2024四川省馬爾康市中考數(shù)學題庫檢測試題打印及完整答案詳解(各地真題)_第1頁
2024四川省馬爾康市中考數(shù)學題庫檢測試題打印及完整答案詳解(各地真題)_第2頁
2024四川省馬爾康市中考數(shù)學題庫檢測試題打印及完整答案詳解(各地真題)_第3頁
2024四川省馬爾康市中考數(shù)學題庫檢測試題打印及完整答案詳解(各地真題)_第4頁
2024四川省馬爾康市中考數(shù)學題庫檢測試題打印及完整答案詳解(各地真題)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省馬爾康市中考數(shù)學題庫檢測試題打印考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、一元二次方程配方后可化為(

)A. B.C. D.2、把拋物線向右平移2個單位,然后向下平移1個單位,則平移后得到的拋物線解析式是(

)A. B.C. D.3、距考試還有20天的時間,為鼓舞干勁,老師要求班上每一名同學要給同組的其他同學寫一份拼搏進取的留言,小明所在的小組共寫了30份留言,該小組共有()A.7人 B.6人 C.5人 D.4人4、在一個不透明的口袋中,裝有若干個除顏色不同其余都相同的球,如果口袋中裝有4個黑球且摸到黑球的概率為,那么口袋中球的總數(shù)為()A.12個 B.9個 C.6個 D.3個5、如圖,正五邊形內接于⊙,為上的一點(點不與點重合),則的度數(shù)為(

)A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、如圖,在中,,,點D,E分別為,上的點,且.將繞點A逆時針旋轉至點B,A,E在同一條直線上,連接,.下列結論正確的是(

)A. B. C. D.旋轉角為2、下列各組圖形中,由左邊變成右邊的圖形,分別進行了平移、旋轉、軸對稱、中心對稱等變換,其中進行了旋轉變換的是(

)組,進行軸對稱變換的是(

).A. B. C. D.3、下列說法不正確的是(

)A.經(jīng)過三個點有且只有一個圓B.經(jīng)過兩點的圓的圓心是這兩點連線的中點C.鈍角三角形的外心在三角形外部D.等腰三角形的外心即為其中心4、二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論中正確的有()A.4a+b=0B.9a+c>﹣3bC.7a﹣3b+2c>0D.若點A(﹣3,y1)、點B(﹣,y2)、點C(7,y3)在該函數(shù)圖象上,則y1<y3<y2E.若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x25、如圖所示,二次函數(shù)的圖象的一部分,圖像與x軸交于點.下列結論中正確的是(

)A.拋物線與x軸的另一個交點坐標是B.C.若拋物線經(jīng)過點,則關于x的一元二次方程的兩根分別為,5D.將拋物線向左平移3個單位,則新拋物線的表達式為第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,在一塊長為22m,寬為14m的矩形空地內修建三條寬度相等的小路(陰影部分),其余部分種植花草.若花草的種植面積為240m2,則小路的寬為________m.2、如圖,拋物線y=﹣x2+x+2與x軸相交于A、B兩點,與y軸相交于點C,點D在拋物線上,且CD∥AB.AD與y軸相交于點E,過點E的直線PQ平行于x軸,與拋物線相交于P,Q兩點,則線段PQ的長為_____.3、若m,n是關于x的方程x2-3x-3=0的兩根,則代數(shù)式m2+n2-2mn=_____.4、某班共有36名同學,其中男生16人,喜歡數(shù)學的同學有12人,喜歡體育的同學有24人.從該班同學的學號中隨意抽取1名同學,設這名同學是女生的可能性為a,這名同學喜歡數(shù)學的可能性為b,這名同學喜歡體育的可能性為c,則a,b,c的大小關系是___________.5、將拋物線沿直線方向移動個單位長度,若移動后拋物線的頂點在第一象限,則移動后拋物線的解析式是__________.