版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
蘇教七年級下冊期末解答題壓軸數(shù)學模擬真題試題及答案解析一、解答題1.如圖,直線,、是、上的兩點,直線與、分別交于點、,點是直線上的一個動點(不與點、重合),連接、.(1)當點與點、在一直線上時,,,則_____.(2)若點與點、不在一直線上,試探索、、之間的關系,并證明你的結論.2.如圖,△ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于A1.(1)當∠A為70°時,∵∠ACD-∠ABD=∠______∴∠ACD-∠ABD=______°∵BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線∴∠A1CD-∠A1BD=(∠ACD-∠ABD)∴∠A1=______°;(2)∠A1BC的角平分線與∠A1CD的角平分線交于A2,∠A2BC與A2CD的平分線交于A3,如此繼續(xù)下去可得A4、…、An,請寫出∠A與∠An的數(shù)量關系______;(3)如圖2,四邊形ABCD中,∠F為∠ABC的角平分線及外角∠DCE的平分線所在的直線構成的角,若∠A+∠D=230度,則∠F=______.(4)如圖3,若E為BA延長線上一動點,連EC,∠AEC與∠ACE的角平分線交于Q,當E滑動時有下面兩個結論:①∠Q+∠A1的值為定值;②∠Q-∠A1的值為定值.其中有且只有一個是正確的,請寫出正確的結論,并求出其值.3.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當平分時,證明:平分.(2)若如圖2擺放時,則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點,作和的角平分線相交于點(如圖3),求的度數(shù).(4)若圖2中的周長,現(xiàn)將固定,將沿著方向平移至點與重合,平移后的得到,點的對應點分別是,請直接寫出四邊形的周長.(5)若圖2中固定,(如圖4)將繞點順時針旋轉,分鐘轉半圈,旋轉至與直線首次重合的過程中,當線段與的一條邊平行時,請直接寫出旋轉的時間.4.已知,,點為射線上一點.(1)如圖1,寫出、、之間的數(shù)量關系并證明;(2)如圖2,當點在延長線上時,求證:;(3)如圖3,平分,交于點,交于點,且:,,,求的度數(shù).5.如圖①所示,在三角形紙片中,,,將紙片的一角折疊,使點落在內的點處.(1)若,________.(2)如圖①,若各個角度不確定,試猜想,,之間的數(shù)量關系,直接寫出結論.②當點落在四邊形外部時(如圖②),(1)中的猜想是否仍然成立?若成立,請說明理由,若不成立,,,之間又存在什么關系?請說明.(3)應用:如圖③:把一個三角形的三個角向內折疊之后,且三個頂點不重合,那么圖中的和是________.6.如圖,,點在直線上,點在直線和之間,,平分.(1)求的度數(shù)(用含的式子表示);(2)過點作交的延長線于點,作的平分線交于點,請在備用圖中補全圖形,猜想與的位置關系,并證明;(3)將(2)中的“作的平分線交于點”改為“作射線將分為兩個部分,交于點”,其余條件不變,連接,若恰好平分,請直接寫出__________(用含的式子表示).7.[原題](1)已知直線,點P為平行線AB,CD之間的一點,如圖①,若,BE平分,DE平分,則__________.[探究](2)如圖②,,當點P在直線AB的上方時.若,和的平分線相交于點,與的平分線相交于點,與的平分線相交于點……以此類推,求的度數(shù).[變式](3)如圖③,,的平分線的反向延長線和的補角的平分線相交于點E,試猜想與的數(shù)量關系,并說明理由.8.如圖1,點O為直線上一點,過點O作射線,使,將一把直角三角尺的直角頂點放在點O處,一邊在射線上,另一邊在直線的下方,其中.(1)將圖1中的三角尺繞點O順時針旋轉至圖2,使一邊在的內部,且恰好平分,求的度數(shù);(2)將圖1中的三角尺繞點O順時針旋轉至圖3,使在的內部,請?zhí)骄颗c之間的數(shù)量關系,并說明理由.(3)將圖1中三角尺繞點O按每秒的速度沿順時針方向旋轉一周,旋轉過程中,在第_____秒時,邊恰好與射線平行;在第_______秒時,直線恰好平分銳角.9.如圖1,已知,是直線,外的一點,于點,交于點,滿足.(1)求的度數(shù);(2)如圖2,射線從出發(fā),以每秒的速度繞點按逆時針方向勻速旋轉,當?shù)竭_時立刻返回至,然后繼續(xù)按上述方式旋轉;射線從出發(fā),以相同的速度繞點按順時針方向旋轉至后停止運動,此時射線也停止運動.若射線、射線同時開始運動,設運動時間為秒.①當射線平分時,求的度數(shù);②當直線與直線相交所成的銳角是時,則________.10.如圖1,將一副三角板與三角板擺放在一起;如圖2,固定三角板,將三角板繞點A按順時針方向旋轉,記旋轉角().(1)當________度時,;當________度時;(2)當?shù)囊贿吪c的某一邊平行(不共線)時,直接寫出旋轉角的所有可能的度數(shù);(3)當,連接,利用圖4探究的度數(shù)是否發(fā)生變化,并給出你的證明.【參考答案】一、解答題1.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當點與點、在一直線上時,作出圖形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當點與點、在一直線上時,作出圖形,由AB∥CD,∠FHP=60°,可以推出=60°,計算∠PFD即可;(2)根據(jù)點P是動點,分三種情況討論:①當點P在AB與CD之間時;②當點P在AB上方時;③當點P在CD下方時,分別求出∠AEP、∠EPF、∠CFP之間的關系即可.