深圳龍崗街道世紀(jì)學(xué)校初中部中考數(shù)學(xué)期末幾何綜合壓軸題模擬匯編_第1頁
深圳龍崗街道世紀(jì)學(xué)校初中部中考數(shù)學(xué)期末幾何綜合壓軸題模擬匯編_第2頁
深圳龍崗街道世紀(jì)學(xué)校初中部中考數(shù)學(xué)期末幾何綜合壓軸題模擬匯編_第3頁
深圳龍崗街道世紀(jì)學(xué)校初中部中考數(shù)學(xué)期末幾何綜合壓軸題模擬匯編_第4頁
深圳龍崗街道世紀(jì)學(xué)校初中部中考數(shù)學(xué)期末幾何綜合壓軸題模擬匯編_第5頁
已閱讀5頁,還剩53頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

深圳龍崗街道世紀(jì)學(xué)校初中部中考數(shù)學(xué)期末幾何綜合壓軸題模擬匯編一、中考幾何壓軸題1.如圖(1),已知點在正方形的對角線上,垂足為點,垂足為點.(1)證明與推斷:求證:四邊形是正方形;推斷:的值為__;(2)探究與證明:將正方形繞點順時針方向旋轉(zhuǎn)角,如圖(2)所示,試探究線段與之間的數(shù)量關(guān)系,并說明理由;(3)拓展與運用:若,正方形在繞點旋轉(zhuǎn)過程中,當(dāng)三點在一條直線上時,則.2.(問題發(fā)現(xiàn))(1)如圖1所示,在中,,,點在邊上,且,將線段繞點順時針旋轉(zhuǎn)90°得到線段,連接、,的值為______;(類比探究)(2)如圖2所示,在(1)的條件下,點為的中點,,將線段繞點順時針旋轉(zhuǎn)90°得到,連接,則的值會發(fā)生改變嗎?說明你的理由;(拓展延伸)(3)如圖3所示,在鈍角中,,,點在邊的延長線上,,連接.將線段繞著點順時針旋轉(zhuǎn),旋轉(zhuǎn)角,連接,則______(請用含有,的式子表示).3.在中,于點,點為射線上任一點(點除外)連接,將線段繞點順時針方向旋轉(zhuǎn),,得到,連接.(1)(觀察發(fā)現(xiàn))如圖1,當(dāng),且時,BP與的數(shù)量關(guān)系是___________,與的位置關(guān)系是___________.(2)(猜想證明)如圖2,當(dāng),且時,(1)中的結(jié)論是否成立?若成立,請予以證明;若不成立,請說明理由.(請選擇圖2,圖3中的一種情況予以證明或說理)(3)(拓展探究)在(2)的條件下,若,,請直接寫出的長.4.在與中,且,點D始終在線段AB上(不與A、B重合).(1)問題發(fā)現(xiàn):如圖1,若度,的度數(shù)______,______;(2)類比探究:如圖2,若度,試求的度數(shù)和的值;(3)拓展應(yīng)用:在(2)的條件下,M為DE的中點,當(dāng)時,BM的最小值為多少?直接寫出答案.5.綜合與實踐操作探究(1)如圖1,將矩形折疊,使點與點重合,折痕為,與交于點.請回答下列問題:①與全等的三角形為______,與相似的三角形為______.并證明你的結(jié)論:(相似比不為1,只填一個即可):②若連接、,請判斷四邊形的形狀:______.并證明你的結(jié)論;拓展延伸(2)如圖2,矩形中,,,點、分別在、邊上,且,將矩形折疊,使點與點重合,折痕為,與交于點,連接.①設(shè),,則與的數(shù)量關(guān)系為______;②設(shè),,請用含的式子表示:______;③的最小值為______.6.探究:如圖1和圖2,四邊形中,已知,,點、分別在、上,.(1)①如圖1,若、都是直角,把繞點逆時針旋轉(zhuǎn)90°至,使與重合,直接寫出線段、和之間的數(shù)量關(guān)系____________________;②如圖2,若、都不是直角,但滿足,線段、和之間①中的結(jié)論是否仍然成立,若成立,請寫出證明過程;若不成立,請說明理由.(2)拓展:如圖3,在中,,,點、均在邊上,且,若,求的長.7.△ABC中,∠BAC=α°,AB=AC,D是BC上一點,將AD繞點A順時針旋轉(zhuǎn)α°,得到線段AE,連接BE.(1)(特例感知)如圖1,若α=90,則BD+BE與AB的數(shù)量關(guān)系是.(2)(類比探究)如圖2,若α=120,試探究BD+BE與AB的數(shù)量關(guān)系,并證明.(3)(拓展延伸)如圖3,若α=120,AB=AC=4,BD=,Q為BA延長線上的一點,將QD繞點Q順時針旋轉(zhuǎn)120°,得到線段QE,DE⊥BC,求AQ的長.8.