四、解答題(6小題,每小題10分,共計60分)1、如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點P⊙O上,∠1=∠C.(1)求證:CB∥PD;(2)若∠ABC=55°,求∠P的度數(shù).2、某超市經(jīng)銷一種商品,每件成本為50元.經(jīng)市場調研,當該商品每件的銷售價為60元時,每個月可銷售300件,若每件的銷售價每增加1元,則每個月的銷售量將減少10件.設該商品每件的銷售價為x元,每個月的銷售量為y件.(1)求y與x的函數(shù)表達式;(2)當該商品每件的銷售價為多少元時,每個月的銷售利潤最大?最大利潤是多少?3、某賓館共有80間客房.賓館負責人根據(jù)經(jīng)驗作出預測:今年5月份,每天的房間空閑數(shù)y(間)與定價x(元/間)之間滿足y=x﹣42(x≥168).若賓館每天的日常運營成本為4000元,有客人入住的房間,賓館每天每間另外還需支出36元的各種費用,賓館想要獲得最大利潤,同時也想讓客人得到實惠.(1)求入住房間z(間)與定價x(元/間)之間關系式;(2)應將房間定價確定為多少元時,獲得利潤最大?求出最大利潤?4、如圖是兩條互相垂直的街道,且A到B,C的距離都是4千米.現(xiàn)甲從B地走向A地,乙從A地走向C地,若兩人同時出發(fā)且速度都是4千米/時,問何時兩人之間的距離最近?5、為增加農民收入,助力鄉(xiāng)村振興.某駐村干部指導農戶進行草莓種植和銷售,已知草莓的種植成本為8元/千克,經(jīng)市場調查發(fā)現(xiàn),今年五一期間草莓的銷售量y(千克)與銷售單價x(元/千克)(8≤x≤40)滿足的函數(shù)圖象如圖所示.(1)根據(jù)圖象信息,求y與x的函數(shù)關系式;(2)求五一期間銷售草莓獲得的最大利潤.6、解方程:(1)x2-x-2=0;(2)3x(x-2)=2-x.-參考答案-一、單選題1、B【解析】【分析】根據(jù)題意直接對一元二次方程配方,然后把常數(shù)項移到等號右邊即可.【詳解】解:根據(jù)題意,把一元二次方程配方得:,即,∴化成的形式為.故選:B.【考點】本題考查配方法解一元二次方程,注意掌握配方法的一般步驟:把常數(shù)項移到等號的右邊;把二次項的系數(shù)化為1;等式兩邊同時加上一次項系數(shù)一半的平方.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).2、D【解析】【分析】直接根據(jù)“左加右減,上加下減”的原則進行解答即可.【詳解】由“左加右減”的原則可知,拋物線y=2x2向右平移2個單位所得拋物線是y=2(x?2)2;由“上加下減”的原則可知,拋物線y=2(x?2)2向下平移1個單位所得拋物線是y=2(x?2)2?1.故選D.【考點】本題考查了二次函數(shù)圖象與幾何變換,解題的關鍵是掌握二次函數(shù)圖象與幾何變換.3、B【解析】【分析】設小組有x人,根據(jù)題意,得x(x-1)=30,解方程即可.【詳解】設小組有x人,根據(jù)題意,得x(x-1)=30,整理,得,解方程,得(舍去),故選B.【考點】本題考查了一元二次方程的應用,熟練掌握方程的應用是解題的關鍵.4、A【解析】【詳解】解:∵口袋中裝有4個黑球且摸到黑球的概率為,∴口袋中球的總數(shù)為:4÷=12(個).故選A.5、B【解析】【分析】根據(jù)圓周角的性質即可求解.【詳解】連接CO、DO,正五邊形內心與相鄰兩點的夾角為72°,即∠COD=72°,同一圓中,同弧或同弦所對應的圓周角為圓心角的一半,故∠CPD=,故選B.【考點】此題主要考查圓內接多邊形的性質,解題的關鍵是熟知圓周角定理的應用.二、多選題1、ABC【解析】【分析】由AB=AC,∠B=30°,得出∠B=∠C=30°,∠BAC=120°,得出將△ADE繞點A逆時針旋轉至點B、A、E在同一條直線上,可得旋轉角為60°,故D錯誤;由DE∥BC,易證AD=AE,得出BD=EC,故C正確;BE=AE+AB=AD+AC,故B正確;證明∠DAC=∠EAC,由AD=AE,得出DE⊥AC,故A正確;即可得出結果.