版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆湖南省株洲市蘆淞區(qū)重點中學中考數(shù)學全真模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.甲、乙兩位同學做中國結,已知甲每小時比乙少做6個,甲做30個所用的時間與乙做45個所用的時間相等,求甲每小時做中國結的個數(shù).如果設甲每小時做x個,那么可列方程為()A.= B.=C.= D.=2.已知二次函數(shù)y=x2﹣4x+m的圖象與x軸交于A、B兩點,且點A的坐標為(1,0),則線段AB的長為()A.1 B.2 C.3 D.43.下列圖形中既是中心對稱圖形又是軸對稱圖形的是A. B. C. D.4.若一元二次方程x2﹣2x+m=0有兩個不相同的實數(shù)根,則實數(shù)m的取值范圍是()A.m≥1 B.m≤1 C.m>1 D.m<15.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數(shù)為()A.50° B.110° C.130° D.150°6.撫順市中小學機器人科技大賽中,有7名學生參加決賽,他們決賽的成績各不相同,其中一名參賽選手想知道自己能否進入前4名,他除了知道自己成績外還要知道這7名學生成績的()A.中位數(shù)B.眾數(shù)C.平均數(shù)D.方差7.如圖,E,B,F(xiàn),C四點在一條直線上,EB=CF,∠A=∠D,再添一個條件仍不能證明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE8.下列計算正確的是()A.2x2-3x2=x2 B.x+x=x2 C.-(x-1)=-x+1 D.3+x=3x9.如圖1是某生活小區(qū)的音樂噴泉,水流在各個方向上沿形狀相同的拋物線路徑落下,其中一個噴水管噴水的最大高度為3m,此時距噴水管的水平距離為1m,在如圖2所示的坐標系中,該噴水管水流噴出的高度(m)與水平距離(m)之間的函數(shù)關系式是()A. B.C. D.10.衡陽市某生態(tài)示范園計劃種植一批梨樹,原計劃總產(chǎn)值30萬千克,為了滿足市場需求,現(xiàn)決定改良梨樹品種,改良后平均每畝產(chǎn)量是原來的1.5倍,總產(chǎn)量比原計劃增加了6萬千克,種植畝數(shù)減少了10畝,則原來平均每畝產(chǎn)量是多少萬千克?設原來平均每畝產(chǎn)量為x萬千克,根據(jù)題意,列方程為()A.﹣=10 B.﹣=10C.﹣=10 D.+=1011.如圖,AB∥CD,點E在線段BC上,若∠1=40°,∠2=30°,則∠3的度數(shù)是()A.70° B.60° C.55° D.50°12.如圖,已知射線OM,以O為圓心,任意長為半徑畫弧,與射線OM交于點A,再以點A為圓心,AO長為半徑畫弧,兩弧交于點B,畫射線OB,那么∠AOB的度數(shù)是()A.90° B.60° C.45° D.30°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,P為正方形ABCD內一點,PA:PB:PC=1:2:3,則∠APB=_____________.14.如圖,在等腰直角三角形ABC中,∠C=90°,點D為AB的中點,已知扇形EAD和扇形FBD的圓心分別為點A、點B,且AB=4,則圖中陰影部分的面積為_____(結果保留π).15.如圖,在正方形ABCD中,BC=2,E、F分別為射線BC,CD上兩個動點,且滿足BE=CF,設AE,BF交于點G,連接DG,則DG的最小值為_______.16.如圖,在平面直角坐標系中,已知A(﹣2,1),B(1,0),將線段AB繞著點B順時針旋轉90°得到線段BA′,則A′的坐標為_____.17.正八邊形的中心角為______度.18.已知一個多邊形的每一個內角都等于108°,則這個多邊形的邊數(shù)是.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)A糧倉和B糧倉分別庫存糧食12噸和6噸,現(xiàn)決定支援給C市10噸和D市8噸.