2026屆鶴壁市浚縣實驗中學中考數(shù)學模擬預測題含解析_第1頁
2026屆鶴壁市??h實驗中學中考數(shù)學模擬預測題含解析_第2頁
2026屆鶴壁市??h實驗中學中考數(shù)學模擬預測題含解析_第3頁
2026屆鶴壁市浚縣實驗中學中考數(shù)學模擬預測題含解析_第4頁
2026屆鶴壁市??h實驗中學中考數(shù)學模擬預測題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆鶴壁市??h實驗中學中考數(shù)學模擬預測題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如果菱形的一邊長是8,那么它的周長是()A.16 B.32 C.163 D.3232.如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點,F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點M,N,則MN的長為()A. B. C. D.3.下列一元二次方程中,有兩個不相等實數(shù)根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=04.下列二次根式中,是最簡二次根式的是()A. B. C. D.5.如圖,已知AB∥DE,∠ABC=80°,∠CDE=140°,則∠C=()A.50° B.40° C.30° D.20°6.濕地旅游愛好者小明了解到鄂東南市水資源總量為42.4億立方米,其中42.4億用科學記數(shù)法可表示為()A.42.4×109 B.4.24×108 C.4.24×109 D.0.424×1087.將拋物線y=x2﹣x+1先向左平移2個單位長度,再向上平移3個單位長度,則所得拋物線的表達式為()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+48.已知一次函數(shù)y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉181°,所得的圖象經(jīng)過(1.﹣1),則m的值為()A.﹣2 B.﹣1 C.1 D.29.如圖是由一些相同的小正方體組成的幾何體的三視圖,則組成這個幾何體的小正方體個數(shù)最多為()A.7 B.8 C.9 D.1010.最小的正整數(shù)是()A.0B.1C.﹣1D.不存在11.如圖,△ABC中,∠CAB=65°,在同一平面內,將△ABC繞點A旋轉到△AED的位置,使得DC∥AB,則∠BAE等于()A.30° B.40° C.50° D.60°12.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是()A.2 B. C. D.2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若從-3,-1,0,1,3這五個數(shù)中隨機抽取一個數(shù)記為a,再從剩下的四個數(shù)中任意抽取一個數(shù)記為b,恰好使關于x,y的二元一次方程組有整數(shù)解,且點(a,b)落在雙曲線上的概率是_________.14.太陽半徑約為696000千米,數(shù)字696000用科學記數(shù)法表示為千米.15.若一個多邊形的每一個外角都等于40°,則這個多邊形的邊數(shù)是.16.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(﹣3,﹣4),頂點C在x軸的負半軸上,函數(shù)y=(x<0)的圖象經(jīng)過菱形OABC中心E點,則k的值為_____.17.如圖,在正方形ABCD中,E是AB上一點,BE=2,AE=3BE,P是AC上一動點,則PB+PE的最小值是.18.在平面直角坐標系中,點A的坐標為(a,3),點B的坐標是(4,b),若點A與點B關于原點O對稱,則ab=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)試探究:小張在數(shù)學實踐活動中,畫了一個△ABC,∠ACB=90°,BC=1,AC=2,再以點B為圓心,BC為半徑畫弧交AB于點D,然后以A為圓心,AD長為半徑畫弧交AC于點E,如圖1,則AE=;此時小張發(fā)現(xiàn)AE2=AC?EC,請同學們驗證小張的發(fā)現(xiàn)是否正確.拓展延伸:小張利用圖1中的線段AC及點E,構造AE=EF=FC,連接AF,得到圖2,試完成以下問題:(1)求證:△ACF∽△FCE;(2)求∠A的度數(shù);(3)求cos∠A的值;應用遷移:利用上面的結論,求半徑為2的圓內接正十邊形的邊長.20.(6分)如圖,二次函數(shù)y=﹣+mx+4﹣m的圖象與x軸交于A、B兩點(A在B的左側),與),軸交于點C.拋物線的對稱軸是直線x=﹣2,D是拋物線的頂點.(1)求二次函數(shù)的表達式;(2)當﹣<x<1時,請求出y的取值范圍;(3)連接AD,線段OC上有一點E,點E關于直線x=﹣2的對稱點E'恰好在線段AD上,求點E的坐標.21.(6分)小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B、C兩點的俯角分別為45°、35°.已知大橋BC與地面在同一水平面上,其長度為100m,求熱氣球離地面的高度.(結果保留整數(shù))(參考數(shù)據(jù):sin35°=0.57,cos35°=0.82,tan35°=0.70)22.(8分)如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線經(jīng)過A、C兩點,與AB邊交于點D.(1)求拋物線的函數(shù)表達式;(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S.①求S關于m的函數(shù)表達式,并求出m為何值時,S取得最大值;②當S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.23.(8分)在△ABC中,AB=AC,∠BAC=α,點P是△ABC內一點,且∠PAC+∠PCA=,連接PB,試探究PA、PB、PC滿足的等量關系.(1)當α=60°時,將△ABP繞點A逆時針旋轉60°得到△ACP′,連接PP′,如圖1所示.由△ABP≌△ACP′可以證得△APP′是等邊三角形,再由∠PAC+∠PCA=30°可得∠APC的大小為度,進而得到△CPP′是直角三角形,這樣可以得到PA、PB、PC滿足的等量關系為;(2)如圖2,當α=120°時,參考(1)中的方法,探究PA、PB、PC滿足的等量關系,并給出證明;(3)PA、PB、PC滿足的等量關系為.24.(10分)在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與點B、C重合),以AD為直角邊在AD右側作等腰三角形ADE,使∠DAE=90°,連接CE.探究:如圖①,當點D在線段BC上時,證明BC=CE+CD.應用:在探究的條件下,若AB=,CD=1,則△DCE的周長為.拓展:(1)如圖②,當點D在線段CB的延長線上時,BC、CD、CE之間的數(shù)量關系為.(2)如圖③,當點D在線段BC的延長線上時,BC、CD、CE之間的數(shù)量關系為.25.(10分)計算﹣14﹣26.(12分)如圖,建筑物BC上有一旗桿AB,從與BC相距40m的D處觀測旗桿頂部A的仰角為50°,觀測旗桿底部B的仰角為45°,求旗桿AB的高度.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)27.(12分)如圖,將矩形ABCD繞點A順時針旋轉,得到矩形AB′C′D′,點C的對應點C′恰好落在CB的延長線上,邊AB交邊C′D′于點E.(1)求證:BC=BC′;(2)若AB=2,BC=1,求AE的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據(jù)菱形的四邊相等,可得周長【詳解】菱形的四邊相等∴菱形的周長=4×8=32故選B.【點睛】本題考查了菱形的性質,并靈活掌握及運用菱形的性質2、B【解析】

