(完整版)蘇教七年級下冊期末解答題壓軸數(shù)學(xué)質(zhì)量測試試卷答案_第1頁
(完整版)蘇教七年級下冊期末解答題壓軸數(shù)學(xué)質(zhì)量測試試卷答案_第2頁
(完整版)蘇教七年級下冊期末解答題壓軸數(shù)學(xué)質(zhì)量測試試卷答案_第3頁
(完整版)蘇教七年級下冊期末解答題壓軸數(shù)學(xué)質(zhì)量測試試卷答案_第4頁
(完整版)蘇教七年級下冊期末解答題壓軸數(shù)學(xué)質(zhì)量測試試卷答案_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

(完整版)蘇教七年級下冊期末解答題壓軸數(shù)學(xué)質(zhì)量測試試卷答案一、解答題1.在△ABC中,射線AG平分∠BAC交BC于點G,點D在BC邊上運動(不與點G重合),過點D作DE∥AC交AB于點E.(1)如圖1,點D在線段CG上運動時,DF平分∠EDB①若∠BAC=100°,∠C=30°,則∠AFD=;若∠B=40°,則∠AFD=;②試探究∠AFD與∠B之間的數(shù)量關(guān)系?請說明理由;(2)點D在線段BG上運動時,∠BDE的角平分線所在直線與射線AG交于點F試探究∠AFD與∠B之間的數(shù)量關(guān)系,并說明理由2.解讀基礎(chǔ):(1)圖1形似燕尾,我們稱之為“燕尾形”,請寫出、、、之間的關(guān)系,并說明理由;(2)圖2形似8字,我們稱之為“八字形”,請寫出、、、之間的關(guān)系,并說明理由:應(yīng)用樂園:直接運用上述兩個結(jié)論解答下列各題(3)①如圖3,在中,、分別平分和,請直接寫出和的關(guān)系;②如圖4,.(4)如圖5,與的角平分線相交于點,與的角平分線相交于點,已知,,求和的度數(shù).3.Rt△ABC中,∠C=90°,點D、E分別是△ABC邊AC、BC上的點,點P是一動點.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若點P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2=°;(2)若點P在邊AB上運動,如圖(2)所示,則∠α、∠1、∠2之間的關(guān)系為:;(3)若點P運動到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說明理由.(4)若點P運動到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間的關(guān)系為:.4.如圖,△ABC和△ADE有公共頂點A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,則∠EAC=;(2)如圖1,過AC上一點O作OG⊥AC,分別交AB、AD、AE于點G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求線段OF的長;②如圖2,∠AFO的平分線和∠AOF的平分線交于點M,∠FHD的平分線和∠OGB的平分線交于點N,∠N+∠M的度數(shù)是否發(fā)生變化?若不變,求出其度數(shù);若改變,請說明理由.5.如圖①所示,在三角形紙片中,,,將紙片的一角折疊,使點落在內(nèi)的點處.(1)若,________.(2)如圖①,若各個角度不確定,試猜想,,之間的數(shù)量關(guān)系,直接寫出結(jié)論.②當(dāng)點落在四邊形外部時(如圖②),(1)中的猜想是否仍然成立?若成立,請說明理由,若不成立,,,之間又存在什么關(guān)系?請說明.(3)應(yīng)用:如圖③:把一個三角形的三個角向內(nèi)折疊之后,且三個頂點不重合,那么圖中的和是________.6.已知△ABC的面積是60,請完成下列問題:(1)如圖1,若AD是△ABC的BC邊上的中線,則△ABD的面積△ACD的面積.(填“>”“<”或“=”)(2)如圖2,若CD、BE分別是△ABC的AB、AC邊上的中線,求四邊形ADOE的面積可以用如下方法:連接AO,由AD=DB得:S△ADO=S△BDO,同理:S△CEO=S△AEO,設(shè)S△ADO=x,S△CEO=y(tǒng),則S△BDO=x,S△AEO=y(tǒng)由題意得:S△ABE=S△ABC=30,S△ADC=S△ABC=30,可列方程組為:,解得,通過解這個方程組可得四邊形ADOE的面積為.