已知從A糧倉調運一噸糧食到C市和D市的運費分別為400元和800元;從B糧倉調運一噸糧食到C市和D市的運費分別為300元和500元.設B糧倉運往C市糧食x噸,求總運費W(元)關于x的函數(shù)關系式.(寫出自變量的取值范圍)若要求總運費不超過9000元,問共有幾種調運方案?求出總運費最低的調運方案,最低運費是多少?20.(6分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,連接AD,過D作AC的垂線,交AC邊于點E,交AB邊的延長線于點F.(1)求證:EF是⊙O的切線;(2)若∠F=30°,BF=3,求弧AD的長.21.(6分)如圖,在三個小桶中裝有數(shù)量相同的小球(每個小桶中至少有三個小球),第一次變化:從左邊小桶中拿出兩個小球放入中間小桶中;第二次變化:從右邊小桶中拿出一個小球放入中間小桶中;第三次變化:從中間小桶中拿出一些小球放入右邊小桶中,使右邊小桶中小球個數(shù)是最初的兩倍.(1)若每個小桶中原有3個小球,則第一次變化后,中間小桶中小球個數(shù)是左邊小桶中小球個數(shù)的____倍;(2)若每個小桶中原有a個小球,則第二次變化后中間小桶中有_____個小球(用a表示);(3)求第三次變化后中間小桶中有多少個小球?22.(8分)問題探究(1)如圖1,△ABC和△DEC均為等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,連接AD、BE,求的值;(2)如圖2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,過點A作AM⊥AB,點P是射線AM上一動點,連接CP,做CQ⊥CP交線段AB于點Q,連接PQ,求PQ的最小值;(3)李師傅準備加工一個四邊形零件,如圖3,這個零件的示意圖為四邊形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,請你幫李師傅求出這個零件的對角線BD的最大值.圖323.(8分)已知關于x,y的二元一次方程組的解為,求a、b的值.24.(10分)某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為米.若苗圃園的面積為72平方米,求;若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;25.(10分)某景區(qū)內從甲地到乙地的路程是,小華步行從甲地到乙地游玩,速度為,走了后,中途休息了一段時間,然后繼續(xù)按原速前往乙地,景區(qū)從甲地開往乙地的電瓶車每隔半小時發(fā)一趟車,速度是,若小華與第1趟電瓶車同時出發(fā),設小華距乙地的路程為,第趟電瓶車距乙地的路程為,為正整數(shù),行進時間為.如圖畫出了,與的函數(shù)圖象.(1)觀察圖,其中,;(2)求第2趟電瓶車距乙地的路程與的函數(shù)關系式;(3)當時,在圖中畫出與的函數(shù)圖象;并觀察圖象,得出小華在休息后前往乙地的途中,共有趟電瓶車駛過.26.(12分)如圖,在?ABCD中,點O是對角線AC、BD的交點,點E是邊CD的中點,點F在BC的延長線上,且CF=BC,求證:四邊形OCFE是平行四邊形.27.(12分)如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C均在格點上.(Ⅰ)△ABC的面積等于_____;(Ⅱ)若四邊形DEFG是正方形,且點D,E在邊CA上,點F在邊AB上,點G在邊BC上,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點E,點G,并簡要說明點E,點G的位置是如何找到的(不要求證明)_____.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
設甲每小時做x個,乙每小時做(x+6)個,根據(jù)甲做30個所用時間與乙做45個所用時間相等即可列方程.【詳解】設甲每小時做x個,乙每小時做(x+6)個,根據(jù)甲做30個所用時間與乙做45個所用時間相等可得=.故選A.【點睛】本題考查了分式方程的應用,找到關鍵描述語,正確找出等量關系是解決問題的關鍵.2、B【解析】