過F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根據(jù)勾股定理得到AF===,根據(jù)平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質得到=,求得AM=AF=,根據(jù)相似三角形的性質得到=,求得AN=AF=,即可得到結論.【詳解】過F作FH⊥AD于H,交ED于O,則FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,F(xiàn)C=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故選B.【點睛】構造相似三角形是本題的關鍵,且求長度問題一般需用到勾股定理來解決,常作垂線3、B【解析】分析:根據(jù)一元二次方程根的判別式判斷即可.詳解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有兩個相等實數(shù)根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有兩個不相等實數(shù)根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程無實根;D、(x-1)2+1=0.(x-1)2=-1,則方程無實根;故選B.點睛:本題考查的是一元二次方程根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的實數(shù)根;②當△=0時,方程有兩個相等的實數(shù)根;③當△<0時,方程無實數(shù)根.4、B【解析】

根據(jù)最簡二次根式必須滿足兩個條件:(1)被開方數(shù)不含分母;(2)被開方數(shù)不含能開得盡方的因數(shù)或因式判斷即可.【詳解】A、=4,不符合題意;B、是最簡二次根式,符合題意;C、=,不符合題意;D、=,不符合題意;故選B.【點睛】本題考查最簡二次根式的定義.最簡二次根式必須滿足兩個條件:(1)被開方數(shù)不含分母;(2)被開方數(shù)不含能開得盡方的因數(shù)或因式.5、B【解析】試題解析:延長ED交BC于F,∵AB∥DE,∴在△CDF中,故故選B.6、C【解析】

科學記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,是正數(shù);當原數(shù)的絕對值<1時,是負數(shù).【詳解】42.4億=4240000000,用科學記數(shù)法表示為:4.24×1.故選C.【點睛】考查科學記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關鍵.7、A【解析】

先將拋物線解析式化為頂點式,左加右減的原則即可.【詳解】y=x當向左平移2個單位長度,再向上平移3個單位長度,得y=x-故選A.【點睛】本題考查二次函數(shù)的平移;掌握平移的法則“左加右減”,二次函數(shù)的平移一定要將解析式化為頂點式進行;8、C【解析】

