等分了.為了說明這一方法的正確性,需要對其進(jìn)行證明.獨(dú)立思考:(1)如下給出了不完整的“已知”和“求證”,請補(bǔ)充完整.已知:如圖2,點(diǎn),,,在同一直線上,,垂足為點(diǎn),________,切半圓于.求證:________________.探究解決:(2)請完成證明過程.應(yīng)用實(shí)踐:(3)若半圓的直徑為,,求的長度.2、從2021年開始,重慶市新高考采用“”模式:“3”指全國統(tǒng)考科目,即:語文、數(shù)學(xué)、外語三個學(xué)科為必選科目;“1”為首選科目,即:物理、歷史這2個學(xué)科中任選1科,且必須選1科;“2”為再選科目,即:化學(xué)、生物、思想政治、地理這4個學(xué)科中任選2科,且必須選2科.小紅在高一上期期末結(jié)束后,需要選擇高考科目.(1)小紅在“首選科目”中,選擇歷史學(xué)科的概率是___________.(2)用列表法或畫樹狀圖法,求小紅在“再選科目”中選擇思想政治和地理這兩門學(xué)科的概率.3、如圖1,在⊙O中,AC=BD,且AC⊥BD,垂足為點(diǎn)E.(1)求∠ABD的度數(shù);(2)圖2,連接OA,當(dāng)OA=2,∠OAB=15°,求BE的長度;(3)在(2)的條件下,求的長.4、如圖,四邊形ABCD是正方形.△ABE是等邊三角形,M為對角線BD(不含B,D點(diǎn))上任意一點(diǎn),將線段BM繞點(diǎn)B逆時針旋轉(zhuǎn)60°得到BN,連接EN,AM、CM.請判斷線段AM和線段EN的數(shù)量關(guān)系,并說明理由.5、如圖,在⊙O中,點(diǎn)E是弦CD的中點(diǎn),過點(diǎn)O,E作直徑AB(AE>BE),連接BD,過點(diǎn)C作CFBD交AB于點(diǎn)G,交⊙O于點(diǎn)F,連接AF.求證:AG=AF.6、在一個不透明的盒子中裝有四個只有顏色不同的小球,其中兩個紅球,一個黃球,一個藍(lán)球.(1)攪勻后從中任意摸出1個球,恰好是紅球的概率為_______;恰好是黃球的概率為________.(2)攪勻后從中任意摸出1個球,記錄下顏色后放回袋子中并攪勻,再從中任意摸出1個球,用列表法或樹形圖的方法,求兩次都是紅球的概率.7、元元同學(xué)在數(shù)學(xué)課上遇到這樣一個問題:如圖1,在平面直角坐標(biāo)系xOy中,OA經(jīng)過坐標(biāo)原點(diǎn)O,并與兩坐標(biāo)軸分別交于B、C兩點(diǎn),點(diǎn)B的坐標(biāo)為,點(diǎn)D在上,且,求OA的半徑和圓心A的坐標(biāo).元元的做法如下,請你幫忙補(bǔ)全解題過程:解:如圖2,連接BC.作AELOB于E、AF⊥OC于F.∴、(依據(jù)是①)∵,∴(依據(jù)是②).∵,.∴BC是的直徑(依據(jù)是③).∴∵,∴A的坐標(biāo)為(④)的半徑為⑤-參考答案-一、單選題1、D【分析】根據(jù)隨機(jī)事件概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A),進(jìn)行計(jì)算即可.【詳解】解:∵一個黑色布袋中裝有3個紅球和2個白球,這些球除顏色外其它都相同,∴抽到每個球的可能性相同,∴布袋中任意摸出1個球,共有5種可能,摸到白球可能的次數(shù)為2次,摸到白球的概率是,∴P(白球).故選:D.【點(diǎn)睛】本題考查了隨機(jī)事件概率的求法,熟練掌握隨機(jī)事件概率公式是解題關(guān)鍵.2、C【分析】連接,根據(jù)垂徑定理可得,設(shè)的半徑為,則,進(jìn)而勾股定理列出方程求得半徑,進(jìn)而求得【詳解】解:如圖,連接,∵是的直徑,弦,∴設(shè)的半徑為,則在中,,即解得即故選C【點(diǎn)睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.3、A【分析】取CB的中點(diǎn)G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】解:如圖,取BC的中點(diǎn)G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵M(jìn)B旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故選A.