【詳解】(1)當點與點、在一直線上時,作圖如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案為:120°;(2)滿足關系式為∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.證明:根據(jù)點P是動點,分三種情況討論:①當點P在AB與CD之間時,過點P作PQ∥AB,如下圖,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②當點P在AB上方時,如下圖所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③當點P在CD下方時,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,綜上所述,∠AEP、∠EPF、∠CFP之間滿足的關系式為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【點睛】本題考查了平行線的性質,外角的性質,掌握平行線的性質是解題的關鍵,注意分情況討論問題.2.(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值為定值正確,Q+∠A1=180°.【分析】(1)根據(jù)角平分線的定義可得∠A1BC=∠ABC,∠A1CD解析:(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值為定值正確,Q+∠A1=180°.【分析】(1)根據(jù)角平分線的定義可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分別平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出規(guī)律;(3)先根據(jù)四邊形內角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根據(jù)內角與外角的關系和角平分線的定義得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,從而得出結論;(4)依然要用三角形的外角性質求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形內角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的關系.【詳解】解:(1)當∠A為70°時,∵∠ACD-∠ABD=∠A,∴∠ACD-∠ABD=70°,∵BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線,∴∠A1CD-∠A1BD=(∠ACD-∠ABD)∴∠A1=35°;故答案為:A,70,35;(2)∵A1B、A1C分別平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠An,故答案為:∠A=2∠An.(3)∵∠ABC+∠DCB=360°-(∠A+∠D),∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,∴360°-(α+β)=180°-2∠F,2∠F=∠A+∠D-180°,∴∠F=(∠A+∠D)-90°,∵∠A+∠D=230°,∴∠F=25°;故答案為:25°.(4)①∠Q+∠A1的值為定值正確.∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線∴∠A1=∠A1CD-∠A1BD=∠BAC,∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分線,∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC,∴∠Q=180°-(∠QEC+∠QCE)=180°-∠BAC,∴∠Q+∠A1=180°.【點睛】本題主要考查三角形的外角性質和角平分線的定義的運用,根據(jù)推導過程對題目的結果進行規(guī)律總結對解題比較重要.3.(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運用角平分線定義及平行線性質即可證得結論;(2)如圖2,過點E作EK∥MN,利用平行線性解析:(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運用角平分線定義及平行線性質即可證得結論;(2)如圖2,過點E作EK∥MN,利用平行線性質即可求得答案;(3)如圖3,分別過點F、H作FL∥MN,HR∥PQ,運用平行線性質和角平分線定義即可得出答案;(4)根據(jù)平移性質可得D′A=DF,DD′=EE′=AF=5cm,再結合DE+EF+DF=35cm,可得出答案;(5)設旋轉時間為t秒,由題意旋轉速度為1分鐘轉半圈,即每秒轉3°,分三種情況:①當BC∥DE時,②當BC∥EF時,③當BC∥DF時,分別求出旋轉角度后,列方程求解即可.【詳解】(1)如圖1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°?∠PEF=180°?120°=60°,∴∠MFD=∠MFE?∠DFE=60°?30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如圖2,過點E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF?∠KEA,又∵∠DEF=60°.