版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆達州市重點中學中考數(shù)學模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在△ABC中,AB=5,AC=4,∠A=60°,若邊AC的垂直平分線DE交AB于點D,連接CD,則△BDC的周長為()A.8 B.9 C.5+ D.5+2.關于的不等式的解集如圖所示,則的取值是A.0 B. C. D.3.如圖,等腰△ABC的底邊BC與底邊上的高AD相等,高AD在數(shù)軸上,其中點A,D分別對應數(shù)軸上的實數(shù)﹣2,2,則AC的長度為()A.2 B.4 C.2 D.44.如圖,將甲、乙、丙、丁四個小正方形中的一個剪掉,使余下的部分不能圍成一個正方體,剪掉的這個小正方形是A.甲 B.乙C.丙 D.丁5.若||=-,則一定是()A.非正數(shù) B.正數(shù) C.非負數(shù) D.負數(shù)6.如圖,AB為⊙O直徑,已知為∠DCB=20°,則∠DBA為()A.50° B.20° C.60° D.70°7.關于的方程有實數(shù)根,則整數(shù)的最大值是()A.6 B.7 C.8 D.98.如圖,釣魚竿AC長6m,露在水面上的魚線BC長m,某釣者想看看魚釣上的情況,把魚竿AC轉動到AC'的位置,此時露在水面上的魚線B′C′為m,則魚竿轉過的角度是()A.60° B.45° C.15° D.90°9.一列動車從A地開往B地,一列普通列車從B地開往A地,兩車同時出發(fā),設普通列車行駛的時間為x(小時),兩車之間的距離為y(千米),如圖中的折線表示y與x之間的函數(shù)關系.下列敘述錯誤的是()A.AB兩地相距1000千米B.兩車出發(fā)后3小時相遇C.動車的速度為D.普通列車行駛t小時后,動車到達終點B地,此時普通列車還需行駛千米到達A地10.一個關于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是()A.x>1 B.x≥1 C.x>3 D.x≥311.在一次男子馬拉松長跑比賽中,隨機抽取了10名選手,記錄他們的成績(所用的時間)如下:選手12345678910時間(min)129136140145146148154158165175由此所得的以下推斷不正確的是()A.這組樣本數(shù)據的平均數(shù)超過130B.這組樣本數(shù)據的中位數(shù)是147C.在這次比賽中,估計成績?yōu)?30min的選手的成績會比平均成績差D.在這次比賽中,估計成績?yōu)?42min的選手,會比一半以上的選手成績要好12.如圖,若AB∥CD,則α、β、γ之間的關系為()A.α+β+γ=360° B.α﹣β+γ=180°C.α+β﹣γ=180° D.α+β+γ=180°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知圓錐的高為3,底面圓的直徑為8,則圓錐的側面積為_____.14.如圖,在邊長為9的正三角形ABC中,BD=3,∠ADE=60°,則AE的長為.15.=__________16.已知⊙O的面積為9πcm2,若點O到直線L的距離為πcm,則直線l與⊙O的位置關系是_____.17.如圖,直線a、b相交于點O,若∠1=30°,則∠2=___18.分解因式:2x2﹣8=_____________三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)八年級(1)班研究性學習小組為研究全校同學課外閱讀情況,在全校隨機邀請了部分同學參與問卷調查,統(tǒng)計同學們一個月閱讀課外書的數(shù)量,并繪制了以下統(tǒng)計圖.請根據圖中信息解決下列問題:(1)共有名同學參與問卷調查;(2)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;(3)全校共有學生1500人,請估計該校學生一個月閱讀2本課外書的人數(shù)約為多少.20.(6分)問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD=∠BAC=60°,于是==遷移應用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.