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點(diǎn).4、D【詳解】解:.不是軸對稱圖形,也不是中心對稱圖形,故本選項(xiàng)不符合題意;.不是軸對稱圖形,是中心對稱圖形,故本選項(xiàng)不符合題意;.是軸對稱圖形,不是中心對稱圖形,故本選項(xiàng)不符合題意;.既是軸對稱圖形,又是中心對稱圖形,故本選項(xiàng)符合題意.故選:D.【點(diǎn)睛】本題考查了中心對稱圖形與軸對稱圖形的概念,解題的關(guān)鍵是掌握軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.5、A【詳解】解:A、既是軸對稱圖形又是中心對稱圖形,此項(xiàng)符合題意;B、是中心對稱圖形,不是軸對稱圖形,此項(xiàng)不符題意;C、是軸對稱圖形,不是中心對稱圖形,此項(xiàng)不符題意;D、是軸對稱圖形,不是中心對稱圖形,此項(xiàng)不符題意;故選:A.【點(diǎn)睛】本題考查了中心對稱圖形和軸對稱圖形,熟記中心對稱圖形的定義(在平面內(nèi),把一個圖形繞某點(diǎn)旋轉(zhuǎn),如果旋轉(zhuǎn)后的圖形與另一個圖形重合,那么這兩個圖形互為中心對稱圖形)和軸對稱圖形的定義(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形)是解題關(guān)鍵.6、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、既是軸對稱圖形,也是中心對稱圖形,故此選項(xiàng)符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)不符合題意;C、是中心對稱圖形,不是軸對稱圖形,故此選項(xiàng)不符合題意;D、是中心對稱圖形,不是軸對稱圖形,故此選項(xiàng)不符合題意.故選:A.【點(diǎn)睛】本題考查中心對稱圖形和軸對稱圖形的知識,關(guān)鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖重合.7、C【分析】根據(jù)骰子各面上的數(shù)字得到向上一面的點(diǎn)數(shù)可能是3或4,利用概率公式計(jì)算即可.【詳解】解:一枚質(zhì)地均勻的骰子共有六個面,點(diǎn)數(shù)分別為1,2,3,4,5,6,∴點(diǎn)數(shù)大于2且小于5的有3或4,∴向上一面的點(diǎn)數(shù)大于2且小于5的概率是=,故選:C.【點(diǎn)睛】此題考查了求簡單事件的概率,正確掌握概率的計(jì)算公式是解題的關(guān)鍵.8、C【分析】先利用切線長定理得到PA=PB,再利用∠APB=60°可判斷△APB為等邊三角形,然后根據(jù)等邊三角形的性質(zhì)求解.【詳解】解:∵PA,PB為⊙O的切線,∴PA=PB,∵∠APB=60°,∴△APB為等邊三角形,∴AB=PA=5.故選:C.【點(diǎn)睛】本題考查了切線長定理以及等邊三角形的判定與性質(zhì).此題比較簡單,注意掌握數(shù)形結(jié)合思想的應(yīng)用.二、填空題1、2【分析】根據(jù)扇形的面積公式S=,代入計(jì)算即可.【詳解】解:∵“完美扇形”的周長等于6,∴半徑r為=2,弧長l為2,這個扇形的面積為:==2.答案為:2.【點(diǎn)睛】本題考查了扇形的面積公式,扇形面積公式與三角形面積公式十分類似,為了便于記憶,只要把扇形看成一個曲邊三角形,把弧長l看成底,R看成底邊上的高即可.2、5【分析】設(shè)⊙O的半徑為r,則OA=r,OD=r-2,先由垂徑定理得到AD=BD=AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可.