(3)如圖3,AD:DB=1:3,CE:AE=1:2,請你計算四邊形ADOE的面積,并說明理由.7.[原題](1)已知直線,點P為平行線AB,CD之間的一點,如圖①,若,BE平分,DE平分,則__________.[探究](2)如圖②,,當(dāng)點P在直線AB的上方時.若,和的平分線相交于點,與的平分線相交于點,與的平分線相交于點……以此類推,求的度數(shù).[變式](3)如圖③,,的平分線的反向延長線和的補角的平分線相交于點E,試猜想與的數(shù)量關(guān)系,并說明理由.8.在中,,是的角平分線,是射線上任意一點(不與、、三點重合),過點作,垂足為,交直線于.(1)如圖①,當(dāng)點在線段上時,(i)說明.(ii)作的角平分線交直線于點,則與有怎樣的位置關(guān)系?畫出圖形并說明理由.(2)當(dāng)點在的延長線上時,作的角平分線交直線于點,此時與的位置關(guān)系為___________.9.(問題情境)蘇科版義務(wù)教育教科書數(shù)學(xué)七下第42頁有這樣的一個問題:(1)探究1:如圖1,在中,P是與的平分線和的交點,通過分析發(fā)現(xiàn),理由如下:∵和分別是和的角平分線,∴,.∴.又∵在中,,∴∴(2)探究2:如圖2中,H是外角與外角的平分線和的交點,若,則______.若,則與有怎樣的關(guān)系?請說明理由.(3)探究3:如圖3中,在中,P是與的平分線和的交點,過點P作,交于點D.外角的平分線與的延長線交于點E,則根據(jù)探究1的結(jié)論,下列角中與相等的角是______;A.B.C.(4)探究4:如圖4中,H是外角與外角的平分線和的交點,在探究3條件的基礎(chǔ)上,①試判斷與的位置關(guān)系,并說明理由;②在中,存在一個內(nèi)角等于的3倍,則的度數(shù)為______10.如圖,直線MN∥GH,直線l1分別交直線MN、GH于A、B兩點,直線l2分別交直線MN、GH于C、D兩點,且直線l1、l2交于點E,點P是直線l2上不同于C、D、E點的動點.(1)如圖①,當(dāng)點P在線段CE上時,請直寫出∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系:;(2)如圖②,當(dāng)點P在線段DE上時,(1)中的∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系還成立嗎?如果成立,請說明成立的理由;如果不成立,請寫出這三個角之間的數(shù)量關(guān)系,并說明理由.(3)如果點P在直線l2上且在C、D兩點外側(cè)運動時,其他條件不變,請直接寫出∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系.【參考答案】一、解答題1.(1)①115°;110°;②;理由見解析;(2);理由見解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內(nèi)角和定理求出∠B=50°,由平行線的性質(zhì)得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②;理由見解析;(2);理由見解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內(nèi)角和定理求出∠B=50°,由平行線的性質(zhì)得出∠EDB=∠C=30°,由角平分線定義得出,,由三角形的外角性質(zhì)得出∠DGF=100°,再由三角形的外角性質(zhì)即可得出結(jié)果;若∠B=40°,則∠BAC+∠C=180°-40°=140°,由角平分線定義得出,,由三角形的外角性質(zhì)即可得出結(jié)果;②由①得:∠EDB=∠C,,,由三角形的外角性質(zhì)得出∠DGF=∠B+∠BAG,再由三角形的外角性質(zhì)即可得出結(jié)論;(2)由(1)得:∠EDB=∠C,,,由三角形的外角性質(zhì)和三角形內(nèi)角和定理即可得出結(jié)論.