【詳解】解:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∠BAC=120°,∴將△ADE繞點A逆時針旋轉至點B、A、E在同一條直線上,則旋轉角為:180°120°=60°,故D錯誤;∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠ADE=∠AED,∴AD=AE,∴BD=EC,故C正確;BE=AE+AB=AD+AC,故B正確;∵∠BAC=∠DAE=120°,∴∠EAC=180°-∠BAC=180°-120°=60°,∠DAC=120°-∠EAC=120°-60°=60°,∴∠DAC=∠EAC,∵AD=AE,∴DE⊥AC,故A正確;故選:ABC.【考點】本題考查了旋轉的性質、等腰三角形的判定與性質、平行線的性質等知識;熟練掌握旋轉的性質與等腰三角形的性質是解題的關鍵.2、AC【解析】【分析】旋轉是一個圖形繞著一個定點旋轉一定的角度,各對應點之間的位置關系也保持不變;在平面內,如果一個圖形沿一條直線對折,對折后的兩部分都能完全重合,這樣的圖形叫做軸對稱圖形,這條直線就是其對稱軸.據(jù)此即可解答.【詳解】由旋轉是一個圖形繞著一個定點旋轉一定的角度,各對應點之間的位置關系也保持不變,分析可得,進行旋轉變換的是A;左邊圖形能軸對稱變換得到右邊圖形,則進行軸對稱變換的是C;根據(jù)平移是將一個圖形從一個位置變換到另一個位置,各對應點間的連線平行,分析可得,D是平移變化;故答案為:A;C.【考點】本題考查了幾何變換的定義,注意結合幾何變換的定義,分析圖形的位置的關系,特別是對應點之間的關系.3、ABD【解析】【分析】A.根據(jù)確定圓的條件求解即可;B.根據(jù)確定圓心的方法求解即可;C.根據(jù)三角形外心的性質求解即可;D.根據(jù)三角形外心的性質求解即可;【詳解】解:A、如果三個點在一條直線上,不存在經(jīng)過這三個點的圓,故選項錯誤,符合題意;B、經(jīng)過兩點的圓的所有圓心在兩點連線的垂直平分線上,不僅僅是這兩點連線的中點,故選項錯誤,符合題意;C、鈍角三角形的外心是三邊垂直平分線的交點,在三角形外部,選項正確,不符合題意;D、等腰三角形的外心是三邊垂直平分線的交點,不是其中心,故選項錯誤,符合題意;故選:ABD.【考點】此題考查了確定圓的條件,確定圓心的方法,三角形的外心等知識,解題的關鍵是熟練掌握確定圓的條件,確定圓心的方法,三角形的外心.4、ABE【解析】【分析】根據(jù)拋物線的對稱軸為直線x=2,則有4a+b=0,可得A正確;根據(jù)二次函數(shù)的對稱性得到當x=3時,函數(shù)值大于0,則9a+3b+c>0,即9a+c>﹣3b,可得B正確;由于x=﹣1時,y=0,則a﹣b+c=0,易得c=﹣5a,所以7a-3b+2c=9a,再根據(jù)拋物線開口向下得a<0,于是有7a﹣3b+2c<0,可得C錯誤;利用拋物線的對稱性得到(﹣3,)在拋物線上,然后利用二次函數(shù)的增減性可得D錯誤;作出直線y=﹣3,然后依據(jù)函數(shù)圖象進行判斷可得E正確;綜上即可得答案.【詳解】A項:∵x==2,∴4a+b=0,故A正確.B項:∵拋物線與x軸的一個交點為(-1,0),對稱軸為直線x=2,∴另一個交點為(5,0),∵拋物線開口向下,∴當x=3時,y>0,即9a+3b+c>0,∴9a+c>﹣3b,故B正確.C項:∵拋物線與x軸的一個交點為(﹣1,0),∴a﹣b+c=0∵b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴7a﹣3b+2c=7a+12a﹣10a=9a,∵拋物線開口向下,∴a<0,∴7a﹣3b+2c<0,故C錯誤;D項:∵拋物線的對稱軸為x=2,C(7,)在拋物線上,∴點(﹣3,)與C(7,)關于對稱軸x=2對稱,∵A(﹣3,)在拋物線上,∴=,∵﹣3<﹣12,在對稱軸的左側,拋物線開口向下,∴y隨x的增大而增大,∴=<,故D錯誤.E項:方程a(x+1)(x﹣5)=0的兩根為x=﹣1或x=5,過y=﹣3作x軸的平行線,直線y=﹣3與拋物線的交點的橫坐標為方程的兩根,∵<,拋物線與x軸交點為(-1,0),(5,0),∴依據(jù)函數(shù)圖象可知:<﹣1<5<,故E正確.