【詳解】解:設(shè)⊙O的半徑為r,則OC=OA=r,OE=OC-CE=r-2,∵OC⊥AB,AB=8,∴AE=BE=AB=4,在Rt△OAE中,由勾股定理得:42+(r-2)2=r2,解得:r=5,即⊙O的半徑長為5,故答案為:5.【點(diǎn)睛】本題考查了垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱斯垂啥ɡ恚?、【分析】連接OC交AB于點(diǎn)D,再連接OA.根據(jù)軸對稱的性質(zhì)確定,OD=CD;再根據(jù)垂徑定理確定AD=BD;再根據(jù)勾股定理求出AD的長度,進(jìn)而即可求出AB的長度.【詳解】解:如下圖所示,連接OC交AB于點(diǎn)D,再連接OA.∵折疊后弧的中點(diǎn)與圓心重疊,∴,OD=CD.∴AD=BD.∵圓形紙片的半徑為10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案為:.【點(diǎn)睛】本題考查軸對稱的性質(zhì),垂徑定理,勾股定理,綜合應(yīng)用這些知識點(diǎn)是解題關(guān)鍵.4、8.4【分析】首先假設(shè)不規(guī)則圖案面積為x,根據(jù)幾何概率知識求解不規(guī)則圖案占長方形的面積大??;繼而根據(jù)折線圖用頻率估計(jì)概率,綜合以上列方程求解.【詳解】解:假設(shè)不規(guī)則圖案面積為xm2,由已知得:長方形面積為24m2,根據(jù)幾何概率公式小球落在不規(guī)則圖案的概率為:,當(dāng)事件A試驗(yàn)次數(shù)足夠多,即樣本足夠大時,其頻率可作為事件A發(fā)生的概率估計(jì)值,故由折線圖可知,小球落在不規(guī)則圖案的概率大約為0.35,綜上有:=0.35,解得x=8.4.估計(jì)不規(guī)則圖案的面積大約為8.4m2.故答案為:8.4.【點(diǎn)睛】本題考查幾何概率以及用頻率估計(jì)概率,并在此基礎(chǔ)上進(jìn)行了題目創(chuàng)新,解題關(guān)鍵在于清晰理解題意,能從復(fù)雜的題目背景當(dāng)中找到考點(diǎn)化繁為簡,創(chuàng)新題目對基礎(chǔ)知識要求極高.5、4【分析】設(shè)一直角邊長為x,另一直角邊長為(6-x)根據(jù)勾股定理,解一元二次方程求出,根據(jù)這個直角三角形的斜邊長為外接圓的直徑,可求外接圓的半徑為cm,利用三角形面積公式求即可.【詳解】解:設(shè)一直角邊長為x,另一直角邊長為(6-x),∵三角形是直角三角形,∴根據(jù)勾股定理,整理得:,解得,這個直角三角形的斜邊長為外接圓的直徑,∴外接圓的半徑為cm,三角形面積為.故答案為;.【點(diǎn)睛】本題考查直角三角形的外接圓,直角所對弦性質(zhì),勾股定理,一元二次方程,三角形面積,掌握以上知識是解題關(guān)鍵.6、①②④【分析】連接OM,由切線的性質(zhì)可得,繼而得,再根據(jù)平行線的性質(zhì)以及等邊對等角即可求得,由此可判斷①;通過證明,根據(jù)相似三角形的對應(yīng)邊成比例可判斷②;求出,利用弧長公式求得的長可判斷③;由,,,可得,繼而可得,,進(jìn)而有,在中,利用勾股定理求出PD的長,可得,由此可判斷④.【詳解】解:連接OM,∵PE為的切線,∴,∵,∴,∴,∵,,∴,即AM平分,故①正確;∵AB為的直徑,∴,∵,,∴,∴,∴,故②正確;∵,∴,∵,∴,∴的長為,故③錯誤;∵,,,∴,∴,∴,∴,又∵,,,∴,又∵,∴,設(shè),則,∴,在中,,∴,∴,由①可得,,故④正確,故答案為:①②④.【點(diǎn)睛】本題考查了切線的性質(zhì),平行線分線段成比例定理,相似三角形的判定與性質(zhì),勾股定理等,正確添加輔助線,熟練掌握和靈活運(yùn)用相關(guān)知識是解題的關(guān)鍵.7、【分析】根據(jù)概率公式計(jì)算即可【詳解】共有個球,其中黑色球3個從中任意摸出一球,摸出白色球的概率是.