版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
一、解答題1.如圖,在平面直角坐標系中,直線與x軸交于點,與y軸交于點,且(1)求;(2)若為直線上一點.①的面積不大于面積的,求P點橫坐標x的取值范圍;②請直接寫出用含x的式子表示y.(3)已知點,若的面積為6,請直接寫出m的值.解析:(1)4;(2)①或;②;(3)或.【分析】(1)先根據偶次方和絕對值的非負性求出的值,從而可得點的坐標和的長,再利用直角三角形的面積公式即可得;(2)①分和兩種情況,先分別求出和的面積,再根據已知條件建立不等式,解不等式即可得;②分和兩種情況,利用、和的面積關系建立等式,化簡即可得;(3)過點作軸的平行線,交直線于點,從而可得,再分、和三種情況,分別利用三角形的面積公式建立方程,解方程即可得.【詳解】解:(1)由題意得:,解得,,,軸軸,;(2)①的面積不大于面積的,的面積小于的面積,則分以下兩種情況:如圖,當時,則,,因此有,解得,此時的取值范圍為;如圖,當時,則,,因此有,解得,此時的取值范圍為,綜上,點橫坐標的取值范圍為或;②當時,則,,由(2)①可知,,則,即;如圖,當時,則,,,,,解得,綜上,;(3)過點作軸的平行線,交直線于點,由(2)②可知,,則,由題意,分以下三種情況:①如圖,當時,則,,解得,不符題設,舍去;②如圖,當時,則,,解得或(不符題設,舍去);③如圖,當時,則,,解得,符合題設,綜上,的值為或.【點睛】本題考查了偶次方和絕對值的非負性、坐標與圖形等知識點,較難的是題(3),正確分三種情況討論是解題關鍵.2.如圖,在平面直角坐標系中,O為坐標原點,點,其中滿足,D為直線AB與軸的交點,C為線段AB上一點,其縱坐標為.(1)求的值;(2)當為何值時,和面積的相等;(3)若點C坐標為(-2,1),點M(m,-3)在第三象限內,滿足,求m的取值范圍.(注:表示的面積)解析:(1);(2)當時,和面積的相等;(3)m的取值范圍是【分析】(1)利用非負數的性質求出a,b,c即可.(2)設點D的坐標為(0,y),根據面積關系,構建方程求出y,再根據△BOC和△AOD面積的相等,構建方程求出t即可.(3)分兩種情形:①當-2<m<0時,如圖1中,②當m≤-2時,如圖2中,根據S△MOC≥5,構建不等式求解即可.【詳解】解:(1)∵|a-2|+(b-3)2+=0,又∵|a-2|≥0,(b-3)2≥0,≥0,∴,∴a=2,b=3,c=-4;(2)設點D的坐標為(0,y),則S△BOD=×BO×OD=×4×y=2y,S△AOD=xA?OD=×2y=y,S△AOB=×OB?yA=×4×3=6,∵S△BOD+S△AOD=S△AOB,即2y+y=6,解得y=2,即點D的坐標為(0,2),∴S△BOC=BO?yc=×4t=2t,S△AOD=xA?OD=×2×2=2,∵△BOC和△AOD面積的相等,即2t=2,解得t=1,∴當t=1時,△BOC和△AOD面積的相等;(3)①當-2<m<0時,如圖1中,過點C作CF⊥軸于點F,過點M作GE⊥軸于點E,過點C作CG⊥軸交GE于點G,則四邊形CGEF為矩形,∵SCGEF=2×4=8,S△CFO=×2×1=1,S△EMO=×(0?m)×3=?m,S△CMG=×(m+2)×4=2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=8?1?(?m)?2(m+2)=3?m,∵S△MOC≥5,即3?m≥5,解得m≤-4,這與-2<m<0矛盾.②當m≤-2時,如圖2中,過點C作GF⊥軸于點F,過點M作ME⊥軸于點E,過點M作MG⊥軸交GF于點G,則四邊形MEFG為矩形,∵SGMEF=(0-m)×4=-4m,S△CFO=×2×1=1,S△EMO=×(0?m)×3=?m,S△CMG=×(?2?m)×4=?2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=?4m?1?(?m)?[?2(m+2)]=3?m,∵S△MOC≥5,即3?m≥5,解得m≤-4,綜上所述,m的取值范圍是m≤-4.【點睛】本題考查了坐標與圖形的性質,三角形的面積,非負數的性質等知識,解題的關鍵是學會利用參數,構建方程解決問題,屬于中考壓軸題.3.對于平面直角坐標系xOy中的圖形G和圖形G上的任意點P(x,y),給出如下定義:將點P(x,y)平移到P'(x+t,y﹣t)稱為將點P進行“t型平移”,點P'稱為將點P進行“t型平移”的對應點;將圖形G上的所有點進行“t型平移”稱為將圖形G進行“t型平移”.例如,將點P(x,y)平移到P'(x+1,y﹣1)稱為將點P進行“l(fā)型平移”,將點P(x,y)平移到P'(x﹣1,y+1)稱為將點P進行“﹣l型平移”.已知點A(2,1)和點B(4,1).(1)將點A(2,1)進行“l(fā)型平移”后的對應點A'的坐標為.