先將點A(1,0)代入y=x2﹣4x+m,求出m的值,將點A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1?x2=3,即可解答【詳解】將點A(1,0)代入y=x2﹣4x+m,得到m=3,所以y=x2﹣4x+3,與x軸交于兩點,設A(x1,y1),b(x2,y2)∴x2﹣4x+3=0有兩個不等的實數(shù)根,∴x1+x2=4,x1?x2=3,∴AB=|x1﹣x2|==2;故選B.【點睛】此題考查拋物線與坐標軸的交點,解題關鍵在于將已知點代入.3、B【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合.【詳解】A、是軸對稱圖形,不是中心對稱圖形,不符合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、是軸對稱圖形,不是中心對稱圖形,不符合題意;D、不是軸對稱圖形,是中心對稱圖形,不符合題意.故選B.4、D【解析】分析:根據(jù)方程的系數(shù)結合根的判別式△>0,即可得出關于m的一元一次不等式,解之即可得出實數(shù)m的取值范圍.詳解:∵方程有兩個不相同的實數(shù)根,∴解得:m<1.故選D.點睛:本題考查了根的判別式,牢記“當△>0時,方程有兩個不相等的實數(shù)根”是解題的關鍵.5、C【解析】
如圖,根據(jù)長方形的性質得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點睛】本題考查了平行線的性質,三角形外角的性質等,準確識圖是解題的關鍵.6、A【解析】
7人成績的中位數(shù)是第4名的成績.參賽選手要想知道自己是否能進入前4名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】由于總共有7個人,且他們的分數(shù)互不相同,第4的成績是中位數(shù),要判斷是否進入前4名,故應知道中位數(shù)的多少,故選A.【點睛】本題主要考查統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義,熟練掌握相關的定義是解題的關鍵.7、A【解析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對應相等,為了再添一個條件仍不能證明△ABC≌△DEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC≌△DEF了.【詳解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB與原條件滿足SSA,不能證明△ABC≌△DEF,故A選項正確.B、添加DF∥AC,可得∠DFE=∠ACB,根據(jù)AAS能證明△ABC≌△DEF,故B選項錯誤.C、添加∠E=∠ABC,根據(jù)AAS能證明△ABC≌△DEF,故C選項錯誤.D、添加AB∥DE,可得∠E=∠ABC,根據(jù)AAS能證明△ABC≌△DEF,故D選項錯誤,故選A.【點睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.8、C【解析】
根據(jù)合并同類項法則和去括號法則逐一判斷即可得.【詳解】解:A.2x2-3x2=-x2,故此選項錯誤;
B.x+x=2x,故此選項錯誤;
C.-(x-1)=-x+1,故此選項正確;
D.3與x不能合并,此選項錯誤;
故選C.【點睛】本題考查了整式的加減,熟練掌握運算法則是解題的關鍵.9、D【解析】
根據(jù)圖象可設二次函數(shù)的頂點式,再將點(0,0)代入即可.【詳解】解:根據(jù)圖象,設函數(shù)解析式為由圖象可知,頂點為(1,3)∴,將點(0,0)代入得解得∴故答案為:D.【點睛】本題考查了是根據(jù)實際拋物線形,求函數(shù)解析式,解題的關鍵是正確設出函數(shù)解析式.10、A【解析】
