高三數(shù)學數(shù)學等差數(shù)列多選題專項訓練的專項培優(yōu)練習題及答案_第1頁
高三數(shù)學數(shù)學等差數(shù)列多選題專項訓練的專項培優(yōu)練習題及答案_第2頁
高三數(shù)學數(shù)學等差數(shù)列多選題專項訓練的專項培優(yōu)練習題及答案_第3頁
高三數(shù)學數(shù)學等差數(shù)列多選題專項訓練的專項培優(yōu)練習題及答案_第4頁
高三數(shù)學數(shù)學等差數(shù)列多選題專項訓練的專項培優(yōu)練習題及答案_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

高三數(shù)學數(shù)學等差數(shù)列多選題專項訓練的專項培優(yōu)練習題(及答案一、等差數(shù)列多選題1.朱世杰是元代著名數(shù)學家,他所著的《算學啟蒙》是一部在中國乃至世界最早的科學普及著作.《算學啟蒙》中涉及一些“堆垛”問題,主要利用“堆垛”研究數(shù)列以及數(shù)列的求和問題.現(xiàn)有100根相同的圓形鉛筆,小明模仿“堆垛”問題,將它們?nèi)慷逊懦煽v斷面為等腰梯形的“垛”,要求層數(shù)不小于2,且從最下面一層開始,每一層比上一層多1根,則該“等腰梯形垛”應堆放的層數(shù)可以是()A.4 B.5 C.7 D.8解析:BD【分析】依據(jù)題意,根數(shù)從上至下構(gòu)成等差數(shù)列,設首項即第一層的根數(shù)為,公差即每一層比上一層多的根數(shù)為,設一共放層,利用等差數(shù)列求和公式,分析即可得解.【詳解】依據(jù)題意,根數(shù)從上至下構(gòu)成等差數(shù)列,設首項即第一層的根數(shù)為,公差為,設一共放層,則總得根數(shù)為:整理得,因為,所以為200的因數(shù),且為偶數(shù),驗證可知滿足題意.故選:BD.【點睛】關(guān)鍵點睛:本題考查等差數(shù)列的求和公式,解題的關(guān)鍵是分析題意,把題目信息轉(zhuǎn)化為等差數(shù)列,考查學生的邏輯推理能力與運算求解能力,屬于基礎(chǔ)題.2.已知等差數(shù)列的前n項和為Sn(n∈N*),公差d≠0,S6=90,a7是a3與a9的等比中項,則下列選項正確的是()A.a(chǎn)1=22 B.d=-2C.當n=10或n=11時,Sn取得最大值 D.當Sn>0時,n的最大值為21解析:BC【分析】分別運用等差數(shù)列的通項公式和求和公式,解方程可得首項和公差,可判斷A,B;由配方法,結(jié)合n為正整數(shù),可判斷C;由Sn>0解不等式可判斷D.【詳解】由公差,可得,即,①由a7是a3與a9的等比中項,可得,即,化簡得,②由①②解得,故A錯,B對;由,可得或時,取最大值,C對;由Sn>0,解得,可得的最大值為,D錯;故選:BC【點睛】本題考查等差數(shù)列的通項公式和求和公式的運用,考查方程思想和運算能力,屬于基礎(chǔ)題.3.設等差數(shù)列的前項和為,公差為.已知,,則()A. B.數(shù)列是遞增數(shù)列C.時,的最小值為13 D.數(shù)列中最小項為第7項解析:ACD【分析】由已知得,又,所以,可判斷A;由已知得出,且,得出時,,時,,又,可得出在上單調(diào)遞增,在上單調(diào)遞增,可判斷B;由,可判斷C;判斷,的符號,的單調(diào)性可判斷D;【詳解】由已知得,,又,所以,故A正確;由,解得,又,當時,,時,,又,所以時,,時,,所以在上單調(diào)遞增,在上單調(diào)遞增,所以數(shù)列不是遞增數(shù)列,故B不正確;由于,而,所以時,的最小值為13,故C選項正確;當時,,時,,當時,,時,,所以當時,,,,時,為遞增數(shù)列,為正數(shù)且為遞減數(shù)列,所以數(shù)列中最小項為第7項,故D正確;【點睛】本題考查等差數(shù)列的公差,項的符號,數(shù)列的單調(diào)性,數(shù)列的最值項,屬于較難題.4.下列命題正確的是()A.