∴∠PDE=60°?45°=15°,故答案為:15°;(3)如圖3,分別過點F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA?∠LFA,∵∠FGQ和∠GFA的角平分線GH、FH相交于點H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°?∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA?∠LFA=75°?45°=30°,∴∠GFL=∠GFA?∠LFA=150°?45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°?105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如圖4,∵將△DEF沿著CA方向平移至點F與A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四邊形DEAD′的周長為45cm;(5)設旋轉時間為t秒,由題意旋轉速度為1分鐘轉半圈,即每秒轉3°,分三種情況:BC∥DE時,如圖5,此時AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF時,如圖6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF時,如圖7,延長BC交MN于K,延長DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°?∠ACB=90°,∴∠CAK=90°?∠BKA=15°,∴∠CAE=180°?∠EAM?∠CAK=180°?45°?15°=120°,∴3t=120,解得:t=40,綜上所述,△ABC繞點A順時針旋轉的時間為10s或30s或40s時,線段BC與△DEF的一條邊平行.【點睛】本題主要考查了平行線性質及判定,角平分線定義,平移的性質等,添加輔助線,利用平行線性質是解題關鍵.4.(1),證明見解析;(2)證明見解析;(3).【分析】(1)過E作EH∥AB,根據(jù)兩直線平行,內錯角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設CD與AE交于點H解析:(1),證明見解析;(2)證明見解析;(3).【分析】(1)過E作EH∥AB,根據(jù)兩直線平行,內錯角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設CD與AE交于點H,根據(jù)∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,進而得到∠EAF=∠AED+∠EDG;(3)設∠EAI=∠BAI=α,則∠CHE=∠BAE=2α,進而得出∠EDI=α+10°,∠CDI=α+5°,再根據(jù)∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,求得α=70°,即可根據(jù)三角形內角和定理,得到∠EKD的度數(shù).【詳解】解:(1)∠AED=∠EAF+∠EDG.理由:如圖1,過E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)證明:如圖2,設CD與AE交于點H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可設∠EAI=∠BAI=α,則∠BAE=2α,如圖3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【點睛】本題主要考查了平行線的性質,三角形外角性質以及三角形內角和定理的綜合應用,解決問題的關鍵是作輔助線構造內錯角,運用三角形外角性質進行計算求解.解題時注意:三角形的一個外角等于和它不相鄰的兩個內角的和.5.(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據(jù)題意,已知,,可結合三角形內角和定理和折疊變換的性質求解;(2)①先根據(jù)折疊得:∠ADE=∠A′DE,∠AED=∠A′解析:(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據(jù)題意,已知,,可結合三角形內角和定理和折疊變換的性質求解;(2)①先根據(jù)折疊得:∠ADE=∠A′DE,∠AED=∠A′ED,由兩個平角∠AEB和∠ADC得:∠1+∠2等于360°與四個折疊角的差,化簡得結果;②利用兩次外角定理得出結論;(3)由折疊可知∠1+∠2+∠3+∠4+∠5+∠6等于六邊形的內角和減去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的內角和定理即可求解.【詳解】解:(1)∵,,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE=180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°;(2)①,理由如下由折疊得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED,∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A;②,理由如下:∵是的一個外角∴.∵是的一個外角∴又∵∴(3)如圖由題意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【點睛】題主要考查了折疊變換、三角形、四邊形內角和定理.