(2)①將線段AB進行“﹣l型平移”后得到線段A'B',點P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點是.②若線段AB進行“t型平移”后與坐標軸有公共點,則t的取值范圍是.(3)已知點C(6,1),D(8,﹣1),點M是線段CD上的一個動點,將點B進行“t型平移”后得到的對應點為B',當t的取值范圍是時,B'M的最小值保持不變.解析:(1)(3,0);(2)①P1;②或;(3)【分析】(1)根據“l(fā)型平移”的定義解決問題即可.(2)①畫出線段A1B1即可判斷.②根據定義求出t最大值,最小值即可判斷.(3)如圖2中,觀察圖象可知,當B′在線段B′B″上時,B'M的最小值保持不變,最小值為.【詳解】(1)將點A(2,1)進行“l(fā)型平移”后的對應點A'的坐標為(3,0),故答案為:(3,0);(2)①如圖1中,觀察圖象可知,將線段AB進行“﹣l型平移”后得到線段A'B',點P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點是P1,故答案為:P1;②若線段AB進行“t型平移”后與坐標軸有公共點,則t的取值范圍是﹣4≤t≤﹣2或t=1.故答案為:﹣4≤t≤﹣2或t=1.(3)如圖2中,觀察圖象可知,當B′在線段B′B″上時,B'M的最小值保持不變,最小值為,此時1≤t≤3.故答案為:1≤t≤3.【點睛】本題屬于幾何變換綜合題,考查了平移變換,“t型平移”的定義等知識,解題的關鍵理解題意,靈活運用所學知識解決問題,學會利用圖象法解決問題,屬于中考創(chuàng)新題型.4.如圖,在平面直角坐標系中,四邊形各頂點的坐標分別為,,,,現將四邊形經過平移后得到四邊形,點的對應點的坐標為.(1)請直接寫點、、的坐標;(2)求四邊形與四邊形重疊部分的面積;(3)在軸上是否存在一點,連接、,使,若存在這樣一點,求出點的坐標;若不存在,請說明理由.解析:(1);(2);(3)存在,或【分析】(1)先確定平移的規(guī)則,然后根據平移的規(guī)則,求出點的坐標即可;(2)由平移的性質可知,重疊部分為平行四邊形,且底邊長為3,高為2,即可求出面積;(3)設點的坐標為,先求出平行四邊形ABCD的面積,然后利用三角形的面積公式,即可求出b的值.【詳解】解:(1)∵,,∴平移的規(guī)則為:向右平移2個單位,向上平移一個單位;∵,,,∴;(2)如圖,延長交x軸于點E,過點做由平移可知,重疊部分為平行四邊形,高為2,∴重疊部分的面積為(3)存在;設點的坐標為,∵,,∴,∴點的坐標為或.【點睛】本題考查了平移的性質,平行四邊形的性質,坐標與圖形,以及求陰影部分的面積,解題的關鍵是熟練掌握平移的性質進行解題.5.如圖所示,A(1,0),點B在y軸上,將三角形OAB沿x軸負方向平移,平移后的圖形為三角形DEC,點C的坐標為(﹣3,2).(1)直接寫出點E的坐標;(2)在四邊形ABCD中,點P從點O出發(fā),沿OB→BC→CD移動,若點P的速度為每秒1個單位長度,運動時間為t秒,請解決以下問題;①當t為多少秒時,點P的橫坐標與縱坐標互為相反數;②當t為多少秒時,三角形PEA的面積為2,求此時P的坐標解析:(1)(-2,0);(2)①4秒;②(0,)或(-3,)【分析】(1)根據BC=AE=3,OA=1,推出OE=2,可得結論.(2)①判斷出PB=CD,即可得出結論;②根據△PEA的面積以及AE求出點P到AE的距離,結合點P的路線可得坐標.【詳解】解:(1)∵C(-3,2),A(1,0),∴BC=3,OA=1,∵BC=AE=3,∴OE=AE-AO=2,∴E(-2,0);(2)①∵點C的坐標為(-3,2)∴BC=3,CD=2,∵點P的橫坐標與縱坐標互為相反數;∴點P在線段BC上,∴PB=CD=2,即t=(2+2)÷1=4;∴當t=4秒時,點P的橫坐標與縱坐標互為相反數;②∵△PEA的面積為2,A(1,0),E(-2,0),∴AE=3,設點P到AE的距離為h∴,∴h=,即點P到AE的距離為,∴點P的坐標為(0,)或(-3,).【點睛】本題考查坐標與圖形變化-平移,三角形的面積等知識,解本題的關鍵是由線段和部分點的坐標,得出其它點的坐標.6.已知:ABCD.點E在CD上,點F,H在AB上,點G在AB,CD之間,連接FG,EH,GE,∠GFB=∠CEH.(1)如圖1,求證:GFEH;(2)如圖2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,試問∠M與α之間有怎樣的數量關系(用含α的式子表示∠M)?請寫出你的猜想,并加以證明.解析:(1)見解析;(2),證明見解析.【分析】(1)由平行線的性質得到,等量代換得出,即可根據“同位角相等,兩直線平行”得解;(2)過點作,過點作,根據平行線的性質及角平分線的定義求解即可.【詳解】(1)證明:,,,,;(2)解:,理由如下:如圖2,過點作,過點作,,,,,,同理,,平分,平分,,,,由(1)知,,,,,,.