強化訓(xùn)練四川遂寧市第二中學校7年級數(shù)學下冊第四章三角形定向測試試題(含解析)_第1頁
強化訓(xùn)練四川遂寧市第二中學校7年級數(shù)學下冊第四章三角形定向測試試題(含解析)_第2頁
強化訓(xùn)練四川遂寧市第二中學校7年級數(shù)學下冊第四章三角形定向測試試題(含解析)_第3頁
強化訓(xùn)練四川遂寧市第二中學校7年級數(shù)學下冊第四章三角形定向測試試題(含解析)_第4頁
強化訓(xùn)練四川遂寧市第二中學校7年級數(shù)學下冊第四章三角形定向測試試題(含解析)_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川遂寧市第二中學校7年級數(shù)學下冊第四章三角形定向測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、以下列各組線段為邊,能組成三角形的是()A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm2、已知線段AB=9cm,AC=5cm,下面有四個說法:①線段BC長可能為4cm;②線段BC長可能為14cm;③線段BC長不可能為3cm;④線段BC長可能為9cm.所有正確說法的序號是()A.①② B.③④ C.①②④ D.①②③④3、如圖,ABC≌DEF,點B、E、C、F在同一直線上,若BC=7,EC=4,則CF的長是()A.2 B.3 C.4 D.74、如圖,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列條件中的一個仍無法證明△ABC≌△DEF的是()A.BC=EF B.AB=DE C.∠B=∠E D.∠ACB=∠DFE5、如圖,在△ABC與△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB交EF于點D,連接EB.下列結(jié)論:①∠FAC=40°;②AF=AC;③∠EFB=40°;④AD=AC,正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個6、如圖,在△ABC和△BAD中,AC=BD,要使△ABC≌△BAD,則需要添加的條件是()A.∠BAD=∠ABC B.∠BAC=∠ABD C.∠DAC=∠CBD D.∠C=∠D7、若三條線段中a=3,b=5,c為奇數(shù),那么以a、b、c為邊組成的三角形共有()A.1個 B.2個 C.3個 D.4個8、以下列各組線段為邊,能組成三角形的是()A.2cm、10cm、13cm B.3cm、7cm、4cmC.4cm、4cm、4cm D.5cm、14cm、6cm9、如圖,已知△ABC,下面甲、乙、丙、丁四個三角形中,與△ABC全等的是()A. B.C. D.10、尺規(guī)作圖:作角等于已知角.示意圖如圖所示,則說明的依據(jù)是()A.SSS B.SAS C.ASA D.AAS第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,AB=CD,若要判定△ABD≌△CDB,則需要添加的一個條件是____________.2、如圖,,,,點在線段上以的速度由點向點運動,同時,點在線段上由點向點運動.它們運動的時間為設(shè)點的運動速度為,若使得與全等,則的值為______.3、如圖,在長方形ABCD中,,.延長BC到點E,使,連結(jié)DE,動點P從點B出發(fā),以每秒2個單位長度的速度沿向終點A運動.設(shè)點P的運動時間為t秒,當t的值為______________時,和全等.4、如圖,在中,,點D,E在邊BC上,,若,,則CE的長為______.5、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D.若AD=3cm,BE=1cm,則DE=_________.6、如圖,在△ABC中,點D為BC邊延長線上一點,若∠ACD=75°,∠A=45°,則∠B的度數(shù)為__________.7、如圖,一把直尺的一邊緣經(jīng)過直角三角形的直角頂點,交斜邊于點;直尺的另一邊緣分別交、于點、,若,,則___________度.8、兩角和它們的夾邊分別相等的兩個三角形全等(可以簡寫成_____).9、如圖,ABDC,ADBC,AC與BD交于點O,EF經(jīng)過點O,與AD、BC分別交于點E和F,則圖中共有___對全等三角形.10、如圖,點A、B在直線l上,點C是直線l外一點,可知CA+CB>AB,其依據(jù)是_____.