(1)求證:△ADB≌△AEC;(2)若AD=2,BD=3,請計算線段CD的長;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內作射線BM,作點C關于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.(3)證明:△CEF是等邊三角形;(4)若AE=4,CE=1,求BF的長.21.(6分)太陽能光伏建筑是現(xiàn)代綠色環(huán)保建筑之一,老張準備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點D在BA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結果精確到0.1米)22.(8分)(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.求的值.23.(8分)已知關于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m為常數(shù),方程①的根為非負數(shù).(1)求m的取值范圍;(2)若方程②有兩個整數(shù)根x1、x2,且m為整數(shù),求方程②的整數(shù)根.24.(10分)網上購物已經成為人們常用的一種購物方式,售后評價特別引人關注,消費者在網店購買某種商品后,對其有“好評”、“中評”、“差評”三種評價,假設這三種評價是等可能的.(1)小明對一家網店銷售某種商品顯示的評價信息進行了統(tǒng)計,并列出了兩幅不完整的統(tǒng)計圖.利用圖中所提供的信息解決以下問題:①小明一共統(tǒng)計了個評價;②請將圖1補充完整;③圖2中“差評”所占的百分比是;(2)若甲、乙兩名消費者在該網店購買了同一商品,請你用列表格或畫樹狀圖的方法幫助店主求一下兩人中至少有一個給“好評”的概率.25.(10分)解不等式組請結合題意填空,完成本題的解答:(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式(1)和(2)的解集在數(shù)軸上表示出來:(IV)原不等式組的解集為.26.(12分)計算:.27.(12分)下表給出A、B、C三種上寬帶網的收費方式:收費方式月使用費/元包時上網時間/h超時費/(元/min)A30250.05B50500.05C120不限時設上網時間為t小時.(I)根據題意,填寫下表:月費/元上網時間/h超時費/(元)總費用/(元)方式A3040方式B50100(II)設選擇方式A方案的費用為y1元,選擇方式B方案的費用為y2元,分別寫出y1、y2與t的數(shù)量關系式;(III)當75<t<100時,你認為選用A、B、C哪種計費方式省錢(直接寫出結果即可)?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
過點C作CM⊥AB,垂足為M,根據勾股定理求出BC的長,再根據DE是線段AC的垂直平分線可得△ADC等邊三角形,則CD=AD=AC=4,代入數(shù)值計算即可.【詳解】過點C作CM⊥AB,垂足為M,在Rt△AMC中,∵∠A=60°,AC=4,∴AM=2,MC=2,∴BM=AB-AM=3,在Rt△BMC中,BC===,∵DE是線段AC的垂直平分線,∴AD=DC,∵∠A=60°,∴△ADC等邊三角形,∴CD=AD=AC=4,∴△BDC的周長=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案選C.【點睛】本題考查了勾股定理,解題的關鍵是熟練的掌握勾股定理的運算.2、D【解析】
首先根據不等式的性質,解出x≤,由數(shù)軸可知,x≤-1,所以=-1,解出即可;【詳解】解:不等式,解得x<,由數(shù)軸可知,所以,解得;故選:.【點睛】本題主要考查了不等式的解法和在數(shù)軸上表示不等式的解集,在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.3、C【解析】
根據等腰三角形的性質和勾股定理解答即可.【詳解】解:∵點A,D分別對應數(shù)軸上的實數(shù)﹣2,2,∴AD=4,∵等腰△ABC的底邊BC與底邊上的高AD相等,∴BC=4,∴CD=2,在Rt△ACD中,AC=,故選:C.【點睛】此題考查等腰三角形的性質,注意等腰三角形的三線合一,熟練運用勾股定理.4、D【解析】解:將如圖所示的圖形剪去一個小正方形,使余下的部分不能圍成一個正方體,編號為甲乙丙丁的小正方形中剪去的是?。蔬xD.5、A【解析】