根據(jù)題意得出旋轉后的函數(shù)解析式為y=-x-1,然后根據(jù)解析式求得與x軸的交點坐標,結合點的坐標即可得出結論.【詳解】∵一次函數(shù)y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉181°,所得的圖象經(jīng)過(1.﹣1),∴設旋轉后的函數(shù)解析式為y=﹣x﹣1,在一次函數(shù)y=﹣x+2中,令y=1,則有﹣x+2=1,解得:x=4,即一次函數(shù)y=﹣x+2與x軸交點為(4,1).一次函數(shù)y=﹣x﹣1中,令y=1,則有﹣x﹣1=1,解得:x=﹣2,即一次函數(shù)y=﹣x﹣1與x軸交點為(﹣2,1).∴m==1,故選:C.【點睛】本題考查了一次函數(shù)圖象與幾何變換,解題的關鍵是求出旋轉后的函數(shù)解析式.本題屬于基礎題,難度不大.9、C【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】根據(jù)三視圖知,該幾何體中小正方體的分布情況如下圖所示:所以組成這個幾何體的小正方體個數(shù)最多為9個,故選C.【點睛】考查了三視圖判定幾何體,關鍵是對三視圖靈活運用,體現(xiàn)了對空間想象能力的考查.10、B【解析】

根據(jù)最小的正整數(shù)是1解答即可.【詳解】最小的正整數(shù)是1.故選B.【點睛】本題考查了有理數(shù)的認識,關鍵是根據(jù)最小的正整數(shù)是1解答.11、C【解析】試題分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC繞點A旋轉到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故選C.考點:1.面動旋轉問題;2.平行線的性質;3.旋轉的性質;4.等腰三角形的性質.12、C【解析】

由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質,即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.【詳解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE=,∴OP=2PE=2,∵PD⊥OA,點M是OP的中點,∴DM=OP=.故選C.考點:角平分線的性質;含30度角的直角三角形;直角三角形斜邊上的中線;勾股定理.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】分析:根據(jù)題意可以寫出所有的可能性,然后將所有的可能性代入方程組和雙曲線,找出符號要求的可能性,從而可以解答本題.詳解:從﹣3,﹣1,0,1,3這五個數(shù)中隨機抽取一個數(shù)記為a,再從剩下的四個數(shù)中任意抽取一個數(shù)記為b,則(a,b)的所有可能性是:(﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、(﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、(0,﹣3)、(0,﹣1)、(0,1)、(0,3)、(1,﹣3)、(1,﹣1)、(1,0)、(1,3)、(3,﹣3)、(3,﹣1)、(3,0)、(3,1),將上面所有的可能性分別代入關于x,y的二元一次方程組有整數(shù)解,且點(a,b)落在雙曲線上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使關于x,y的二元一次方程組有整數(shù)解,且點(a,b)落在雙曲線上的概率是:.故答案為.點睛:本題考查了列表法與樹狀圖法,解題的關鍵是明確題意,寫出所有的可能性.14、.【解析】試題分析:696000=6.96×1,故答案為6.96×1.考點:科學記數(shù)法—表示較大的數(shù).15、9【解析】解:360÷40=9,即這個多邊形的邊數(shù)是916、8【解析】

根據(jù)反比例函數(shù)的性質結合點的坐標利用勾股定理解答.【詳解】解:菱形OABC的頂點A的坐標為(-3,-4),OA=OC=則點B的橫坐標為-5-3=-8,點B的坐標為(-8,-4),點C的坐標為(-5,0)則點E的坐標為(-4,-2),將點E的坐標帶入y=(x<0)中,得k=8.給答案為:8.【點睛】此題重點考察學生對反比例函數(shù)性質的理解,掌握坐標軸點的求法和菱形性質是解題的關鍵.17、10【解析】

由正方形性質的得出B、D關于AC對稱,根據(jù)兩點之間線段最短可知,連接DE,交AC于P,連接BP,則此時PB+PE的值最小,進而利用勾股定理求出即可.【詳解】如圖,連接DE,交AC于P,連接BP,則此時PB+PE的值最小.∵四邊形ABCD是正方形,∴B、D關于AC對稱,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案為10.18、1【解析】【分析】直接利用關于原點對稱點的性質得出a,b的值,進而得出答案.【詳解】∵點A的坐標為(a,3),點B的坐標是(4,b),點A與點B關于原點O對稱,∴a=﹣4,b=﹣3,則ab=1,故答案為1.【點睛】本題考查了關于原點對稱的點的坐標,熟知關于原點對稱的兩點的橫、縱坐標互為相反數(shù)是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)小張的發(fā)現(xiàn)正確;(2)詳見解析;(3)∠A=36°;(4)【解析】