三、解答題(6小題,每小題10分,共計60分)1、如圖,已知AB=AD,AC=AE,BC=DE,延長BC分別交邊AD、DE于點F、G.(1)∠B與∠D相等嗎?為什么?(2)若∠CAE=49°,求∠BGD的度數(shù).2、已知是的三邊長.(1)若滿足,,試判斷的形狀;(2)化簡:3、如圖所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,CE交BA于點D,CE交BF于點M.求證:(1)EC=BF;(2)EC⊥BF.4、已知:如圖,AC、BD相交于點O,,.求證:5、已知,如圖,三角形ABC是等腰直角三角形,∠ACB=90°,F(xiàn)是AB的中點,直線l經(jīng)過點C,分別過點A、B作l的垂線,即AD⊥CE,BE⊥CE,(1)如圖1,當CE位于點F的右側(cè)時,求證:△ADC≌△CEB;(2)如圖2,當CE位于點F的左側(cè)時,求證:ED=BE﹣AD;(3)如圖3,當CE在△ABC的外部時,試猜想ED、AD、BE之間的數(shù)量關(guān)系,并證明你的猜想.6、人教版初中數(shù)學教科書八年級上冊第36、37頁告訴我們作一個角等于已知角的方法:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作圖:(1)以O(shè)為圓心,任意長為半徑畫弧,分別交OA、OB于點C、D;(2)畫一條射線O′A′,以點O′為圓心,OC長為半徑畫弧,交O′A′于點C′;(3)以點C′為圓心,CD長為半徑畫弧,與第2步中所畫的弧相交于點D′;(4)過點D′畫射線O′B′,則∠A′O′B′=∠AOB.請你根據(jù)以上材料完成下列問題:(1)完成下面證明過程(將正確答案寫在相應(yīng)的橫線上).證明:由作圖可知,在△O′C′D′和△OCD中,,∴△O′C′D′≌,∴∠A′O′B'=∠AOB.(2)這種作一個角等于已知角的方法依據(jù)是.(填序號)①AAS;②ASA;③SSS;④SAS-參考答案-一、單選題1、A【分析】三角形的任意兩條之和大于第三邊,任意兩邊之差小于第三邊,根據(jù)原理再分別計算每組線段當中較短的兩條線段之和,再與最長的線段進行比較,若和大于最長的線段的長度,則三條線段能構(gòu)成三角形,否則,不能構(gòu)成三角形,從而可得答案.【詳解】解:所以以3cm,4cm,5cm為邊能構(gòu)成三角形,故A符合題意;所以以3cm,3cm,6cm為邊不能構(gòu)成三角形,故B不符合題意;所以以5cm,10cm,4cm為邊不能構(gòu)成三角形,故C不符合題意;所以以1cm,2cm,3cm為邊不能構(gòu)成三角形,故D不符合題意;故選A【點睛】本題考查的是三角形的三邊之間的關(guān)系,掌握“利用三角形三邊之間的關(guān)系判定三條線段能否組成三角形”是解本題的關(guān)鍵.2、D【分析】分三種情況:C在線段AB上,C在線段BA的延長線上以及C不在直線AB上結(jié)合線段的和差以及三角形三邊的關(guān)系分別求解即可.【詳解】解:∵線段AB=9cm,AC=5cm,∴如圖1,A,B,C在一條直線上,∴BC=AB?AC=9?5=4(cm),故①正確;如圖2,當A,B,C在一條直線上,∴BC=AB+AC=9+5=14(cm),故②正確;如圖3,當A,B,C不在一條直線上,9?5=4cm<BC<9+5=14cm,故線段BC可能為9cm,不可能為3cm,故③,④正確.故選D.【點睛】此題主要考查了三角形三邊關(guān)系,線段之間的關(guān)系,正確分類討論是解題關(guān)鍵.3、B【分析】根據(jù)全等三角形的性質(zhì)可得,根據(jù)即可求得答案.【詳解】解:ABC≌DEF,點B、E、C、F在同一直線上,BC=7,EC=4,故選B【點睛】本題考查了全等三角形的性質(zhì),掌握全等三角形的性質(zhì)是解題的關(guān)鍵.4、A【分析】根據(jù)AF=DC求出AC=DF,再根據(jù)全等三角形的判定定理逐個判斷即可.