根據(jù)題意可得等量關系:原計劃種植的畝數(shù)-改良后種植的畝數(shù)=10畝,根據(jù)等量關系列出方程即可.【詳解】設原計劃每畝平均產(chǎn)量萬千克,則改良后平均每畝產(chǎn)量為萬千克,根據(jù)題意列方程為:.故選:.【點睛】此題主要考查了由實際問題抽象出分式方程,關鍵是正確理解題意,找出題目中的等量關系.11、A【解析】試題分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故選A.考點:平行線的性質.12、B【解析】
首先連接AB,由題意易證得△AOB是等邊三角形,根據(jù)等邊三角形的性質,可求得∠AOB的度數(shù).【詳解】連接AB,根據(jù)題意得:OB=OA=AB,∴△AOB是等邊三角形,∴∠AOB=60°.故答案選:B.【點睛】本題考查了等邊三角形的判定與性質,解題的關鍵是熟練的掌握等邊三角形的判定與性質.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、°【解析】
通過旋轉,把PA、PB、PC或關聯(lián)的線段集中到同一個三角形,再根據(jù)兩邊的平方和等于第三邊求證直角三角形,可以求解∠APB.【詳解】把△PAB繞B點順時針旋轉90°,得△P′BC,則△PAB≌△P′BC,設PA=x,PB=2x,PC=3x,連PP′,得等腰直角△PBP′,PP′2=(2x)2+(2x)2=8x2,∠PP′B=45°.又PC2=PP′2+P′C2,得∠PP′C=90°.故∠APB=∠CP′B=45°+90°=135°.故答案為135°.【點睛】本題考查的是正方形四邊相等的性質,考查直角三角形中勾股定理的運用,把△PAB順時針旋轉90°使得A′與C點重合是解題的關鍵.14、4﹣π【解析】
由在等腰直角三角形ABC中,∠C=90°,AB=4,可求得直角邊AC與BC的長,繼而求得△ABC的面積,又由扇形的面積公式求得扇形EAD和扇形FBD的面積,繼而求得答案.【詳解】解:∵在等腰直角三角形ABC中,∠C=90°,AB=4,∴AC=BC=AB?sin45°=AB=2,∴S△ABC=AC?BC=4,∵點D為AB的中點,∴AD=BD=AB=2,∴S扇形EAD=S扇形FBD=×π×22=π,∴S陰影=S△ABC﹣S扇形EAD﹣S扇形FBD=4﹣π.故答案為:4﹣π.【點睛】此題考查了等腰直角三角形的性質以及扇形的面積.注意S陰影=S△ABC﹣S扇形EAD﹣S扇形FBD.15、﹣1【解析】
先由圖形確定:當O、G、D共線時,DG最??;根據(jù)正方形的性質證明△ABE≌△BCF(SAS),可得∠AGB=90°,利用勾股定理可得OD的長,從而得DG的最小值.【詳解】在正方形ABCD中,AB=BC,∠ABC=∠BCD,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠CBF+∠ABF=90°∴∠BAE+∠ABF=90°∴∠AGB=90°∴點G在以AB為直徑的圓上,由圖形可知:當O、G、D在同一直線上時,DG有最小值,如圖所示:∵正方形ABCD,BC=2,∴AO=1=OG∴OD=,∴DG=?1,故答案為?1.【點睛】本題考查了正方形的性質與全等三角形的判定與性質,解題的關鍵是熟練的掌握正方形的性質與全等三角形的判定與性質.16、(2,3)【解析】
作AC⊥x軸于C,作A′C′⊥x軸,垂足分別為C、C′,證明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得結果.【詳解】如圖,作AC⊥x軸于C,作A′C′⊥x軸,垂足分別為C、C′,∵點A、B的坐標分別為(-2,1)、(1,0),∴AC=2,BC=2+1=3,∵∠ABA′=90°,∴ABC+∠A′BC′=90°,∵∠BAC+∠ABC=90°,∴∠BAC=∠A′BC′,∵BA=BA′,∠ACB=∠BC′A′,∴△ABC≌△BA′C′,∴OC′=OB+BC′=1+1=2,A′C′=BC=3,∴點A′的坐標為(2,3).故答案為(2,3).【點睛】此題考查旋轉的性質,三角形全等的判定和性質,點的坐標的確定.解決問題的關鍵是作輔助線構造全等三角形.17、45°【解析】