根據絕對值的性質進行求解即可得.【詳解】∵|-x|=-x,又|-x|≥1,∴-x≥1,即x≤1,即x是非正數(shù),故選A.【點睛】本題考查了絕對值的性質,熟練掌握絕對值的性質是解題的關鍵.絕對值的性質:一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);1的絕對值是1.6、D【解析】題解析:∵AB為⊙O直徑,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故選D.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.7、C【解析】
方程有實數(shù)根,應分方程是一元二次方程與不是一元二次方程,兩種情況進行討論,當不是一元二次方程時,a-6=0,即a=6;當是一元二次方程時,有實數(shù)根,則△≥0,求出a的取值范圍,取最大整數(shù)即可.【詳解】當a-6=0,即a=6時,方程是-1x+6=0,解得x=;
當a-6≠0,即a≠6時,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,
取最大整數(shù),即a=1.故選C.8、C【解析】試題解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,魚竿轉過的角度是15°.故選C.考點:解直角三角形的應用.9、C【解析】
可以用物理的思維來解決這道題.【詳解】未出發(fā)時,x=0,y=1000,所以兩地相距1000千米,所以A選項正確;y=0時兩車相遇,x=3,所以B選項正確;設動車速度為V1,普車速度為V2,則3(V1+V2)=1000,所以C選項錯誤;D選項正確.【點睛】理解轉折點的含義是解決這一類題的關鍵.10、C【解析】試題解析:一個關于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是x>1.故選C.考點:在數(shù)軸上表示不等式的解集.11、C【解析】分析:要求平均數(shù)只要求出數(shù)據之和再除以總個數(shù)即可;對于中位數(shù),因圖中是按從小到大的順序排列的,所以只要找出最中間的一個數(shù)(或最中間的兩個數(shù))即可求解.詳解:平均數(shù)=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故這組樣本數(shù)據的平均數(shù)超過130,A正確,C錯誤;因為表中是按從小到大的順序排列的,一共10名選手,中位數(shù)為第五位和第六位的平均數(shù),故中位數(shù)是(146+148)÷2=147(min),故B正確,D正確.故選C.點睛:本題考查的是平均數(shù)和中位數(shù)的定義.要注意,當所給數(shù)據有單位時,所求得的平均數(shù)和中位數(shù)與原數(shù)據的單位相同,不要漏單位.12、C【解析】
過點E作EF∥AB,如圖,易得CD∥EF,然后根據平行線的性質可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,進一步即得結論.【詳解】解:過點E作EF∥AB,如圖,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故選:C.【點睛】本題考查了平行公理的推論和平行線的性質,屬于??碱}型,作EF∥AB、熟練掌握平行線的性質是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、20π【解析】
利用勾股定理可求得圓錐的母線長,然后根據圓錐的側面積公式進行計算即可.【詳解】底面直徑為8,底面半徑=4,底面周長=8π,由勾股定理得,母線長==5,故圓錐的側面積=×8π×5=20π,故答案為:20π.【點睛】本題主要考查了圓錐的側面積的計算方法.解題的關鍵是熟記圓錐的側面展開扇形的面積計算方法.14、7【解析】試題分析:∵△ABC是等邊三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.15、2;【解析】試題解析:先求-2的平方4,再求它的算術平方根,即:.16、相離【解析】