【詳解】解:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本選項符合題意;B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本選項不符合題意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本選項不符合題意;D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本選項不符合題意;故選:A.【點睛】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.5、C【分析】由“SAS”可證△ABC≌△AEF,由全等三角形的性質(zhì)依次判斷可求解.【詳解】解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴AF=AC,∠EAF=∠BAC,∠AFE=∠C,故②正確,∴∠BAE=∠FAC=40°,故①正確,∵∠AFB=∠C+∠FAC=∠AFE+∠EFB,∴∠EFB=∠FAC=40°,故③正確,無法證明AD=AC,故④錯誤,故選:C.【點睛】本題考查全等三角形的判定與性質(zhì),是重要考點,掌握相關(guān)知識是解題關(guān)鍵.6、B【分析】利用全等三角形的判定方法對各選項進行判斷.【詳解】解:∵AC=BD,而AB為公共邊,A、當∠BAD=∠ABC時,“邊邊角”不能判斷△ABC≌△BAD,該選項不符合題意;B、當∠BAC=∠ABD時,根據(jù)“SAS”可判斷△ABC≌△BAD,該選項符合題意;C、當∠DAC=∠CBD時,由三角形內(nèi)角和定理可推出∠D=∠C,“邊邊角”不能判斷△ABC≌△BAD,該選項不符合題意;D、同理,“邊邊角”不能判斷△ABC≌△BAD,該選項不符合題意;故選:B.【點睛】本題考查了全等三角形的判定,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.7、C【分析】根據(jù)三角形的三邊關(guān)系,得到合題意的邊,進而求得三角形的個數(shù).【詳解】解:c的范圍是:5﹣3<c<5+3,即2<c<8.∵c是奇數(shù),∴c=3或5或7,有3個值.則對應(yīng)的三角形有3個.故選:C.【點睛】本題主要考查了三角形三邊關(guān)系,準確分析判斷是解題的關(guān)鍵.8、C【分析】由題意根據(jù)“三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”對各選項進行逐一分析即可.【詳解】解:根據(jù)三角形的三邊關(guān)系,A、2+10<13,不能組成三角形,不符合題意;B、3+4=7,不能夠組成三角形,不符合題意;C、4+4>4,能組成三角形,符合題意;D、5+6<14,不能組成三角形,不符合題意.故選:C.【點睛】本題主要考查三角形三邊關(guān)系,注意掌握判斷能否組成三角形的簡便方法是看較小的兩個數(shù)的和是否大于第三個數(shù).9、B【分析】根據(jù)三角形全等的判定定理(定理和定理)即可得.【詳解】解:A、中,長為的兩邊的夾角等于,則此項不滿足定理,與不全等,不符題意;B、此項滿足定理,與全等,符合題意;C、中,長為的兩邊的夾角等于,則此項不滿足定理,與不全等,不符題意;D、中,角度為的夾邊長為,則此項不滿足定理,與不全等,不符題意;故選:B.【點睛】本題考查了三角形全等的判定定理,熟練掌握三角形全等的判定方法是解題關(guān)鍵.10、A【分析】利用基本作圖得到OD=OC=OD′=OC′,CD=C′D′,則根據(jù)全等三角形的判定方法可根據(jù)“SSS”可判斷△OCD≌△O′C′D′,然后根據(jù)全等三角形的性質(zhì)得到∠A′OB′=∠AOB.【詳解】解:由作法可得OD=OC=OD′=OC′,CD=C′D′,所以根據(jù)“SSS”可判斷△OCD≌△O′C′D′,所以∠A′OB′=∠AOB.故選:A.