難點解析重慶長壽一中7年級數(shù)學下冊第五章生活中的軸對稱定向測評練習題(解析版)_第1頁
難點解析重慶長壽一中7年級數(shù)學下冊第五章生活中的軸對稱定向測評練習題(解析版)_第2頁
難點解析重慶長壽一中7年級數(shù)學下冊第五章生活中的軸對稱定向測評練習題(解析版)_第3頁
難點解析重慶長壽一中7年級數(shù)學下冊第五章生活中的軸對稱定向測評練習題(解析版)_第4頁
難點解析重慶長壽一中7年級數(shù)學下冊第五章生活中的軸對稱定向測評練習題(解析版)_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶長壽一中7年級數(shù)學下冊第五章生活中的軸對稱定向測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、下列圖案屬于軸對稱圖形的是()A. B. C. D.2、如圖,將正方形圖案翻折一次,可以得到的圖案是()A. B. C. D.3、下列四個圖案中,不是軸對稱圖形的是()A. B.C. D.4、下列四個標志中,是軸對稱圖形的是()A. B. C. D.5、下列圖形中,屬于軸對稱圖形的是()A. B. C. D.6、如圖,下列圖案是我國幾家銀行的標志,其中不是軸對稱圖形的是()A. B. C. D.7、下面是福州市幾所中學的校標,其中是軸對稱圖形的是()A. B. C. D.8、在千家萬戶團圓的時刻,我市一批醫(yī)務工作者奔赴武漢與疫情抗爭,他們是“最美逆行者”.下列藝術字中,可以看作是軸對稱圖形的是()A. B. C. D.9、下列圖形中,是軸對稱圖形的是()A. B. C. D.10、下列是部分防疫圖標,其中是軸對稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,AC平分∠DCB,CB=CD,DA的延長線交BC于點E,若∠DAC=125°,則∠BAE的度數(shù)為______.2、如圖,長方形紙片ABCD中AD∥BC,AB∥CD,∠A=90°,將紙片沿EF折疊,使頂點C、D分別落在點C'、D'處,C'E交AF于點G.若∠CEF=68°,則么∠GFD'=______°.3、小明和小穎下棋,小明執(zhí)圓子,小穎執(zhí)方子.如圖,棋盤中心方子的位置用(0,﹣1)表示,右上角方子的位置用(1,0)表示.小明將第4枚圓子放入棋盤后,所有棋子構成一個軸對稱圖形.他放的位置可以表示為____.4、如圖的三角形紙片中,AB=8,BC=6,AC=5,沿過點B的直線折疊這個三角形,使得點C落在AB邊上的點E處,折痕為BD,則△AED的周長=____.5、如圖,在3×3的正方形網格中,格線的交點稱為格點,以格點為頂點的三角形稱為格點三角形.圖中的△ABC為格點三角形.在圖中最多能畫出___個格點三角形與△ABC成軸對稱.6、如圖將一條兩邊互相平行的紙帶按如圖折疊,若∠EFG+∠EGD=150°,則∠EGD=_____7、如圖,△ABC中,AB=8cm,BC=5cm,AC=6cm,沿過點B的直線折疊三角形,使點C落在AB邊上的點E處,折痕為BD,則△AED的周長長度為__________.8、如圖,△ABC中,AD、BD、CD分別平分△ABC的外角∠CAE、內角∠ABC、外角∠ACF,AD∥BC.以下結論:①∠ABC=∠ACB;②∠ADC+∠ABD=90°;③BD平分∠ADC;④2∠BDC=∠BAC.其中正確的結論有____________.(填序號)9、在“線段,角,相交線,等腰三角形”這四個圖形中,是軸對稱圖形的有___個.10、如圖,ABC與關于直線l對稱,則∠B的度數(shù)為__________.三、解答題(6小題,每小題10分,共計60分)1、如圖所示,把一塊長方形紙片ABCD沿EF折疊,∠EFG=50°,求∠DEG和∠BGM的大?。?、如圖,正方形網格中每個小正方形邊長都是1,畫出關于直線對稱的.3、如圖1,射線OP平分∠MON,在射線OM,ON上分別截取線段OA,OB,使OA=OB,在射線OP上任取一點D,連接AD,BD.易得:AD=BD.(1)如圖2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求證:BC=AC+AD;(2)如圖3,在四邊形ABDE中,AB=10,DE=2,BD=6,C為BD邊中點.若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.4、如圖是三個5×5的正方形網格,請你用三種不同的方法分別把每幅圖中的一個白色小正方形涂上陰影,使每幅圖中的陰影部分成為一個軸對稱圖形.5、如圖①、圖②、圖③都是3×3的正方形網格,每個小正方形的頂點稱為格點.A,B,C均為格點.