注意折疊前后圖形全等;三角形內角和為180°;四邊形內角和等于360度.6.(1);(2)畫圖見解析,,證明見解析;(3)或【分析】(1)根據(jù)平行線的傳遞性推出,再利用平行線的性質進行求解;(2)猜測,根據(jù)平分,推導出,再根據(jù)、平分,通過等量代換求解;(3)分兩種情解析:(1);(2)畫圖見解析,,證明見解析;(3)或【分析】(1)根據(jù)平行線的傳遞性推出,再利用平行線的性質進行求解;(2)猜測,根據(jù)平分,推導出,再根據(jù)、平分,通過等量代換求解;(3)分兩種情況進行討論,即當與,充分利用平行線的性質、角平分線的性質、等量代換的思想進行求解.【詳解】(1)過點作,,,,.(2)根據(jù)題意,補全圖形如下:猜測,由(1)可知:,平分,,,,,又平分,,,.(3)①如圖1,,由(2)可知:,,,,,,,,,,又平分,,;②如圖2,,(同①);若,則有,又,,,,綜上所述:或,故答案是:或.【點睛】本題考查了平行線的性質、角平分線、三角形內角和定理、垂直等相關知識點,解題的關鍵是掌握相關知識點,作出適當?shù)妮o助線,通過分類討論及等量代換進行求解.7.(1);(2);(3),理由見解析【分析】(1)過作,依據(jù)平行線的性質,即可得到,依據(jù)角平分線即可得出的度數(shù);(2)依據(jù)平行線的性質以及三角形外角性質,求得,,,以此類推的度數(shù)為;(3)過作解析:(1);(2);(3),理由見解析【分析】(1)過作,依據(jù)平行線的性質,即可得到,依據(jù)角平分線即可得出的度數(shù);(2)依據(jù)平行線的性質以及三角形外角性質,求得,,,以此類推的度數(shù)為;(3)過作,進而得出,再根據(jù)平行線的性質以及三角形外角性質,即可得到【詳解】解:(1)如圖1,過作,而,,,,,又,,平分,平分,,,,故答案為:;(2)如圖2,和的平分線交于點,,,,,,與的角平分線交于點,,,,,,同理可得,,以此類推,的度數(shù)為.(3).理由如下:如圖3,過作,而,,,,,又的角平分線的反向延長線和的補角的角平分線交于點,,,,,,.【點睛】本題考查了平行線性質以及三角形外角性質的應用,在解答此題時要注意作出輔助線,構造出平行線求解.8.(1)150°;(2)∠BOM-∠CON=30°;(3)9秒或27秒,6秒或24秒【分析】(1)根據(jù)鄰補角的定義求出∠AOC=120°,再根據(jù)角平分線的定義求出∠COM,然后根據(jù)∠CON=∠CO解析:(1)150°;(2)∠BOM-∠CON=30°;(3)9秒或27秒,6秒或24秒【分析】(1)根據(jù)鄰補角的定義求出∠AOC=120°,再根據(jù)角平分線的定義求出∠COM,然后根據(jù)∠CON=∠COM+90°解答;(2)用∠BOM和∠CON表示出∠BON,然后列出方程整理即可得解.(3)分別分兩種情況根據(jù)平行線的性質和旋轉的性質求出旋轉角,然后除以旋轉速度即可得解.【詳解】解:(1)∵∠AOC=120°,∴∠BOC=60°,又∵OM平分∠AOC,∴∠COM=∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)∵∠MON=90°,∠BOC=60°,∴∠BON=90°-∠BOM,∠BON=60°-∠CON,∴90°-∠BOM=60°-∠CON,∴∠BOM-∠CON=30°,故∠BOM與∠CON之間的數(shù)量關系為:∠BOM-∠CON=30°.(3)∵∠OMN=30°,∴∠N=90°-30°=60°,∵∠BOC=60°,∴當ON在直線AB上時,MN∥OC,如圖,則旋轉角為90°或270°,∵每秒順時針旋轉10°,∴時間為9秒或27秒;當直線ON恰好平分銳角∠BOC時,則旋轉角為90°-30°=60°或90°+150°=240°,∵每秒順時針旋轉10°,∴時間為6秒或24秒.【點睛】本題考查了旋轉的性質,角平分線的定義,平行線的性質,讀懂題目信息并熟練掌握各性質是解題的關鍵,難點在于(3)要分情況討論.9.(1);(2)①;②.【分析】(1)根據(jù),,可以得到,即,再根據(jù)三角形外角定理求解即可.(2)①射線平分時,可知此時,根據(jù)題意可以確定運動時間t=3s或t=9s,從而計算的度數(shù)即可;②用含t的解析:(1);(2)①;②.【分析】(1)根據(jù),,可以得到,即,再根據(jù)三角形外角定理求解即可.(2)①射線平分時,可知此時,根據(jù)題意可以確定運動時間
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藥房藥品出入庫管理制度
- 學校校產(chǎn)管理制度
- 最常考的申論題目及答案
- 外交風云測試題目及答案
- 養(yǎng)老院老人逝世后處理規(guī)定制度
- 養(yǎng)老院老人康復理療師職業(yè)發(fā)展規(guī)劃制度
- 養(yǎng)老院老人健康監(jiān)測人員行為規(guī)范制度
- 養(yǎng)老院健康促進制度
- 接種疫情面試題目及答案
- 辦公室員工離職原因分析制度
- 2025年貴州事業(yè)編a類考試真題及答案
- GB/T 21558-2025建筑絕熱用硬質聚氨酯泡沫塑料
- 煤礦機電運輸安全知識培訓課件
- DB11∕T1135-2024供熱系統(tǒng)有限空間作業(yè)安全技術規(guī)程
- DB14-T2535-2022煤炭綠色開采技術指南
- JT-T-939.2-2014公路LED照明燈具第2部分:公路隧道LED照明燈具
- 墻面防潮合同
- 皮膚科輪轉出科小結
- 醫(yī)院護士培訓課件:《護理值班、交接班制度》
- 產(chǎn)品開發(fā)任務書
- 《短歌行》《歸園田居(其一)》 統(tǒng)編版高中語文必修上冊
評論
0/150
提交評論