【點睛】本題考查了作圖﹣基本作圖和全等三角形的判定與性質(zhì),解題關(guān)鍵是熟練掌握基本作圖和全等三角形的判定定理.二、填空題1、∠1=∠2(或填A(yù)D=CB)【分析】根據(jù)題意知,在△ABD與△CDB中,AB=CD,BD=DB,所以由三角形判定定理SAS可以推知,只需添加∠1=∠2即可.由三角形判定定理SSS可以推知,只需要添加AD=CB即可.【詳解】解:∵在△ABD與△CDB中,AB=CD,BD=DB,∴添加∠1=∠2時,可以根據(jù)SAS判定△ABD≌△CDB,添加AD=CB時,可以根據(jù)SSS判定△ABD≌△CDB,,故答案為∠1=∠2(或填A(yù)D=CB).【點睛】本題考查了全等三角形的判定,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.2、或【分析】分兩種情形:①當≌時,可得:;②當≌時,,根據(jù)全等三角形的性質(zhì)分別求解即可.【詳解】解:①當≌時,可得:,運動時間相同,,的運動速度也相同,;②當≌時,,,,,故答案為:或.【點睛】本題考查全等三角形的性質(zhì),路程、速度、時間之間的關(guān)系等知識,解題的關(guān)鍵是理解題意,靈活運用所學知識進行分類解決問題.3、1或7【分析】分兩種情況進行討論,根據(jù)題意得出BP=2t=2或AP=16-2t=2即可求得結(jié)果.【詳解】解:當點P在BC上時,∵AB=CD,∴當△ABP≌△DCE,得到BP=CE,由題意得:BP=2t=2,∴t=1,當P在AD上時,∵AB=CD,∴當△BAP≌△DCE,得到AP=CE,由題意得:AP=6+6-4﹣2t=2,解得t=7.∴當t的值為1或7秒時.△ABP和△DCE全等.故答案為:1或7.【點睛】本題考查了全等三角形的判定,解題的關(guān)鍵在于能夠利用分類討論的思想進行求解.4、5【分析】由題意易得,然后可證,則有,進而問題可求解.【詳解】解:∵,∴,∵,∴(ASA),∴,∵,,∴,∴;故答案為5.【點睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.5、2cm【分析】易證∠CAD=∠BCE,即可證明BEC≌△DAC,可得CD=BE,CE=AD,根據(jù)DE=CE-CD,即可解題.【詳解】解:∵∠ACB=90°,∴∠BCE+∠DCA=90°.∵AD⊥CE,∴∠DAC+∠DCA=90°.∴∠BCE=∠DAC,在△BEC和△DAC中,∵∠BCE=∠DAC,∠BEC=∠CDA=90°.BC=AC,∴△BEC≌△DAC(AAS),∴CE=AD=3cm,CD=BE=1cm,DE=CE-CD=3-1=2cm.故答案是:2cm.【點睛】此題是三角形綜合題,主要考查了全等三角形的判定,全等三角形對應(yīng)邊相等的性質(zhì),本題中求證△CDA≌△BEC是解題的關(guān)鍵.6、30°【分析】根據(jù)三角形的外角的性質(zhì),即可求解.【詳解】解:∵,∴,∵∠ACD=75°,∠A=45°,∴.故答案為:30°【點睛】本題主要考查了三角形的外角性質(zhì),熟練掌握三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和是解題的關(guān)鍵.7、20【分析】利用平行線的性質(zhì)求出∠1,再利用三角形外角的性質(zhì)求出∠DCB即可.【詳解】解:∵EF∥CD,∴,∵∠1是△DCB的外角,∴∠1-∠B=50°-30°=20o,故答案為:20.【點睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識.8、角邊角或【分析】根據(jù)全等三角形的判定定理得出即可.【詳解】解答:解:兩角和它們的夾邊分別相等的兩個三角形全等,簡寫成角邊角或ASA,故答案為:角邊角或ASA.【點睛】本題考查了全等三角形的判定定理,掌握全等三角形的判定定理是解題的關(guān)鍵.9、6【分析】根據(jù)平行線的性質(zhì)得出∠DAC=∠BCA,∠DCA=∠BAC,根據(jù)全等三角形的判定定理ASA可以推出△ABC≌△CDA,△ABD≌△CDB,根據(jù)全等三角形的性質(zhì)得出AD=CB,AB=CD根據(jù)全等三角形的判定定理AAS推出△AOB≌△COD,△AOD≌△COB,根據(jù)全等三角形的性質(zhì)定理得出AO=CO,BO=DO,根據(jù)全等三角形的判定定理ASA推出△AOE≌△COF,△DOE≌△BOF即可.