【詳解】(1)①若∠BAC=100°,∠C=30°,則∠B=180°-100°-30°=50°,∵DE∥AC,∴∠EDB=∠C=30°,∵AG平分∠BAC,DF平分∠EDB,∴,,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,則∠BAC+∠C=180°-40°=140°,∵AG平分∠BAC,DF平分∠EDB,∴,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=故答案為:115°;110°;②;理由如下:由①得:∠EDB=∠C,,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=;(2)如圖2所示:;理由如下:由(1)得:∠EDB=∠C,,,∵∠AHF=∠B+∠BDH,∴∠AFD=180°-∠BAG-∠AHF.【點睛】本題考查了三角形內(nèi)角和定理、三角形的外角性質(zhì)、平行線的性質(zhì)等知識;熟練掌握三角形內(nèi)角和定理和三角形的外角性質(zhì)是解題的關(guān)鍵.2.(1),理由詳見解析;(2),理由詳見解析:(3)①;②360°;(4);.【分析】(1)根據(jù)三角形外角等于不相鄰的兩個內(nèi)角之和即可得出結(jié)論;(2)根據(jù)三角形內(nèi)角和定理及對頂角相等即可得出結(jié)解析:(1),理由詳見解析;(2),理由詳見解析:(3)①;②360°;(4);.【分析】(1)根據(jù)三角形外角等于不相鄰的兩個內(nèi)角之和即可得出結(jié)論;(2)根據(jù)三角形內(nèi)角和定理及對頂角相等即可得出結(jié)論;(3)①根據(jù)角平分線的定義及三角形內(nèi)角和定理即可得出結(jié)論;②連結(jié)BE,由(2)的結(jié)論及四邊形內(nèi)角和為360°即可得出結(jié)論;(4)根據(jù)(1)的結(jié)論、角平分線的性質(zhì)以及三角形內(nèi)角和定理即可得出結(jié)論.【詳解】(1).理由如下:如圖1,,,,;(2).理由如下:在中,,在中,,,;(3)①,,、分別平分和,,.故答案為:.②連結(jié).∵,.故答案為:;(4)由(1)知,,,,,,,,,,,;.【點睛】本題考查了角平分線的性質(zhì),三角形內(nèi)角和;熟練掌握角平分線的性質(zhì),進行合理的等量代換是解題的關(guān)鍵.3.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補角的定義,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補角的定義,得出∠1+∠2=∠C+∠α,進而得出即可;(2)利用(1)中所求的結(jié)論得出∠α、∠1、∠2之間的關(guān)系即可;(3)利用三角外角的性質(zhì),得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形內(nèi)角和定理以及鄰補角的性質(zhì)可得出∠α、∠1、∠2之間的關(guān)系.試題分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案為140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案為∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如圖③,設(shè)DP與BE的交點為M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如圖④,設(shè)PE與AC的交點為F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案為∠2=90°+∠1-∠α點睛:本題考查了三角形內(nèi)角和定理和外角的性質(zhì)、對頂角相等的性質(zhì),熟練掌握三角形外角的性質(zhì)是解決問題的關(guān)鍵.4.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行線的性質(zhì)求解即可.(2)①利用三角形的面積求出GH,HF,再證明AO=OG=2,可得結(jié)論.②利用角平分線的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行線的性質(zhì)求解即可.(2)①利用三角形的面積求出GH,HF,再證明AO=OG=2,可得結(jié)論.②利用角平分線的定義求出∠M,∠N(用∠FAO表示),可得結(jié)論.