【點睛】此題考查了平行線的判定與性質,熟記平行線的判定與性質及作出合理的輔助線是解題的關鍵.7.已知:如圖(1)直線AB、CD被直線MN所截,∠1=∠2.(1)求證:AB//CD;(2)如圖(2),點E在AB,CD之間的直線MN上,P、Q分別在直線AB、CD上,連接PE、EQ,PF平分∠BPE,QF平分∠EQD,則∠PEQ和∠PFQ之間有什么數量關系,請直接寫出你的結論;(3)如圖(3),在(2)的條件下,過P點作PH//EQ交CD于點H,連接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度數.解析:(1)見解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先證明∠1=∠3,易證得AB//CD;(2)如圖2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行線的性質即可證明;(3)如圖3中,設∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,想辦法構建方程即可解決問題;【詳解】(1)如圖1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)結論:如圖2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可證:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,∴∠1+∠4+∠EQD+∠BPE=2×180°,即∠PEQ+2(∠FQD+∠BPF)=360°,∴∠PEQ+2∠PFQ=360°.(3)如圖3中,設∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,∵EQ//PH,∴∠EQC=∠PHQ=x,∴x+10y=180°,∵AB//CD,∴∠BPH=∠PHQ=x,∵PF平分∠BPE,∴∠EPQ+∠FPQ=∠FPH+∠BPH,∴∠FPH=y(tǒng)+z﹣x,∵PQ平分∠EPH,∴Z=y(tǒng)+y+z﹣x,∴x=2y,∴12y=180°,∴y=15°,∴x=30°,∴∠PHQ=30°.【點睛】本題考查了平行線的判定與性質,角平分線的定義等知識.(2)中能正確作出輔助線是解題的關鍵;(3)中能熟練掌握相關性質,找到角度之間的關系是解題的關鍵.8.如圖1,MN∥PQ,點C、B分別在直線MN、PQ上,點A在直線MN、PQ之間.(1)求證:∠CAB=∠MCA+∠PBA;(2)如圖2,CD∥AB,點E在PQ上,∠ECN=∠CAB,求證:∠MCA=∠DCE;(3)如圖3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度數.解析:(1)證明見解析;(2)證明見解析;(3)120°.【分析】(1)過點A作AD∥MN,根據兩直線平行,內錯角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根據角的和差等量代換即可得解;(2)由兩直線平行,同旁內角互補得到∴、∠CAB+∠ACD=180°,由鄰補角定義得到∠ECM+∠ECN=180°,再等量代換即可得解;(3)由平行線的性質得到,∠FAB=120°﹣∠GCA,再由角平分線的定義及平行線的性質得到∠GCA﹣∠ABF=60°,最后根據三角形的內角和是180°即可求解.【詳解】解:(1)證明:如圖1,過點A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如圖2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【點睛】本題主要考查了平行線的性質,線段、角、相交線與平行線,準確的推導是解決本題的關鍵.9.綜合與探究(問題情境)王老師組織同學們開展了探究三角之間數量關系的數學活動(1)如圖1,,點、分別為直線、上的一點,點為平行線間一點,請直接寫出、和之間的數量關系;(問題遷移)(2)如圖2,射線與射線交于點,直線,直線分別交、于點、,直線分別交、于點、,點在射線上運動,①當點在、(不與、重合)兩點之間運動時,設,.則,,之間有何數量關系?請說明理由.②若點不在線段上運動時(點與點、、三點都不重合),請你畫出滿足條件的所有圖形并直接寫出,,之間的數量關系.解析:(1);(2)①,理由見解析;②圖見解析,或【分析】(1)作PQ∥EF,由平行線的性質,即可得到答案;(2)①過作交于,由平行線的性質,得到,,即可得到答案;②根據題意,可對點P進行分類討論:當點在延長線時;當在之間時;與①同理,利用平行線的性質,即可求出答案.