【詳解】解:∵ABDC,ADBC,∴∠DAC=∠BCA,∠DCA=∠BAC,在△ABC和△CDA中,∴△ABC≌△CDA(ASA),∴AD=CB,AB=CD,同理△ABD≌△CDB,在△AOB和△COD中,∴△AOB≌△COD(AAS),同理△AOD≌△COB,∴AO=CO,BO=DO,在△AOE和△COF中,∴△AOE≌△COF同理△DOE≌△BOF.【點睛】本題考查了全等三角形的判定定理和性質(zhì)定理,平行線的性質(zhì)等知識點,能熟記全等三角形的判定定理和性質(zhì)定理是解此題的關(guān)鍵,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS兩直角三角形全等還有HL等,②全等三角形的對應(yīng)邊相等,對應(yīng)角相等.10、在三角形中,兩邊之和大于第三邊【分析】根據(jù)三角形兩邊之和大于第三邊進行求解即可.【詳解】解:∵點A、B在直線l上,點C是直線l外一點,∴A、B、C可以構(gòu)成三角形,∴由三角形三邊的關(guān)系:在三角形中,兩邊之和大于第三邊可以得到:CA+CB>AB,故答案為:在三角形中,兩邊之和大于第三邊.【點睛】本題主要考查了三角形三邊的關(guān)系,熟知三角形中兩邊之和大于第三邊是解題的關(guān)鍵.三、解答題1、(1)相等,理由見解析;(2).【分析】(1)根據(jù)SSS證明,然后由全等三角形對應(yīng)邊相等即可證明;(2)由可得,進而可求出,然后根據(jù)三角形外角的性質(zhì)即可求出∠BGD的度數(shù).【詳解】解:(1)相等,理由如下:在和中,∴,∴;(2)∵,∴,∴,∵,,∴.【點睛】此題考查了全等三角形的性質(zhì)和判定,三角形外角的性質(zhì),解題的關(guān)鍵是熟練掌握根據(jù)題意證明.2、(1)是等邊三角形;(2)【分析】(1)由性質(zhì)可得a=b,b=c,故為等邊三角形.(2)根據(jù)三角形任意兩邊和大于第三邊,任意兩邊差小于第三邊判定正負,再由絕對值性質(zhì)去絕對值計算即可.【詳解】(1)∵∴且∴∴是等邊三角形.(2)∵是的三邊長∴b-c-a<0,a-b+c>0,a-b-c<0原式===【點睛】本題考查了三角形三條邊的關(guān)系以及絕對值化簡,根據(jù)三角形任意兩邊和大于第三邊,任意兩邊差小于第三邊判定絕對值內(nèi)數(shù)值正負是解題的關(guān)鍵.3、(1)見解析;(2)見解析【詳解】(1)先利用SAS證明△ABF≌△AEC即可得到EC=BF;(2)根據(jù)(1)中的全等推得∠AEC=∠ABF,根據(jù)∠BAE=90°,∠AEC+∠ADE=90°,再根據(jù)對頂角相等,等量代換后,推得∠BMD=90°.【解答】證明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,∴∠EAC=∠BAF,在△ABF和△AEC中,,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如圖,由(1)得:△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∴∠ADE=∠BDM(對頂角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=90°,∴EC⊥BF.【點睛】本題主要考查了全等三角形的性質(zhì)與判定,對頂角的定義,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.4、見解析.【分析】利用“”證明,再利用全等三角形的性質(zhì)證明即可.【詳解】證明:在與中,,;.【點睛】本題考查了全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟練掌握三角形全等的判定方法.5、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論