【詳解】解:(1)如圖,∵AB∥ED∴∠E=∠EAB=90°(兩直線平行,內(nèi)錯角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案為:45°.(2)①如圖1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=?GH?AO=4,S△AHF=?FH?AO=1,∴GH=4,F(xiàn)H=1,∴OF=GH-HF-OG=4-1-2=1.②結(jié)論:∠N+∠M=142.5°,度數(shù)不變.理由:如圖2中,∵MF,MO分別平分∠AFO,∠AOF,∴∠M=180°-(∠AFO+∠AOF)=180°-(180°-∠FAO)=90°+∠FAO,∵NH,NG分別平分∠DHG,∠BGH,∴∠N=180°-(∠DHG+∠BGH)=180°-(∠HAG+∠AGH+∠HAG+∠AHG)=180°-(180°+∠HAG)=90°-∠HAG=90°-(30°+∠FAO+45°)=52.5°-∠FAO,∴∠M+∠N=142.5°.【點睛】本題考查平行線的性質(zhì),角平分線的定義,三角形內(nèi)角和定理,三角形外角的性質(zhì)等知識,最后一個問題的解題關(guān)鍵是用∠FAO表示出∠M,∠N.5.(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據(jù)題意,已知,,可結(jié)合三角形內(nèi)角和定理和折疊變換的性質(zhì)求解;(2)①先根據(jù)折疊得:∠ADE=∠A′DE,∠AED=∠A′解析:(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據(jù)題意,已知,,可結(jié)合三角形內(nèi)角和定理和折疊變換的性質(zhì)求解;(2)①先根據(jù)折疊得:∠ADE=∠A′DE,∠AED=∠A′ED,由兩個平角∠AEB和∠ADC得:∠1+∠2等于360°與四個折疊角的差,化簡得結(jié)果;②利用兩次外角定理得出結(jié)論;(3)由折疊可知∠1+∠2+∠3+∠4+∠5+∠6等于六邊形的內(nèi)角和減去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的內(nèi)角和定理即可求解.【詳解】解:(1)∵,,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE=180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°;(2)①,理由如下由折疊得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED,∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A;②,理由如下:∵是的一個外角∴.∵是的一個外角∴又∵∴(3)如圖由題意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【點睛】題主要考查了折疊變換、三角形、四邊形內(nèi)角和定理.注意折疊前后圖形全等;三角形內(nèi)角和為180°;四邊形內(nèi)角和等于360度.6.(1)=;(2),20;(3)S四邊形ADOE=13.理由見解析.【分析】(1)利用三角形的面積公式計算即可得出結(jié)論;(2)利用題干所給解答方法解答即可;(3)連接AO,利用(2)中的方法,解析:(1)=;(2),20;(3)S四邊形ADOE=13.理由見解析.【分析】(1)利用三角形的面積公式計算即可得出結(jié)論;(2)利用題干所給解答方法解答即可;(3)連接AO,利用(2)中的方法,設(shè)S△ADO=x,S△CEO=y(tǒng),則S△BDO=x,S△AEO=2y,利用已知條件列出方程組,解方程組即可得出結(jié)論.【詳解】解:(1)如圖1,過A作AH⊥BC于H,∵AD是△ABC的BC邊上的中線,∴BD=CD,∴,,∴S△ABD=S△ACD,故答案為:=;(2)解方程組得,∴S△AOD=S△BOD=10,∴S四邊形ADOB=S△AOD+S△AOE=10+10=20,故答案為:,20;(3)如圖3,連接AO,∵AD:DB=1:3,∴S△ADO=S△BDO,∵CE:AE=1:2,∴S△CEO=S△AEO,設(shè)S△ADO=x,S△CEO=y(tǒng),則S△BDO=3x,S△AEO=2y,由題意得:S△ABE=S△ABC=40,S△ADC=S△ABC=15,可列方程組為:,解得:,∴S四邊形ADOE=S△ADO+S△AEO=x+2y=13.