設圓O的半徑是r,根據圓的面積公式求出半徑,再和點0到直線l的距離π比較即可.【詳解】設圓O的半徑是r,則πr2=9π,∴r=3,∵點0到直線l的距離為π,∵3<π,即:r<d,∴直線l與⊙O的位置關系是相離,故答案為:相離.【點睛】本題主要考查對直線與圓的位置關系的理解和掌握,解此題的關鍵是知道當r<d時相離;當r=d時相切;當r>d時相交.17、30°【解析】因∠1和∠2是鄰補角,且∠1=30°,由鄰補角的定義可得∠2=180°﹣∠1=180°﹣30°=150°.解:∵∠1+∠2=180°,又∠1=30°,∴∠2=150°.18、2(x+2)(x﹣2)【解析】
先提公因式,再運用平方差公式.【詳解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【點睛】考核知識點:因式分解.掌握基本方法是關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)100;(2)補圖見解析;(3)570人.【解析】
(1)由讀書1本的人數(shù)及其所占百分比可得總人數(shù);(2)總人數(shù)乘以讀4本的百分比求得其人數(shù),減去男生人數(shù)即可得出女生人數(shù),用讀2本的人數(shù)除以總人數(shù)可得對應百分比;(3)總人數(shù)乘以樣本中讀2本人數(shù)所占比例.【詳解】(1)參與問卷調查的學生人數(shù)為(8+2)÷10%=100人,故答案為:100;(2)讀4本的女生人數(shù)為100×15%﹣10=5人,讀2本人數(shù)所占百分比為20+補全圖形如下:(3)估計該校學生一個月閱讀2本課外書的人數(shù)約為1500×38%=570人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據;扇形統(tǒng)計圖直接反映部分占總體的百分比大小.20、(1)見解析;(2)CD=;(3)見解析;(4)【解析】試題分析:遷移應用:(1)如圖2中,只要證明∠DAB=∠CAE,即可根據SAS解決問題;
(2)結論:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD?cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解決問題;
拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.由BC=BE=BD=BA,F(xiàn)E=FC,推出A、D、E、C四點共圓,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等邊三角形;
(4)由AE=4,EC=EF=1,推出AH=HE=2,F(xiàn)H=3,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解決問題.試題解析:遷移應用:(1)證明:如圖2,
∵∠BAC=∠DAE=120°,
∴∠DAB=∠CAE,
在△DAE和△EAC中,
DA=EA,∠DAB=∠EAC,AB=AC,
∴△DAB≌△EAC,
(2)結論:CD=AD+BD.
理由:如圖2-1中,作AH⊥CD于H.
∵△DAB≌△EAC,
∴BD=CE,
在Rt△ADH中,DH=AD?cos30°=AD,
∵AD=AE,AH⊥DE,
∴DH=HE,
∵CD=DE+EC=2DH+BD=AD+BD=.
拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.
∵四邊形ABCD是菱形,∠ABC=120°,
∴△ABD,△BDC是等邊三角形,
∴BA=BD=BC,
∵E、C關于BM對稱,
∴BC=BE=BD=BA,F(xiàn)E=FC,
∴A、D、E、C四點共圓,
∴∠ADC=∠AEC=120°,
∴∠FEC=60°,
∴△EFC是等邊三角形,
(4)∵AE=4,EC=EF=1,
∴AH=HE=2,F(xiàn)H=3,
在Rt△BHF中,∵∠BFH=30°,
∴=cos30°,
∴BF=.21、1.9米【解析】試題分析:在直角三角形BCD中,由BC與sinB的值,利用銳角三角函數(shù)定義求出CD的長,在直角三角形ACD中,由∠ACD度數(shù),以及CD的長,利用銳角三角函數(shù)定義求出AD的長即可.試題解析:∵∠BDC=90°,BC=10,sinB=,∴CD=BC?sinB=10×0.2=5.9,∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°,∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,∴在Rt△ACD中,tan∠ACD=,∴AD=CD?tan∠ACD=5.9×0.32=1.888≈1.9(米),則改建后南屋面邊沿增加部分AD的長約為1.9米.考點:解直角三角形的應用22、1【解析】