在給定的網格中,按下列要求畫圖:(1)在圖①中,畫一條不與AB重合的線段MN,使MN與AB關于某條直線對稱,且M、N為格點;(2)在圖②中,畫一條不與AC重合的線段PQ,使PQ與AC關于某條直線對稱,且P,Q為格點;(3)在圖③中,畫一個△DEF,使△DEF與△ABC關于某條直線對稱,且D,E,F(xiàn)為格點.6、如圖,網格中的△ABC與△DEF為軸對稱圖形.(1)利用網格線作出△ABC與△DEF的對稱軸l;(2)如果每一個小正方形的邊長為1,請直接寫出△ABC的面積=.-參考答案-一、單選題1、C【分析】根據(jù)如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸進行分析.【詳解】解:A、不是軸對稱圖形,故此選項不符合題意;B、不是軸對稱圖形,故此選項不符合題意;C、是軸對稱圖形,故此選項符合題意;D、不是軸對稱圖形,故此選項不符合題意;故選:C.【點睛】本題考查了軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.2、B【分析】根據(jù)軸對稱的性質進行解答判斷即可.【詳解】解:利用軸對稱可得將正方形圖案翻折一次,可以得到的圖案是,故選:B.【點睛】本題考查了軸對稱的性質,熟練掌握軸對稱的定義與性質是解本題的關鍵.3、B【分析】根據(jù)軸對稱圖形的概念:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形進行分析即可.【詳解】解:A、是軸對稱圖形,不合題意;B、不是軸對稱圖形,符合題意;C、是軸對稱圖形,不合題意;D、是軸對稱圖形,不合題意.故選:B.【點睛】此題主要考查了軸對稱圖形,正確掌握軸對稱圖形的性質是解題關鍵.4、D【分析】利用軸對稱圖形的定義進行解答即可.【詳解】解:A、不是軸對稱圖形,故此選項不合題意;B、不是軸對稱圖形,故此選項不符合題意;C、不是軸對稱圖形,故此選項不合題意;D、是軸對稱圖形,故此選項符合題意;故選:D.【點睛】此題主要考查了軸對稱圖形,關鍵是掌握如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.5、A【分析】根據(jù)軸對稱的定義,把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形完全重合,稱這兩個圖形為軸對稱圖形判斷即可;【詳解】根據(jù)軸對稱圖形的定義可知,是軸對稱圖形;故選A.【點睛】本題主要考查了軸對稱圖形的識別,準確分析判斷是解題的關鍵.6、C【分析】將一個圖形沿著一條直線翻折后,兩側能夠完全重合的圖形是軸對稱圖形,根據(jù)定義判斷即可.【詳解】A、是軸對稱圖形;B、是軸對稱圖形;C、不是軸對稱圖形;D、是軸對稱圖形,故選:C.【點睛】此題考查軸對稱圖形的定義,正確理解圖形的特點是解題的關鍵.7、A【分析】結合軸對稱圖形的概念進行求解即可.【詳解】A、是軸對稱圖形,本選項符合題意;B、不是軸對稱圖形,本選項不合題意;C、不是軸對稱圖形,本選項不合題意;D、不是軸對稱圖形,本選項不合題意.故選:A.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.8、B【分析】把一個圖形沿某一條直線對折,直線兩旁的部分能夠完全重合的圖形叫做軸對稱圖形,根據(jù)定義判斷即可.【詳解】解:A、不是軸對稱圖形.B、是軸對稱圖形.C、不是軸對稱圖形.D、不是軸對稱圖形.故選:B.【點睛】本題主要是考查了軸對稱圖形的定義,熟練掌握軸對稱圖形的定義是解題的關鍵.9、D【分析】如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸.【詳解】解:選項A、B、C均不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是軸對稱圖形;選項D能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是軸對稱圖形;故選:D.【點睛】本題主要考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.10、C【分析】直接根據(jù)軸對稱圖形的概念分別解答得出答案.