【點睛】本題是一道四邊形的綜合題,主要考查了三角形的面積公式,等底同高的三角形面積相等,高相同的三角形的面積比等于底的比,二元一次方程組的解法.本題是閱讀型題目,準(zhǔn)確理解題干中的方法并正確應(yīng)用是解題的關(guān)鍵.7.(1);(2);(3),理由見解析【分析】(1)過作,依據(jù)平行線的性質(zhì),即可得到,依據(jù)角平分線即可得出的度數(shù);(2)依據(jù)平行線的性質(zhì)以及三角形外角性質(zhì),求得,,,以此類推的度數(shù)為;(3)過作解析:(1);(2);(3),理由見解析【分析】(1)過作,依據(jù)平行線的性質(zhì),即可得到,依據(jù)角平分線即可得出的度數(shù);(2)依據(jù)平行線的性質(zhì)以及三角形外角性質(zhì),求得,,,以此類推的度數(shù)為;(3)過作,進而得出,再根據(jù)平行線的性質(zhì)以及三角形外角性質(zhì),即可得到【詳解】解:(1)如圖1,過作,而,,,,,又,,平分,平分,,,,故答案為:;(2)如圖2,和的平分線交于點,,,,,,與的角平分線交于點,,,,,,同理可得,,以此類推,的度數(shù)為.(3).理由如下:如圖3,過作,而,,,,,又的角平分線的反向延長線和的補角的角平分線交于點,,,,,,.【點睛】本題考查了平行線性質(zhì)以及三角形外角性質(zhì)的應(yīng)用,在解答此題時要注意作出輔助線,構(gòu)造出平行線求解.8.(1)(i)見解析;(ii),理由見解析;(2)【分析】(1)(i)根據(jù)平分可以得到,再根據(jù),,即可得到答案;(ii)設(shè),根據(jù),,即可求解;(2)根據(jù)∠PDO=∠A+∠DBA,∠A+∠ABC解析:(1)(i)見解析;(ii),理由見解析;(2)【分析】(1)(i)根據(jù)平分可以得到,再根據(jù),,即可得到答案;(ii)設(shè),根據(jù),,即可求解;(2)根據(jù)∠PDO=∠A+∠DBA,∠A+∠ABC=90°,∠ABC=∠CPG,利用角平分線的性質(zhì),即可得到.【詳解】解:(1)(i)∵平分,∴,∵,∴,∵,∴,∴,∴,∵,∴.(ii).設(shè),∴.∵,∴,又∵∴∴,∴.(2),理由如下:∵∠ACB=90°∴∠PCB=90°,∠A+∠ABC=90°∵PQ⊥AB∴∠PQB=∠PCB=90°又∵∠CGP=∠BGQ∴∠ABC=∠CPG∵∠PDO=∠A+∠DBA,BD是∠ABC的角平分線∴∵PF是∠APQ的角平分線∴∴∴∠POD=90°∴PF⊥BD.【點睛】本題主要考查了三角形內(nèi)角和定理,三角形外角的性質(zhì),對頂角的性質(zhì),平行線的判定,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進行求解.9.(2);;理由見解析;(3)B;(4)①,理由見解析;②45°或60°【分析】(2)由(1)中結(jié)論可得,依據(jù)角平分線的定義,即可得出和均為直角;再根據(jù)四邊形內(nèi)角和進行計算,即可得到的度數(shù)以及與的解析:(2);;理由見解析;(3)B;(4)①,理由見解析;②45°或60°【分析】(2)由(1)中結(jié)論可得,依據(jù)角平分線的定義,即可得出和均為直角;再根據(jù)四邊形內(nèi)角和進行計算,即可得到的度數(shù)以及與的關(guān)系;(3)由(1)中結(jié)論可得,再根據(jù)垂線的定義以及三角形外角性質(zhì),即可得出,進而得到;(4)①根據(jù),即可得到,再根據(jù)角平分線的定義,即可得到,依據(jù),即可判定;②由①可得,即可得出,再根據(jù)在中一個內(nèi)角等于的倍,分三種情況討論,即可得出的度數(shù).【詳解】解:(2)由(1)可得,,∵是外角與外角的平分線和的交點,是與的平分線和的交點,∴,同理可得,∴四邊形中,,故答案為:;若,則與關(guān)系為:.理由:由(1)可得,,∵是外角與外角的平分線和的交點,是與的平分線和的交點,∴,同理可得,∴四邊形中,.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論