運用正n邊形的中心角的計算公式計算即可.【詳解】解:由正n邊形的中心角的計算公式可得其中心角為,故答案為45°.【點睛】本題考查了正n邊形中心角的計算.18、1【解析】試題分析:∵多邊形的每一個內角都等于108°,∴每一個外角為72°.∵多邊形的外角和為360°,∴這個多邊形的邊數(shù)是:360÷÷72=1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)w=200x+8600(0≤x≤6);(2)有3種調運方案,方案一:從B市調運到C市0臺,D市6臺;從A市調運到C市10臺,D市2臺;方案二:從B市調運到C市1臺,D市5臺;從A市調運到C市9臺,D市3臺;方案三:從B市調運到C市2臺,D市4臺;從A市調運到C市8臺,D市4臺;(3)從A市調運到C市10臺,D市2臺;最低運費是8600元.【解析】
(1)設出B糧倉運往C的數(shù)量為x噸,然后根據(jù)A,B兩市的庫存量,和C,D兩市的需求量,分別表示出B運往C,D的數(shù)量,再根據(jù)總費用=A運往C的運費+A運往D的運費+B運往C的運費+B運往D的運費,列出函數(shù)關系式;(2)由(1)中總費用不超過9000元,然后根據(jù)取值范圍來得出符合條件的方案;(3)根據(jù)(1)中的函數(shù)式以及自變量的取值范圍即可得出費用最小的方案.【詳解】解:(1)設B糧倉運往C市糧食x噸,則B糧倉運往D市糧食6﹣x噸,A糧倉運往C市糧食10﹣x噸,A糧倉運往D市糧食12﹣(10﹣x)=x+2噸,總運費w=300x+500(6﹣x)+400(10﹣x)+800(x+2)=200x+8600(0≤x≤6).(2)200x+8600≤9000解得x≤2共有3種調運方案方案一:從B市調運到C市0臺,D市6臺;從A市調運到C市10臺,D市2臺;方案二:從B市調運到C市1臺,D市5臺;從A市調運到C市9臺,D市3臺;方案三:從B市調運到C市2臺,D市4臺;從A市調運到C市8臺,D市4臺;(3)w=200x+8600k>0,所以當x=0時,總運費最低.也就是從B市調運到C市0臺,D市6臺;從A市調運到C市10臺,D市2臺;最低運費是8600元.【點睛】本題重點考查函數(shù)模型的構建,考查利用一次函數(shù)的有關知識解答實際應用題,解答一次函數(shù)的應用問題中,要注意自變量的取值范圍還必須使實際問題有意義.20、(1)見解析;(2)2π.【解析】
證明:(1)連接OD,∵AB是直徑,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD過O,∴EF是⊙O的切線.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴的長度=.【點睛】本題考查了切線的判定和性質:圓的切線垂直于經(jīng)過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了弧長公式.21、(1)5;(2)(a+3);(3)第三次變化后中間小桶中有2個小球.【解析】
(1)(2)根據(jù)材料中的變化方法解答;(3)設原來每個捅中各有a個小球,根據(jù)第三次變化方法列出方程并解答.【詳解】解:(1)依題意得:(3+2)÷(3﹣2)=5故答案是:5;(2)依題意得:a+2+1=a+3;故答案是:(a+3)(3)設原來每個捅中各有a個小球,第三次從中間桶拿出x個球,依題意得:a﹣1+x=2ax=a+1所以a+3﹣x=a+3﹣(a+1)=2答:第三次變化后中間小桶中有2個小球.【點睛】考查了一元一次方程的應用和列代數(shù)式,解題的關鍵是找到描述語,列出等量關系,得到方程并解答.22、(1);(2);(3)+.【解析】