如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:選項A、B、D均不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是軸對稱圖形,選項C能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是軸對稱圖形,故選:C.【點睛】本題考查的是軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,解題關鍵是掌握軸對稱圖形的概念.二、填空題1、70°【分析】先根據(jù)角平分線的定義得到∠DCA=∠BCA,即可利用SAS證明△DCA≌△BCA得到∠BAC=∠DAC=125°,由∠CAE=180°-∠DAC=55°,則∠BAE=∠BAC-∠CAE=70°.【詳解】解:∵AC平分∠DCB,∴∠DCA=∠BCA,又∵CB=CD,CA=CA,∴△DCA≌△BCA(SAS),∴∠BAC=∠DAC=125°,∵∠CAE=180°-∠DAC=55°,∴∠BAE=∠BAC-∠CAE=70°,故答案為:70°.【點睛】本題主要考查了全等三角形的性質與判定,角平分線的定義,解題的關鍵在于能夠熟練掌握全等三角形的性質與判定條件.2、44【分析】根據(jù)平行線的性質和翻折不變性解答.【詳解】解:∵ADBC,∴∠DFE=180°?∠CEF=180°?68°=112°,∴∠D′FE=112°,∠GFE=180°?112°=68°,∴∠GFD′=112°?68°=44°.故答案為:44.【點睛】本題考查了平行線的性質和翻折不變性,注意觀察圖形.3、【分析】根據(jù)題意確定坐標原點的位置,根據(jù)軸對稱圖形的性質,確定圓子的位置,再求出坐標即可.【詳解】解:根據(jù)題意可得:棋盤中心方子的坐標為(0,﹣1),右上角方子的坐標為(1,0)則坐標原點為最右側中間圓子的位置,如圖建立坐標系:放入第4枚圓子,使得圖形為軸對稱圖形,則圓子的位置應該在中間一排方子的上方,如下圖:點的位置坐標為故答案為【點睛】此題考查了圖形與坐標,軸對稱圖形的性質,解題的關鍵是根據(jù)題意確定原點的位置并且確定軸對稱圖形時,圓子的位置.4、7【分析】根據(jù)折疊的性質,可得BE=BC=6,CD=DE,從而AE=AB-BE=2,再由△AED的周長=AD+DE+AE,即可求解.【詳解】解:∵沿過點B的直線折疊這個三角形,使得點C落在AB邊上的點E處,∴BE=BC=6,CD=DE,∵AB=8,∴AE=AB-BE=2,∴△AED的周長=AD+DE+AE=AD+CD+AE=AC+DE=5+2=7.故答案為:7【點睛】本題主要考查了折疊的性質,熟練掌握折疊前后對應線段相等,對應角相等是解題的關鍵.5、6【分析】根據(jù)網格結構分別確定出不同的對稱軸,然后作出軸對稱三角形即可得解【詳解】解:如圖,以AB的中垂線為對稱軸如圖1,以BC邊所在直線為對稱軸如圖2,以AB邊所在三網格中間網格的垂直平分線為對稱軸如圖3,以BC邊中垂線為對稱軸,以3×3網格的對角線所在直線為對稱軸如圖5,圖6,最多能畫出6個格點三角形與△ABC成軸對稱.故答案為:6.【點睛】本題考查了利用軸對稱變換作圖,熟練掌握網格結構并準確找出對應點的位置是解題的關鍵,本題難點在于確定出不同的對稱軸.6、【分析】先根據(jù)平行線的性質得到,結合已知∠EFG+∠EGD=150°,解得∠EGD=,再根據(jù)折疊的性質解得,結合兩直線平行,同旁內角互補得到,據(jù)此整理得,進而解題.【詳解】解:∠EFG+∠EGD=150°,∠EGD=折疊故答案為:.【點睛】本題考查折疊的性質、平行線的性質等知識,兩直線平行,同旁內角互補,掌握相關知識是解題關鍵.7、9cm【分析】根據(jù)翻折的性質可知CD=DE,BC=BE,于是可以得到AD+DE的長和AE的長,從而可以得到△ADE的周長.【詳解】解:由題意可得,BC=BE,CD=DE,∵AB=8cm,BC=5cm,AC=6cm,∴AD+DE=AD+CD=AC=6cm,AE=AB-BE=AB-BC=8-5=3cm,∴AD+DE+AE=9cm,即△AED的周長為9cm,故選:C.【點睛】本題考查翻折變換和三角形的周長,解答本題的關鍵是利用等量代換的思想,求三角形的周長.8、①②④【分析】根據(jù)角平分線的定義得到∠EAD=∠CAD,根據(jù)平行線的性質得到∠EAD=∠ABC,∠CAD=∠ACB,求得∠ABC=∠ACB,故①正確;根據(jù)角平分線的定義得到∠ADC=90°∠ABC,求得∠ADC+∠ABD=90°故②正確;根據(jù)全等三角形的性質得到AB=CB,與題目條件矛盾,故③錯誤,根據(jù)角平分線的定義和三角形外角的性質即可得到2∠BDC=∠BAC,故④正確.