故答案為:ABE【考點】本題考查了二次函數(shù)圖象與系數(shù)的關系:二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大小,當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置,當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點.拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定,△=b2﹣4ac>0時,拋物線與x軸有2個交點;△=b2﹣4ac=0時,拋物線與x軸有1個交點;△=b2﹣4ac<0時,拋物線與x軸沒有交點.5、ABD【解析】【分析】結合圖象,根據(jù)二次函數(shù)的性質進行判斷即可求解【詳解】∵拋物線開口向下,∴a<0,將(-1,0)代入拋物線方程,可得:4a+k=0,∵4a+k=0,∴k=-4a,∴k+a=-3a,∵a<0,∴k+a=-3a>0,即B選項正確;將k=-4a代入拋物線方程,可得:拋物線方程為:,當y=0時,方程的根為-1和3,∴拋物線與x軸的另一個交點為(3,0),即A項正確;將點(-3,m)代入到拋物線方程,可得m=12a,∵結合k=-4a,∴方程,化簡為:,∵a<0,∴,即,顯然方程無實數(shù)解,故C項說法錯誤;向左平移3個單位,依據(jù)左加右減原則,可得新拋物線為:,即D說法正確,故選:ABD.【考點】本題考查了拋物線的性質與圖象的知識,解答本題時需注重運用數(shù)形結合的思想.三、填空題1、2【解析】【分析】設小路寬為xm,則種植花草部分的面積等同于長(22-x)m,寬(14-x)m的矩形的面積,根據(jù)花草的種植面積為240m2,即可得出關于x的一元二次方程,解之取其符合題意的值即可得出結論.【詳解】解:設小路寬為xm,則種植花草部分的面積等同于長(22-x)m,寬(14-x)m的矩形的面積,依題意得:(22-x)(14-x)=240,整理得:x2-36x+68=0,解得:x1=2,x2=34(不合題意,舍去).故答案為:2.【考點】本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.2、2【解析】【分析】利用二次函數(shù)圖象上點的坐標特征可求出點A,B,C,D的坐標,由點A,D的坐標,利用待定系數(shù)法可求出直線AD的解析式,利用一次函數(shù)圖象上點的坐標特征可求出點E的坐標,再利用二次函數(shù)圖象上點的坐標特征可得出點P,Q的坐標,進而可求出線段PQ的長.【詳解】解:當y=0時,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴點A的坐標為(﹣2,0);當x=0時,y=﹣x2+x+2=2,∴點C的坐標為(0,2);當y=2時,﹣x2+x+2=2,解得:x1=0,x2=2,∴點D的坐標為(2,2).設直線AD的解析式為y=kx+b(k≠0),將A(﹣2,0),D(2,2)代入y=kx+b,得:解得:∴直線AD的解析式為y=x+1.當x=0時,y=x+1=1,∴點E的坐標為(0,1).當y=1時,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴點P的坐標為(1﹣,1),點Q的坐標為(1+,1),∴PQ=1+﹣(1﹣)=2.故答案為:2.【考點】本題考查了拋物線與x軸的交點、二次函數(shù)圖象上點的坐標特征、待定系數(shù)法求一次函數(shù)解析式以及一次函數(shù)圖象上點的坐標特征,利用二次函數(shù)圖象上點的坐標特征求出點P,Q的坐標是解題的關鍵.3、21【解析】【分析】先根據(jù)根與系數(shù)的關系得到m+n=3,mn=﹣3,再根據(jù)完全平方公式變形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整體代入的方法計算.【詳解】解:∵m,n是關于x的方程x2-3x-3=0的兩根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案為:21.