給出數(shù)列的有限項就可以唯一確定這個數(shù)列的通項公式B.若等差數(shù)列的公差,則是遞增數(shù)列C.若a,b,c成等差數(shù)列,則可能成等差數(shù)列D.若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列解析:BCD【分析】根據(jù)等差數(shù)列的性質(zhì)即可判斷選項的正誤.【詳解】A選項:給出數(shù)列的有限項不一定可以確定通項公式;B選項:由等差數(shù)列性質(zhì)知,必是遞增數(shù)列;C選項:時,是等差數(shù)列,而a=1,b=2,c=3時不成立;D選項:數(shù)列是等差數(shù)列公差為,所以也是等差數(shù)列;故選:BCD【點睛】本題考查了等差數(shù)列,利用等差數(shù)列的性質(zhì)判斷選項的正誤,屬于基礎(chǔ)題.5.已知無窮等差數(shù)列的前n項和為,,且,則()A.在數(shù)列中,最大B.在數(shù)列中,或最大C.D.當時,解析:AD【分析】利用等差數(shù)列的通項公式可以求,,即可求公差,然后根據(jù)等差數(shù)列的性質(zhì)判斷四個選項是否正確.【詳解】因為,所以,因為,所以,所以等差數(shù)列公差,所以是遞減數(shù)列,故最大,選項A正確;選項不正確;,所以,故選項C不正確;當時,,即,故選項D正確;故選:AD【點睛】本題主要考查了等差數(shù)列的性質(zhì)和前n項和,屬于基礎(chǔ)題.6.是等差數(shù)列,公差為d,前項和為,若,,則下列結(jié)論正確的是()A. B. C. D.解析:ABD【分析】結(jié)合等差數(shù)列的性質(zhì)、前項和公式,及題中的條件,可選出答案.【詳解】由,可得,故B正確;由,可得,由,可得,所以,故等差數(shù)列是遞減數(shù)列,即,故A正確;又,所以,故C不正確;又因為等差數(shù)列是單調(diào)遞減數(shù)列,且,所以,所以,故D正確.故選:ABD.【點睛】關(guān)鍵點點睛:本題考查等差數(shù)列性質(zhì)的應用,解題的關(guān)鍵是熟練掌握等差數(shù)列的增減性及前項和的性質(zhì),本題要從題中條件入手,結(jié)合公式,及,對選項逐個分析,可判斷選項是否正確.考查學生的運算求解能力與邏輯推理能力,屬于中檔題.7.(多選題)在數(shù)列中,若,(,,為常數(shù)),則稱為“等方差數(shù)列”.下列對“等方差數(shù)列”的判斷正確的是()A.若是等差數(shù)列,則是等方差數(shù)列B.是等方差數(shù)列C.若是等方差數(shù)列,則(,為常數(shù))也是等方差數(shù)列D.若既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列為常數(shù)列解析:BCD【分析】根據(jù)定義以及舉特殊數(shù)列來判斷各選項中結(jié)論的正誤.【詳解】對于A選項,取,則不是常數(shù),則不是等方差數(shù)列,A選項中的結(jié)論錯誤;對于B選項,為常數(shù),則是等方差數(shù)列,B選項中的結(jié)論正確;對于C選項,若是等方差數(shù)列,則存在常數(shù),使得,則數(shù)列為等差數(shù)列,所以,則數(shù)列(,為常數(shù))也是等方差數(shù)列,C選項中的結(jié)論正確;對于D選項,若數(shù)列為等差數(shù)列,設其公差為,則存在,使得,則,由于數(shù)列也為等方差數(shù)列,所以,存在實數(shù),使得,則對任意的恒成立,則,得,此時,數(shù)列為常數(shù)列,D選項正確.故選BCD.【點睛】本題考查數(shù)列中的新定義,解題時要充分利用題中的定義進行判斷,也可以結(jié)合特殊數(shù)列來判斷命題不成立,考查邏輯推理能力,屬于中等題.8.等差數(shù)列的前n項和記為,若,,則()A. B.C. D.當且僅當時,解析:AB【分析】根據(jù)等差數(shù)列的性質(zhì)及可分析出結(jié)果.