故答案為:【點(diǎn)睛】本題考查了簡單概率公式的計(jì)算,熟悉概率公式是解題的關(guān)鍵.三、解答題1、(1),,將三等分;(2)見解析;(3)【分析】(1)根據(jù)題意即可得;(2)先證明與全等,然后根據(jù)全等的性質(zhì)可得,再由圓的切線的性質(zhì)可得,可得三個角相等,即可證明結(jié)論;(3)連,延長與相交于點(diǎn),由(2)結(jié)論可得,再由切線的性質(zhì),,然后利用勾股定理及線段間的數(shù)量關(guān)系可得,最后利用相似三角形的判定和性質(zhì)求解即可得.【詳解】解:(1),,將三等分,故答案為:;,將三等分,(2)證明:在與中,,,.,是的切線.、都是的切線,,,,將三等分.(3)如圖,連,延長與相交于點(diǎn),由(2),知.是的切線,,,.∵半徑,∴由勾股定理得,在中,,,.∵,,,,即,.【點(diǎn)睛】題目主要考查全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),圓的切線的性質(zhì),勾股定理等,理解題意,結(jié)合圖形綜合運(yùn)用這些知識點(diǎn)是解題關(guān)鍵.2、(1)(2)【分析】(1)根據(jù)概率的公式計(jì)算可得答案;(2)畫樹狀圖,共有12個等可能的結(jié)果,該同學(xué)恰好選中思想政治和地理化兩科的結(jié)果有2個,再由概率公式求解即可.(1)解:選擇物理、歷史共有2中等可能結(jié)果,選擇歷史學(xué)科的結(jié)果有1種,所以選擇歷史學(xué)科的概率是;(2)假設(shè)A表示化學(xué)、B表示生物、C表示思想政治、D表示地理,畫樹狀圖如下圖:共有12個等可能的結(jié)果,該同學(xué)恰好選中思想政治和地理的結(jié)果有2個,所以該同學(xué)恰好選中思想政治和地理的概率為.【點(diǎn)睛】此題考查了概率的求法,利用如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=,還考查了用列表法或樹狀圖法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件,做題的關(guān)鍵是掌握概率的求法.3、(1);(2);(3)【分析】(1)如圖,過作垂足分別為連接證明四邊形為正方形,可得證明可得答案;(2)先求解再結(jié)合(1)的結(jié)論可得答案;(3)如圖,連接先求解再證明再求解可得再利用弧長公式計(jì)算即可.【詳解】解:(1)如圖,過作垂足分別為連接四邊形為矩形,由勾股定理可得:而四邊形為正方形,而(2)如圖,過作垂足分別為由(1)得:四邊形為正方形,OA=2,∠OAB=15°,(3)如圖,連接【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,等腰三角形的判定與性質(zhì),矩形,正方形的判定與性質(zhì),垂徑定理的應(yīng)用,弧長的計(jì)算,掌握以上知識并靈活運(yùn)用是解本題的關(guān)鍵.4、AM=EN,理由見解析【分析】根據(jù)旋轉(zhuǎn)性質(zhì)和等邊三角形的性質(zhì)可證得∠ABM=∠EBN,BM=BN,AB=BE,根據(jù)全等三角形的判定證明△ABM≌△EBN即可得出結(jié)論.【詳解】解:AM=EN,理由為:∵△ABE是等邊三角形,∴AB=BE,∠ABE=60°,即∠EBN=∠ABN=60°,∵線段BM繞點(diǎn)B逆時針旋轉(zhuǎn)60°得到BN,∴BM=BN,∠MBN=60°,即∠ABM+∠ABN=60°,∴∠ABM=∠EBN,在△ABM和△EBN中,,∴△ABM≌△EBN(SAS),∴AM=EN.【點(diǎn)睛】本題考查等邊三角形的性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論