(1)由等腰直角三角形的性質可得BC=3,CE=,∠ACB=∠DCE=45°,可證△ACD∽△BCE,可得=;(2)由題意可證點A,點Q,點C,點P四點共圓,可得∠QAC=∠QPC,可證△ABC∽△PQC,可得,可得當QC⊥AB時,PQ的值最小,即可求PQ的最小值;(3)作∠DCE=∠ACB,交射線DA于點E,取CE中點F,連接AC,BE,DF,BF,由題意可證△ABC∽△DEC,可得,且∠BCE=∠ACD,可證△BCE∽△ACD,可得∠BEC=∠ADC=90°,由勾股定理可求CE,DF,BF的長,由三角形三邊關系可求BD的最大值.【詳解】(1)∵∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,∴BC=3,CE=,∠ACB=∠DCE=45°,∴∠BCE=∠ACD,∵==,=,∴=,∠BCE=∠ACD,∴△ACD∽△BCE,∴=;(2)∵∠ACB=90°,∠B=30°,BC=4,∴AC=,AB=2AC=,∵∠QAP=∠QCP=90°,∴點A,點Q,點C,點P四點共圓,∴∠QAC=∠QPC,且∠ACB=∠QCP=90°,∴△ABC∽△PQC,∴,∴PQ=×QC=QC,∴當QC的長度最小時,PQ的長度最小,即當QC⊥AB時,PQ的值最小,此時QC=2,PQ的最小值為;(3)如圖,作∠DCE=∠ACB,交射線DA于點E,取CE中點F,連接AC,BE,DF,BF,,∵∠ADC=90°,AD=CD,∴∠CAD=45°,∠BAC=∠BAD-∠CAD=90°,∴△ABC∽△DEC,∴,∵∠DCE=∠ACB,∴∠BCE=∠ACD,∴△BCE∽△ACD,∴∠BEC=∠ADC=90°,∴CE=BC=2,∵點F是EC中點,∴DF=EF=CE=,∴BF==,∴BD≤DF+BF=+【點睛】本題是相似綜合題,考查了等腰直角三角形的性質,勾股定理,相似三角形的判定和性質等知識,添加恰當輔助線構造相似三角形是本題的關鍵.23、或【解析】
把代入二元一次方程組得到關于a,b的方程組,經(jīng)過整理,得到關于b的一元二次方程,解之即可得到b的值,把b的值代入一個關于a,b的二元一次方程,求出a的值,即可得到答案.【詳解】把代入二元一次方程組得:,
由①得:a=1+b,
把a=1+b代入②,整理得:
b2+b-2=0,
解得:b=-2或b=1,
把b=-2代入①得:a+2=1,
解得:a=-1,
把b=1代入①得:
a-1=1,
解得:a=2,
即或.【點睛】本題考查了二元一次方程組的解,正確掌握代入法是解題的關鍵.24、(1)2(2)當x=4時,y最小=88平方米【解析】(1)根據(jù)題意得方程解即可;(2)設苗圃園的面積為y,根據(jù)題意得到二次函數(shù)的解析式y(tǒng)=x(31-2x)=-2x2+31x,根據(jù)二次函數(shù)的性質求解即可.解:(1)苗圃園與墻平行的一邊長為(31-2x)米.依題意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3(舍去),x2=2.(2)依題意,得8≤31-2x≤3.解得6≤x≤4.面積S=x(31-2x)=-2(x-)2+(6≤x≤4).①
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 心肺復蘇課件
- 腦卒中的中醫(yī)診斷治療
- 孕期乳頭的養(yǎng)護與護理
- 2025東風越野車有限公司民品及海外營銷崗位招聘16人筆試考試參考試題及答案解析
- 晶晶發(fā)的課件
- 新入院護士課件
- 卵巢囊腫醫(yī)學科普
- 新編高職應用寫作實訓教程
- 2025中國郵政集團有限公司云南省分公司第二期見習人員接收315人筆試考試備考試題及答案解析
- 2025福建省福州瑯岐中學編外人員招聘6人考試筆試參考題庫附答案解析
- 2024年廣州市南沙區(qū)南沙街道社區(qū)專職招聘考試真題
- 2026年牡丹江大學單招職業(yè)技能考試題庫新版
- 國家開放大學22517《社區(qū)工作》(統(tǒng)設課)期末終考題庫
- 江西省三新協(xié)同體2025-2026年高一上12月歷史試卷(含答案)
- 2026年大慶醫(yī)學高等??茖W校單招職業(yè)適應性測試題庫及答案詳解1套
- (2026年)老年癡呆認知癥患者的照護課件
- 2025年中職電梯安全管理(電梯安全規(guī)范)試題及答案
- 武理工船舶輔機課件03離心泵
- 2025人形機器人生態(tài)報告
- 2026年九江職業(yè)技術學院單招職業(yè)技能測試必刷測試卷及答案1套
- 泌尿外科科普護理課件
評論
0/150
提交評論