【詳解】因為等差數(shù)列中,所以,又,所以,所以,,故AB正確,C錯誤;因為,故D錯誤,故選:AB【點睛】關(guān)鍵點睛:本題突破口在于由得到,結(jié)合,進而得到,考查學生邏輯推理能力.9.已知數(shù)列滿足:,當時,,則關(guān)于數(shù)列說法正確的是()A. B.數(shù)列為遞增數(shù)列C.數(shù)列為周期數(shù)列 D.解析:ABD【分析】由已知遞推式可得數(shù)列是首項為,公差為1的等差數(shù)列,結(jié)合選項可得結(jié)果.【詳解】得,∴,即數(shù)列是首項為,公差為1的等差數(shù)列,∴,∴,得,由二次函數(shù)的性質(zhì)得數(shù)列為遞增數(shù)列,所以易知ABD正確,故選:ABD.【點睛】本題主要考查了通過遞推式得出數(shù)列的通項公式,通過通項公式研究數(shù)列的函數(shù)性質(zhì),屬于中檔題.10.已知等差數(shù)列的前n項和為且則()A. B.當且僅當n=7時,取得最大值C. D.滿足的n的最大值為12解析:ACD【分析】由題可得,,,求出可判斷A;利用二次函數(shù)的性質(zhì)可判斷B;求出可判斷C;令,解出即可判斷D.【詳解】設等差數(shù)列的公差為,則,解得,,,且,對于A,,故A正確;對于B,的對稱軸為,開口向下,故或7時,取得最大值,故B錯誤;對于C,,,故,故C正確;對于D,令,解得,故n的最大值為12,故D正確.故選:ACD.【點睛】方法點睛:由于等差數(shù)列是關(guān)于的二次函數(shù),當與異號時,在對稱軸或離對稱軸最近的正整數(shù)時取最值;當與同號時,在取最值.11.斐波那契數(shù)列,又稱黃金分割數(shù)列、兔子數(shù)列,是數(shù)學家列昂多·斐波那契于1202年提出的數(shù)列.斐波那契數(shù)列為1,1,2,3,5,8,13,21,……,此數(shù)列從第3項開始,每一項都等于前兩項之和,記該數(shù)列為,則的通項公式為()A.B.且C.D.解析:BC【分析】根據(jù)數(shù)列的前幾項歸納出數(shù)列的通項公式,再驗證即可;【詳解】解:斐波那契數(shù)列為1,1,2,3,5,8,13,21,……,顯然,,,,,所以且,即B滿足條件;由,所以所以數(shù)列是以為首項,為公比的等比數(shù)列,所以所以,令,則,所以,所以以為首項,為公比的等比數(shù)列,所以,所以;即C滿足條件;故選:BC【點睛】考查等比數(shù)列的性質(zhì)和通項公式,數(shù)列遞推公式的應用,本題運算量較大,難度較大,要求由較高的邏輯思維能力,屬于中檔題.12.已知等差數(shù)列的前項和為,,,則下列選項正確的是()A. B.C. D.當且僅當時,取得最大值解析:AC【分析】先根據(jù)題意得等差數(shù)列的公差,進而計算即可得答案.【詳解】解:設等差數(shù)列的公差為,則,解得.所以,,,所以當且僅當或時,取得最大值.故選:AC【點睛】本題考查等差數(shù)列的基本計算,前項和的最值問題,是中檔題.等差數(shù)列前項和的最值得求解常見一下兩種情況:(1)當時,有最大值,可以通過的二次函數(shù)性質(zhì)求解,也可以通過求滿足且的的取值范圍確定;(2)當時,有最小值,可以通過的二次函數(shù)性質(zhì)求解,也可以通過求滿足且的的取值范圍確定;13.黃金螺旋線又名等角螺線,是自然界最美的鬼斧神工.在一個黃金矩形(寬長比約等于0.618)里先以寬為邊長做正方形,然后在剩下小的矩形里以其寬為邊長做正方形,如此循環(huán)下去,再在每個正方形里畫出一段四分之一圓弧,最后順次連接,就可得到一條“黃金螺旋線”.達·芬奇的《蒙娜麗莎》,希臘雅典衛(wèi)城的帕特農(nóng)神廟等都符合這個曲線.現(xiàn)將每一段黃金螺旋線與其所在的正方形所圍成的扇形半徑設為an(n∈N*),數(shù)列{an}滿足a1=a2=1,an=an-1+an-2(n≥3).