通過已知等式化簡得到未知量的關系,代入目標式子求值.【詳解】∵(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.∴(y﹣z)1﹣(y+z﹣1x)1+(x﹣y)1﹣(x+y﹣1z)1+(z﹣x)1﹣(z+x﹣1y)1=2,∴(y﹣z+y+z﹣1x)(y﹣z﹣y﹣z+1x)+(x﹣y+x+y﹣1z)(x﹣y﹣x﹣y+1z)+(z﹣x+z+x﹣1y)(z﹣x﹣z﹣x+1y)=2,∴1x1+1y1+1z1﹣1xy﹣1xz﹣1yz=2,∴(x﹣y)1+(x﹣z)1+(y﹣z)1=2.∵x,y,z均為實數(shù),∴x=y=z.∴23、(1)且,;(2)當m=1時,方程的整數(shù)根為0和3.【解析】
(1)先解出分式方程①的解,根據分式的意義和方程①的根為非負數(shù)得出的取值;
(2)根據根與系數(shù)的關系得到x1+x2=3,,根據方程的兩個根都是整數(shù)可得m=1或.結合(1)的結論可知m1.解方程即可.【詳解】解:(1)∵關于x的分式方程的根為非負數(shù),∴且.又∵,且,∴解得且.又∵方程為一元二次方程,∴.綜上可得:且,.(2)∵一元二次方程有兩個整數(shù)根x1、x2,m為整數(shù),∴x1+x2=3,,∴為整數(shù),∴m=1或.又∵且,,∴m1.當m=1時,原方程可化為.解得:,.∴當m=1時,方程的整數(shù)根為0和3.【點睛】考查了解分式方程,一元二次方程根與系數(shù)的關系,解一元二次方程等,熟練掌握方程的解法是解題的關鍵.24、(1)①150;②作圖見解析;③13.3%;(2).【解析】
(1)①用“中評”、“差評”的人數(shù)除以二者的百分比之和即可得總人數(shù);②用總人數(shù)減去“中評”、“差評”的人數(shù)可得“好評”的人數(shù),補全條形圖即可;③根據“差評”的人數(shù)÷總人數(shù)×100%即可得“差評”所占的百分比;(2)可通過列表表示出甲、乙對商品評價的所有可能結果數(shù),根據概率公式即可計算出兩人中至少有一個給“好評”的概率.【詳解】①小明統(tǒng)計的評價一共有:(40+20)÷(1-60%=150(個);②“好評”一共有150×60%=90(個),補全條形圖如圖1:③圖2中“差評”所占的百分比是:×100%=13.3%;(2)列表如下:好中差好好,好好,中好,差中中,好中,中中,差差差,好差,中差,差由表可知,一共有9種等可能結果,其中至少有一個給“好評”的有5種,∴兩人中至少有一個給“好評”的概率是.考點:扇形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年池州職業(yè)技術學院單招職業(yè)技能考試備考試題含詳細答案解析
- 2026年貴州城市職業(yè)學院高職單招職業(yè)適應性測試備考試題及答案詳細解析
- 2026年寶雞職業(yè)技術學院單招綜合素質筆試參考題庫含詳細答案解析
- 2026年山西鐵道職業(yè)技術學院單招綜合素質考試模擬試題含詳細答案解析
- 2026年四川財經職業(yè)學院單招綜合素質筆試參考題庫含詳細答案解析
- 2026年常州紡織服裝職業(yè)技術學院高職單招職業(yè)適應性測試備考題庫及答案詳細解析
- 2026年河南女子職業(yè)學院單招綜合素質筆試參考題庫含詳細答案解析
- 2026年山西水利職業(yè)技術學院單招綜合素質考試備考題庫含詳細答案解析
- 2026年廣東金融學院高職單招職業(yè)適應性測試備考試題及答案詳細解析
- 2026年運城幼兒師范高等專科學校高職單招職業(yè)適應性測試備考題庫及答案詳細解析
- 極兔快遞合作合同協(xié)議書
- 加油站安全環(huán)保課件
- co中毒遲發(fā)性腦病診斷與治療中國專家共識解讀
- 新版預算管理制度
- 2024版人教版八年級上冊英語單詞表(含音標完整版)
- 空調設備維護保養(yǎng)制度范文(2篇)
- “轉作風、換腦子、促管理”集中整頓工作心得體會
- 提高幕墻主龍骨安裝合格率(QC)
- 高層樓宇門窗安裝安全施工方案
- 河南省天一大聯(lián)考2024-2025學年高一化學上學期期末考試試題
- 高血壓病的中醫(yī)藥防治
評論
0/150
提交評論