【詳解】解:(1)作PQ∥EF,如圖:∵,∴,∴,,∵∴;(2)①;理由如下:如圖,過作交于,∵,∴,∴,,∴;②當點在延長線時,如備用圖1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;當在之間時,如備用圖2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【點睛】本題考查了平行線的性質,解題的關鍵是熟練掌握兩直線平行同旁內角互補,兩直線平行內錯角相等,從而得到角的關系.10.已知:直線AB∥CD,M,N分別在直線AB,CD上,H為平面內一點,連HM,HN.(1)如圖1,延長HN至G,∠BMH和∠GND的角平分線相交于點E.求證:2∠MEN﹣∠MHN=180°;(2)如圖2,∠BMH和∠HND的角平分線相交于點E.①請直接寫出∠MEN與∠MHN的數量關系:;②作MP平分∠AMH,NQ∥MP交ME的延長線于點Q,若∠H=140°,求∠ENQ的度數.(可直接運用①中的結論)解析:(1)見解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)過點E作EP∥AB交MH于點Q,利用平行線的性質、角平分線性質、鄰補角和為180°,角與角之間的基本運算、等量代換等即可得證.(2)①過點H作GI∥AB,利用(1)中結論2∠MEN﹣∠MHN=180°,利用平行線的性質、角平分線性質、鄰補角和為180°,角與角之間的基本運算、等量代換等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),進而用等量代換得出2∠MEN+∠MHN=360°.②過點H作HT∥MP,由①的結論得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行線性質得∠ENQ+∠ENH+∠NHT=180°,由角平分線性質及鄰補角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.繼續(xù)使用等量代換可得∠ENQ度數.【詳解】解:(1)證明:過點E作EP∥AB交MH于點Q.如答圖1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=∠GND.(兩直線平行,內錯角相等)∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:過點H作GI∥AB.如答圖2由(1)可得∠MEN=(∠BMH+∠HND),由圖可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案為:2∠MEN+∠MHN=360°.②:由①的結論得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.過點H作HT∥MP.如答圖2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(兩直線平行,同旁內角互補).∵MP平分∠AMH,∴∠PMH=∠AMH=(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.∵∠ENH=∠HND.∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°.∴∠ENQ+(HND+∠BMH)=130°.∴∠ENQ+∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【點睛】本題考查了平行線的性質,角平分線的性質,鄰補角,等量代換,角之間的數量關系運算,輔助線的作法,正確作出輔助線是解題的關鍵,本題綜合性較強.11.已知:如圖,直線AB//CD,直線EF交AB,CD于P,Q兩點,點M,點N分別是直線CD,EF上一點(不與P,Q重合),連接PM,MN.(1)點M,N分別在射線QC,QF上(不與點Q重合),當∠APM+∠QMN=90°時,①試判斷PM與MN的位置關系,并說明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度數.(提示:過N點作AB的平行線)(2)點M,N分別在直線CD,EF上時,請你在備用圖中畫出滿足PM⊥MN條件的圖形,并直接寫出此時∠APM與∠QMN的關系.(注:此題說理時不能使用沒有學過的定理)解析:(1)①PM⊥MN,理由見解析;②∠EPB的度數為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線的性質得到∠APM=∠PMQ,再根據已知條件可得到PM⊥MN;②過點N作NH∥CD,利用角平分線的定義以及平行線的性質求得∠MNH=35°,即可求解;(2)分三種情況討論,利用平行線的性質即可解決.