再將扇形面積設為bn(n∈N*),則()A.4(b2020-b2019)=πa2018·a2021 B.a(chǎn)1+a2+a3+…+a2019=a2021-1C.a(chǎn)12+a22+a32…+(a2020)2=2a2019·a2021 D.a(chǎn)2019·a2021-(a2020)2+a2018·a2020-(a2019)2=0解析:ABD【分析】對于A,由題意得bn=an2,然后化簡4(b2020-b2019)可得結(jié)果;對于B,利用累加法求解即可;對于C,數(shù)列{an}滿足a1=a2=1,an=an-1+an-2(n≥3),即an-1=an-2-an,兩邊同乘an-1,可得an-12=an-1an-2-an-1an,然后累加求解;對于D,由題意an-1=an-an-2,則a2019·a2021-(a2020)2+a2018·a2020-(a2019)2,化簡可得結(jié)果【詳解】由題意得bn=an2,則4(b2020-b2019)=4(a20202-a20192)=π(a2020+a2019)(a2020-a2019)=πa2018·a2021,則選項A正確;又數(shù)列{an}滿足a1=a2=1,an=an-1+an-2(n≥3),所以an-2=an-an-1(n≥3),a1+a2+a3+…+a2019=(a3-a2)+(a4-a3)+(a5-a4)+…+(a2021-a2020)=a2021-a2=a2021-1,則選項B正確;數(shù)列{an}滿足a1=a2=1,an=an-1+an-2(n≥3),即an-1=an-2-an,兩邊同乘an-1,可得an-12=an-1an-2-an-1an,則a12+a22+a32…+(a2020)2=a12+(a2a1-a2a3)+(a3a2-a3a4)+…+(a2020a2019-a2020a2021)=a12-a2020a2021=1-a2020a2021,則選項C錯誤;由題意an-1=an-an-2,則a2019·a2021-(a2020)2+a2018·a2020-(a2019)2=a2019·(a2021-a2019)+a2020·(a2018-a2020)=a2019·a2020+a2020·(-a2019)=0,則選項D正確;故選:ABD.【點睛】此題考查數(shù)列的遞推式的應用,考查累加法的應用,考查計算能力,屬于中檔題14.已知數(shù)列滿足,且,則()A. B.C. D.解析:ACD【分析】先計算出數(shù)列的前幾項,判斷AC,然后再尋找規(guī)律判斷BD.【詳解】由題意,,A正確,,C正確;,∴數(shù)列是周期數(shù)列,周期為3.,B錯;,D正確.故選:ACD.【點睛】本題考查由數(shù)列的遞推式求數(shù)列的項與和,解題關(guān)鍵是求出數(shù)列的前幾項后歸納出數(shù)列的性質(zhì):周期性,然后利用周期函數(shù)的定義求解.15.設數(shù)列滿足,對任意的恒成立,則下列說法正確的是()A. B.是遞增數(shù)列C. D.解析:ABD【分析】構(gòu)造函數(shù),再利用導數(shù)判斷出函數(shù)的單調(diào)性,利用單調(diào)性即可求解.【詳解】由,設,則,所以當時,,即在上為單調(diào)遞增函數(shù),所以函數(shù)在為單調(diào)遞增函數(shù),即,即,所以,即,所以,,故A正確;C不正確;由在上為單調(diào)遞增函數(shù),,所以是遞增數(shù)列,故B正確;,所以因此,故D正確故選:ABD【點睛】本題考查了數(shù)列性質(zhì)的綜合應用,屬于難題.16.題目文件丟失!17.題目文件丟失!18.已知數(shù)列滿足:,當時,,則關(guān)于數(shù)列的說法正確的是()A. B.數(shù)列為遞增數(shù)列C. D.數(shù)列為周期數(shù)列解析:ABC【分析】由,變形得到,再利用等差數(shù)列的定義求得,然后逐項判斷.【詳解】當時,由,得,即,又,所以是以2為首項,以1為公差的等差數(shù)列,所以,即,故C正確;所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論