【考點】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2,x1x2.4、c>a>b【解析】【分析】根據(jù)概率公式分別求出各事件的概率,故可求解.【詳解】依題意可得從該班同學的學號中隨意抽取1名同學,設這名同學是女生的可能性為,這名同學喜歡數(shù)學的可能性為,這名同學喜歡體育的可能性為,∵>>∴a,b,c的大小關系是c>a>b故答案為:c>a>b.【考點】本題考查概率公式的基本計算,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.5、【解析】【分析】設拋物線沿直線方向移動個單位長度后頂點坐標為(t,3t),再求出平移后的頂點坐標,最后求出平移后的函數(shù)關系式.【詳解】設拋物線沿直線方向移動個單位長度后頂點坐標為(t,3t),∴,解得:t=1或t=-1(舍去),∴平移后的頂點坐標為(1,3),∴移動后拋物線的解析式是.故答案為:.【考點】本題考查二次函數(shù)的圖象變換及一次函數(shù)的圖像,解題的關鍵是正確理解圖象變換的條件,本題屬于基礎題型.四、解答題1、(1)證明見解析;(2)35°【解析】【詳解】試題分析:(1)要證明CB∥PD,只要證明∠1=∠P;由∠1=∠C,∠P=∠C,可得∠1=∠P,即可解決問題;(2)在Rt△CEB中,求出∠C即可解決問題.試題解析:(1)如圖,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD;(2)∵CD⊥AB,∴∠CEB=90°,∵∠CBE=55°,∴∠C=90°﹣55°=35°,∴∠P=∠C=35°.【考點】主要考查了圓周角定理、垂徑定理、直角三角形的性質等知識,解題的關鍵是熟練掌握基本知識.2、(1)y=-10x+900;(2)每件銷售價為70元時,獲得最大利潤;最大利潤為4000元【解析】【分析】(1)根據(jù)等量關系“利潤=(售價﹣進價)×銷量”列出函數(shù)表達式即可.(2)根據(jù)(1)中列出函數(shù)關系式,配方后依據(jù)二次函數(shù)的性質求得利潤最大值.【詳解】解:(1)根據(jù)題意,y=300﹣10(x﹣60)=-10x+900,∴y與x的函數(shù)表達式為:y=-10x+900;(2)設利潤為w,由(1)知:w=(x﹣50)(-10x+900)=﹣10x2+1400x﹣45000,∴w=﹣10(x﹣70)2+4000,∴每件銷售價為70元時,獲得最大利潤;最大利潤為4000元.【考點】本題考查的是二次函數(shù)在實際生活中的應用.此題難度不大,解題的關鍵是理解題意,找到等量關系,求得二次函數(shù)解析式.3、(1)z=﹣x+122(x≥168);(2)應將房間定價確定為260元時,獲得利潤最大,最大利潤為8767元【解析】【分析】(1)入住房間z(間)等于80減去每天的房間空閑數(shù),列式并化簡即可;(2)設利潤為w元,由題意得w關于x的二次函數(shù)關系式,根據(jù)二次函數(shù)的對稱性及問題實際可得答案.【詳解】解:(1)由題意得:z=80﹣(x﹣42)=﹣x+122,∴入住房間z(間)與定價x(元/間)之間關系式為z=﹣x+122(x≥168);(2)設利潤為w元,由題意得:w=(﹣x+122)x﹣36(﹣x+122)﹣4000=﹣x2+131x﹣8392,當x=﹣=262時,w最大,此時z=56.5非整數(shù),不合題意,∴x=260或264時,w最大,∵讓客人得到實惠,∴x=260,∴w最大==﹣×2602+131×260﹣8392=8767,∴應將房間定價確定為260元時,獲得利潤最大,最大利潤為8767元.【考點】本題考查了二次函數(shù)在實際問題中的應用,理清題中的數(shù)量關系、熟練掌握二次函數(shù)的性質是解題的關鍵.4、當t=(在0<t≤1的范圍內)時,S的最小值為千米【解析】【分析】設兩人均出發(fā)了t時,根據(jù)勾股定理建立甲、乙之間的距離與時間t的函數(shù)關系式,然后求出二次函數(shù)在一定的取值范圍內的最值即可得解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論