嘗試探究:根據(jù)勾股定理計算即可;拓展延伸:(1)由AE2=AC?EC,推出,又AE=FC,推出,即可解問題;(2)利用相似三角形的性質即可解決問題;(3)如圖,過點F作FM⊥AC交AC于點M,根據(jù)cos∠A=,求出AM、AF即可;應用遷移:利用(3)中結論即可解決問題;【詳解】解:嘗試探究:﹣1;∵∠ACB=90°,BC=1,AC=2,∴AB=,∴AD=AE=,∵AE2=()2=6﹣2,AC?EC=2×[2﹣()]=6﹣,∴AE2=AC?EC,∴小張的發(fā)現(xiàn)正確;拓展延伸:(1)∵AE2=AC?EC,∴∵AE=FC,∴,又∵∠C=∠C,∴△ACF∽△FCE;(2)∵△ACF∽△FCE,∴∠AFC=∠CEF,又∵EF=FC,∴∠C=∠CEF,∴∠AFC=∠C,∴AC=AF,∵AE=EF,∴∠A=∠AFE,∴∠FEC=2∠A,∵EF=FC,∴∠C=2∠A,∵∠AFC=∠C=2∠A,∵∠AFC+∠C+∠A=180°,∴∠A=36°;(3)如圖,過點F作FM⊥AC交AC于點M,由嘗試探究可知AE=,EC=,∵EF=FC,由(2)得:AC=AF=2,∴ME=,∴AM=,∴cos∠A=;應用遷移:∵正十邊形的中心角等于=36°,且是半徑為2的圓內接正十邊形,∴如圖,當點A是圓內接正十邊形的圓心,AC和AF都是圓的半徑,F(xiàn)C是正十邊形的邊長時,設AF=AC=2,F(xiàn)C=EF=AE=x,∵△ACF∽△FCE,∴,∴,∴,∴半徑為2的圓內接正十邊形的邊長為.【點睛】本題考查相似三角形的判定和性質、等腰三角形的判定和性質等知識,解題的關鍵是正確尋找相似三角形解決問題,學會利用數(shù)形結合的思想思考問題,屬于中考壓軸題.20、(1)y=﹣x1﹣1x+6;(1)<y<;(3)(0,4).【解析】

(1)利用對稱軸公式求出m的值,即可確定出解析式;(1)根據(jù)x的范圍,利用二次函數(shù)的增減性確定出y的范圍即可;(3)根據(jù)題意確定出D與A坐標,進而求出直線AD解析式,設出E坐標,利用對稱性確定出E坐標即可.【詳解】(1)∵拋物線對稱軸為直線x=﹣1,∴﹣=﹣1,即m=﹣1,則二次函數(shù)解析式為y=﹣x1﹣1x+6;(1)當x=﹣時,y=;當x=1時,y=.∵﹣<x<1位于對稱軸右側,y隨x的增大而減小,∴<y<;(3)當x=﹣1時,y=8,∴頂點D的坐標是(﹣1,8),令y=0,得到:﹣x1﹣1x+6=0,解得:x=﹣6或x=1.∵點A在點B的左側,∴點A坐標為(﹣6,0).設直線AD解析式為y=kx+b,可得:,解得:,即直線AD解析式為y=1x+11.設E(0,n),則有E′(﹣4,n),代入y=1x+11中得:n=4,則點E坐標為(0,4).【點睛】本題考查了拋物線與x軸的交點,以及二次函數(shù)的性質,熟練掌握二次函數(shù)的性質是解答本題的關鍵.21、熱氣球離地面的高度約為1米.【解析】

作AD⊥BC交CB的延長線于D,設AD為x,表示出DB和DC,根據(jù)正切的概念求出x的值即可.【詳解】解:作AD⊥BC交CB的延長線于D,設AD為x,由題意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt△ADC中,∠ACD=35°,∴tan∠ACD=,∴=,解得,x≈1.答:熱氣球離地面的高度約為1米.【點睛】考查的是解直角三角形的應用,理解仰角和俯角的概念、掌握銳角三角函數(shù)的概念是解題的關鍵,解答時,注意正確作出輔助線構造直角三角形.22、(1);(2)①,當m=5時,S取最大值;②滿足條件的點F共有四個,坐標分別為,,,,【解析】