【詳解】解:(1)①PM⊥MN,理由見解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ+∠QMN=90°,∴PM⊥MN;②過點N作NH∥CD,∵AB//CD,∴AB//NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA+∠MNH=90°,即∠ENH+∠MNH=90°,∴∠MNQ+∠MNH+∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ+∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度數為125°;(2)當點M,N分別在射線QC,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM=∠PMQ,∴∠APM+∠QMN=90°;當點M,N分別在射線QC,線段PQ上時,如圖:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ-∠QMN=90°,∴∠APM-∠QMN=90°;當點M,N分別在射線QD,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM-∠QMN=90°;綜上,∠APM+∠QMN=90°或∠APM-∠QMN=90°.【點睛】本題主要考查了平行線的判定與性質,熟練掌握兩直線平行,內錯角相等;兩直線平行,同旁內角互補;兩直線平行,同位角相等等知識是解題的關鍵.12.如圖,已知直線射線,.是射線上一動點,過點作交射線于點,連接.作,交直線于點,平分.(1)若點,,都在點的右側.①求的度數;②若,求的度數.(不能使用“三角形的內角和是”直接解題)(2)在點的運動過程中,是否存在這樣的偕形,使?若存在,直接寫出的度數;若不存在.請說明理由.解析:(1)①35°;(2)55°;(2)存在,或【分析】(1)①依據平行線的性質以及角平分線的定義,即可得到∠PCG的度數;②依據平行線的性質以及角平分線的定義,即可得到∠ECG=∠GCF=20°,再根據PQ∥CE,即可得出∠CPQ=∠ECP=60°;(2)設∠EGC=3x,∠EFC=2x,則∠GCF=3x-2x=x,分兩種情況討論:①當點G、F在點E的右側時,②當點G、F在點E的左側時,依據等量關系列方程求解即可.【詳解】解:(1)①∵AB∥CD,∴∠CEB+∠ECQ=180°,∵∠CEB=110°,∴∠ECQ=70°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;②∵AB∥CD,∴∠QCG=∠EGC,∵∠QCG+∠ECG=∠ECQ=70°,∴∠EGC+∠ECG=70°,又∵∠EGC-∠ECG=30°,∴∠EGC=50°,∠ECG=20°,∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°?40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,設∠EGC=3x°,∠EFC=2x°,①當點G、F在點E的右側時,∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,則∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,則∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②當點G、F在點E的左側時,反向延長CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,∴∠PCQ=∠FCQ=62.5°,∴∠CPQ=∠ECP=62.5°-55°=7.5°,【點睛】本題主要考查了平行線的性質,掌握兩直線平行,同旁內角互補;兩直線平行,內錯角相等是解題的關鍵.13.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當平分時,證明:平分.(2)若如圖2擺放時,則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點,作和的角平分線相交于點(如圖3),求的度數.(4)若圖2中的周長,現將固定,將沿著方向平移至點與重合,平移后的得到,點的對應點分別是,請直接寫出四邊形的周長.(5)若圖2中固定,(如圖4)將繞點順時針旋轉,分鐘轉半圈,旋轉至與直線首次重合的過程中,當線段與的一條邊平行時,請直接寫出旋轉的時間.解析:(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運用角平分線定義及平行線性質即可證得結論;(2)如圖2,過點E作EK∥MN,利用平行線性質即可求得答案;(3)如圖3,分別過點F、H作FL∥MN,HR∥PQ,運用平行線性質和角平分線定義即可得出答案;(4)根據平移性質可得D′A=DF,DD′=EE′=AF=5cm,再結合DE+EF+DF=35cm,可得出答案;(5)設旋轉時間為t秒,由題意旋轉速度為1分鐘轉半圈,即每秒轉3°,分三種情況:①當BC∥DE時,②當BC∥EF時,③當BC∥DF時,分別求出旋轉角度后,列方程求解即可.