【詳解】解:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠EAD=∠ABC,∠CAD=∠ACB,∴∠ABC=∠ACB,故①正確;∵AD,CD分別平分∠EAC,∠ACF,∴可得∠ADC=90°∠ABC,∴∠ADC+∠ABC=90°,∴∠ADC+∠ABD=90°,故②正確;∵∠ABD=∠DBC,BD=BD,∠ADB=∠BDC,∴△ABD≌△BCD(ASA),∴AB=CB,與題目條件矛盾,故③錯誤,∵∠DCF=∠DBC+∠BDC,∠ACF=∠ABC+∠BAC,∴2∠DCF=2∠DBC+2∠BDC,2∠DCF=2∠DBC+∠BAC,∴2∠BDC=∠BAC,故④正確,故答案為:①②④.【點睛】本題考查了三角形的外角的性質,平行線的性質,角平分線的定義,正確的識別圖形是解題的關鍵.9、4【分析】根據(jù)軸對稱的定義,即有一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱判斷即可;【詳解】解:根據(jù)軸對稱圖形的定義可知:一條線段的對稱軸是線段的垂直平分線;一個角其對稱軸是該角的角平分線所在的直線;相交線是軸對稱圖形,等腰三角形是軸對稱圖形,故共有4個軸對稱圖形.故答案為:4.【點睛】本題主要考查了軸對稱圖形的判定,準確分析判斷是解題的關鍵.10、100°【分析】根據(jù)軸對稱的性質可得≌,再根據(jù)和的度數(shù)即可求出的度數(shù).【詳解】解:∵與關于直線l對稱∴≌∴,∴故答案為:【點睛】本題主要考查了軸對稱的性質以及全等的性質,熟練掌握軸對稱的性質和全等的性質是解答此題的關鍵.三、解答題1、∠DEG=100°,∠BGM=80°【分析】根據(jù)平行線的性質可求得∠DEF=∠EFG=50°,然后根據(jù)折疊的性質可知∠DEF=∠MEF=50°,繼而可求得∠DEG,再由∠EGC+∠DEG=180°,解得∠EGC,進而求得∠BGM的度數(shù).【詳解】解:∵AD∥BC,∠EFG=50°,∴∠DEF=∠EFG=50°,由折疊的性質可知,∠MEF=∠DEF=50°,∴∠DEG=∠MEF+∠DEF=100°,∵AD∥BC,∴∠EGC+∠DEG=180°,∴∠EGC=180°-100°=80°,則∠BGM=∠EGC=80°(對頂角相等).【點睛】本題考查了平行線的性質以及折疊的性質,解答本題的關鍵是熟練掌握平行線的性質:兩直線平行,內錯角相等;兩直線平行,同旁內角互補.2、見解析【分析】先分別畫出點A、B、C關于直線l的對稱點,然后順次連接即可.【詳解】解:如圖,為所作:.【點睛】本題考查了作圖-軸對稱變換:幾何圖形都可看作是由點組成,我們在畫一個圖形的軸對稱圖形時,也是先從確定一些特殊的對稱點開始的.3、(1)見解析;(2)15.【分析】(1)證△ECD≌△ACD(SAS),得EC=AC,DE=AD,∠CED=∠A=60°,再證BE=DE,則BE=AD,即可得出結論;(2)在AE上取點F,使AF=AB,連接CF,在AE上取點G,使EG=ED,連接CG,證△ACB≌△ACF(SAS),得CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可證△CGE≌△CDE(SAS),得CG=CD=3,GE=DE=2,∠DCE=∠GCE,再證△CFG是等邊三角形,得FG=CG=3,即可求解.【詳解】(1)證明:在CB上截取CE=AE,連接DE,如圖所示:∵CD平分∠ACB,∴∠BCD=∠ACD,又∵CD=CD,∴△ECD≌△ACD(SAS),∴EC=AC,DE=AD,∠CED=∠A=60°,∵∠ACB=90°,∠A=60°,∴∠B=30°,又∵∠CED=∠EDB+∠B,∴∠EDB=60°-30°=30°,∴∠EDB=∠B,∴BE=DE,∴BE=AD,∵BC=EC+BE,∴BC=AC+AD;(2)解:在AE上取點F,使AF=AB,連接CF,在AE上取點G,使EG=ED,連接CG,如圖所示:∵C是BD邊的中點,BD=6,∴CB=CD=BD=3,∵AC平分∠BAE,∴∠BAC=∠FAC,又∵AC=AC,∴△ACB≌△ACF(SAS),∴CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可證:△CGE≌△CDE(SAS),∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論