(1)將A、C兩點坐標代入拋物線y=-x2+bx+c,即可求得拋物線的解析式;

(2)①先用m表示出QE的長度,進而求出三角形的面積S關于m的函數(shù);

②直接寫出滿足條件的F點的坐標即可,注意不要漏寫.【詳解】解:(1)將A、C兩點坐標代入拋物線,得,解得:,∴拋物線的解析式為y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,過點Q作QE⊥BC與E點,則sin∠ACB===,∴=,∴QE=(10﹣m),∴S=?CP?QE=m×(10﹣m)=﹣m2+3m;②∵S=?CP?QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴當m=5時,S取最大值;在拋物線對稱軸l上存在點F,使△FDQ為直角三角形,∵拋物線的解析式為y=﹣x2+x+8的對稱軸為x=,D的坐標為(3,8),Q(3,4),當∠FDQ=90°時,F(xiàn)1(,8),當∠FQD=90°時,則F2(,4),當∠DFQ=90°時,設F(,n),則FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F(xiàn)4(,6﹣),滿足條件的點F共有四個,坐標分別為F1(,8),F(xiàn)2(,4),F(xiàn)3(,6+),F(xiàn)4(,6﹣).【點睛】本題考查二次函數(shù)的綜合應用能力,其中涉及到的知識點有拋物線的解析式的求法拋物線的最值等知識點,是各地中考的熱點和難點,解題時注意數(shù)形結合數(shù)學思想的運用,同學們要加強訓練,屬于中檔題.23、(1)150,(1)證明見解析(3)【解析】

(1)根據(jù)旋轉變換的性質得到△PAP′為等邊三角形,得到∠P′PC=90°,根據(jù)勾股定理解答即可;(1)如圖1,作將△ABP繞點A逆時針旋轉110°得到△ACP′,連接PP′,作AD⊥PP′于D,根據(jù)余弦的定義得到PP′=PA,根據(jù)勾股定理解答即可;(3)與(1)類似,根據(jù)旋轉變換的性質、勾股定理和余弦、正弦的關系計算即可.試題解析:【詳解】解:(1)∵△ABP≌△ACP′,∴AP=AP′,由旋轉變換的性質可知,∠PAP′=60°,P′C=PB,∴△PAP′為等邊三角形,∴∠APP′=60°,∵∠PAC+∠PCA=×60°=30°,∴∠APC=150°,∴∠P′PC=90°,∴PP′1+PC1=P′C1,∴PA1+PC1=PB1,故答案為150,PA1+PC1=PB1;(1)如圖,作°,使,連接,.過點A作AD⊥于D點.∵°,即,∴.∵AB=AC,,∴.∴,°.∵AD⊥,∴°.∴在Rt中,.∴.∵°,∴°.∴°.∴在Rt中,.∴;(3)如圖1,與(1)的方法類似,作將△ABP繞點A逆時針旋轉α得到△ACP′,連接PP′,作AD⊥PP′于D,由旋轉變換的性質可知,∠PAP′=α,P′C=PB,∴∠APP′=90°-,∵∠PAC+∠PCA=,∴∠APC=180°-,∴∠P′PC=(180°-)-(90°-)=90°,∴PP′1+PC1=P′C1,∵∠APP′=90°-,∴PD=PA?cos(90°-)=PA?sin,∴PP′=1PA?sin,∴4PA1sin1+PC1=PB1,故答案為4PA1sin1+PC1=PB1.【點睛】本題考查的是旋轉變換的性質、等邊三角形的性質、勾股定理的應用,掌握等邊三角形的性質、旋轉變換的性質、靈活運用類比思想是解題的關鍵.24、探究:證明見解析;應用:;拓展:(1)BC=CD-CE,(2)BC=CE-CD【解析】試題分析:探究:判斷出∠BAD=∠CAE,再用SAS即可得出結論;

應用:先算出BC,進而算出BD,再用勾股定理求出DE,即可得出結論;

拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結論;

(2)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結論.試題解析:探究:∵∠BAC=90°,∠DAE=90°,

∴∠BAC=∠DAE.

∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC,

∴∠BAD=∠CAE.

∵AB=AC,AD=AE,

∴△ABD≌△ACE.

∴BD=CE.

∵BC=BD+CD,

∴BC=CE+CD.

應用:在Rt△ABC中,AB=AC=,

∴∠ABC=∠ACB=45°,BC=2,

∵CD=1,

∴BD=BC-CD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論