【詳解】(1)如圖1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°?∠PEF=180°?120°=60°,∴∠MFD=∠MFE?∠DFE=60°?30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如圖2,過點E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF?∠KEA,又∵∠DEF=60°.∴∠PDE=60°?45°=15°,故答案為:15°;(3)如圖3,分別過點F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA?∠LFA,∵∠FGQ和∠GFA的角平分線GH、FH相交于點H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°?∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA?∠LFA=75°?45°=30°,∴∠GFL=∠GFA?∠LFA=150°?45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°?105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如圖4,∵將△DEF沿著CA方向平移至點F與A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四邊形DEAD′的周長為45cm;(5)設旋轉時間為t秒,由題意旋轉速度為1分鐘轉半圈,即每秒轉3°,分三種情況:BC∥DE時,如圖5,此時AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF時,如圖6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF時,如圖7,延長BC交MN于K,延長DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°?∠ACB=90°,∴∠CAK=90°?∠BKA=15°,∴∠CAE=180°?∠EAM?∠CAK=180°?45°?15°=120°,∴3t=120,解得:t=40,綜上所述,△ABC繞點A順時針旋轉的時間為10s或30s或40s時,線段BC與△DEF的一條邊平行.【點睛】本題主要考查了平行線性質及判定,角平分線定義,平移的性質等,添加輔助線,利用平行線性質是解題關鍵.14.如圖1,在平面直角坐標系中,A(a,0)是x軸正半軸上一點,C是第四象限內一點,CB⊥y軸交y軸負半軸于B(0,b),且|a﹣3|+(b+4)2=0,S四邊形AOBC=16.(1)求點C的坐標.(2)如圖2,設D為線段OB上一動點,當AD⊥AC時,∠ODA的角平分線與∠CAE的角平分線的反向延長線交于點P,求∠APD的度數;(點E在x軸的正半軸).(3)如圖3,當點D在線段OB上運動時,作DM⊥AD交BC于M點,∠BMD、∠DAO的平分線交于N點,則點D在運動過程中,∠N的大小是否會發(fā)生變化?若不變化,求出其值;若變化,請說明理由.解析:(1)C(5,﹣4);(2)90°;(3)見解析.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年質量管理與監(jiān)督操作手冊
- 兒童游樂場所安全管理規(guī)范(標準版)
- 會議風險評估與應對措施制度
- 公共交通線路優(yōu)化調整制度
- 2026年浙江舟山群島新區(qū)六橫管理委員會招聘備考題庫及參考答案詳解一套
- 中意寧波生態(tài)園控股集團有限公司2025年第三次公開招聘備考題庫及完整答案詳解一套
- 2026年某央企數據庫運維招聘備考題庫附答案詳解
- 養(yǎng)老院入住老人福利待遇保障制度
- 安全認知培訓課件
- 養(yǎng)老院入住老人法律權益保護制度
- 關于腦卒中試題及答案
- 2025年江蘇省蘇州市初三(上)英語期末陽光調研測卷含答案
- 2024年湖南財經工業(yè)職業(yè)技術學院單招職業(yè)傾向性測試題庫附答案
- T-CNAS 04-2019 住院患者身體約束護理
- XXXXXX工程施工合同執(zhí)行情況說明
- 全國行政區(qū)域身份證代碼表(電子表格版)
- 2024年廣東省公務員《申論(省市級)》試題真題及答案
- 腎內一科一品一特色護理
- 挖機租賃合同模板大全
- 2024愛德華EDWARDS消防報警系統(tǒng)產品技術手冊
- 民兵集訓通知函
評論
0/150
提交評論