某數(shù)學(xué)學(xué)習(xí)小組在復(fù)習(xí)線段垂直平分線性質(zhì)時,提出了以下幾個問題,請你幫他們解決:[數(shù)學(xué)理解](1)點是線段垂直平分線上的一點,則的值為;[拓展延伸](2)在平面直角坐標(biāo)系中,點,點在軸上,且,則點的坐標(biāo)為.(3)經(jīng)小組探究發(fā)現(xiàn),如圖,延長線段到點,使,以點為因心,長為半徑作園,則對于上任一點,都有,請你證明這個結(jié)論:[問題解決](4)如圖,某人乘船以25千米/時的速度沿一筆直的河從碼頭到碼頭,再立即坐車沿一筆直公路以75千米/時的速度回到住處,已知乘船和坐車所用的時間相等請在河邊上確定碼頭的位置.(請畫出示意圖并簡要說明理由)9.(發(fā)現(xiàn)問題)(1)如圖,已知和均為等邊三角形,在上,在上,易得線段和的數(shù)量關(guān)系是.(2)將圖中的繞點旋轉(zhuǎn)到圖的位置,直線和直線交于點①判斷線段和的數(shù)量關(guān)系,并證明你的結(jié)論.②圖中的度數(shù)是.(3)(探究拓展)如圖3,若和均為等腰直角三角形,,,,直線和直線交于點,分別寫出的度數(shù),線段、之間的數(shù)量關(guān)系.10.(1)問題探究:如圖1所示,有公共頂點A的兩個正方形ABCD和正方形AEFG.AE<AB,連接BE與DG,請判斷線段BE與線段DG之間有怎樣的數(shù)量關(guān)系和位置關(guān)系.并請說明理由.(2)理解應(yīng)用:如圖2所示,有公共頂點A的兩個正方形ABCD和正方形AEFG,AE<AB,AB=10,將正方形AEFG繞點A在平面內(nèi)任意旋轉(zhuǎn),當(dāng)∠ABE=15°,且點D、E、G三點在同一條直線上時,請直接寫出AE的長;(3)拓展應(yīng)用:如圖3所示,有公共頂點A的兩個矩形ABCD和矩形AEFG,AD=4,AB=4,AG=4,AE=4,將矩形AEFG繞點A在平面內(nèi)任意旋轉(zhuǎn),連接BD,DE,點M,N分別是BD,DE的中點,連接MN,當(dāng)點D、E、G三點在同一條直線上時,請直接寫出MN的長11.如圖1,已知直角三角形,,,點是邊上一點,過作于點,連接,點是中點,連接,.(1)發(fā)現(xiàn)問題:線段,之間的數(shù)量關(guān)系為______;的度數(shù)為______;(2)拓展與探究:若將繞點按順時針方向旋轉(zhuǎn)角,如圖2所示,(1)中的結(jié)論還成立嗎?請說明理由;(3)拓展與運用:如圖3所示,若繞點旋轉(zhuǎn)的過程中,當(dāng)點落到邊上時,邊上另有一點,,,連接,請直接寫出的長度.12.問題發(fā)現(xiàn):(1)如圖1,與同為等邊三角形,連接則與的數(shù)量關(guān)系為________;直線與所夾的銳角為_________;類比探究:(2)與同為等腰直角三角形,其他條件同(1),請問(1)中的結(jié)論還成立嗎?請說明理由;拓展延伸:(3)中,為的中位線,將繞點逆時針自由旋轉(zhuǎn),已知,在自由旋轉(zhuǎn)過程中,當(dāng)在一條直線上時,請直接寫出的值.13.(1)問題發(fā)現(xiàn)如圖1,ABC是等邊三角形,點D,E分別在邊BC,AC上,若∠ADE=60°,則AB,CE,BD,DC之間的數(shù)量關(guān)系是.(2)拓展探究如圖2,ABC是等腰三角形,AB=AC,∠B=α,點D,E分別在邊BC,AC上.若∠ADE=α,則(1)中的結(jié)論是否仍然成立?請說明理由.(3)解決問題如圖3,在ABC中,∠B=30°,AB=AC=4cm,點P從點A出發(fā),以1cm/s的速度沿A→B方向勾速運動,同時點M從點B出發(fā),以cm/s的速度沿B→C方向勻速運動,當(dāng)其中一個點運動至終點時,另一個點隨之停止運動,連接PM,在PM右側(cè)作∠PMG=30°,該角的另一邊交射線CA于點G,連接PC.設(shè)運動時間為t(s),當(dāng)△APG為等腰三角形時,直接寫出t的值.14.問題呈現(xiàn):已知等邊三角形邊的中點為點,,的兩邊分別交直線,于點,,現(xiàn)要探究線段,與等邊三角形的邊長之間的數(shù)量關(guān)系.(1)特例研究:如圖1,當(dāng)點,分別在線段,上,且,時,請直接寫出線段,與的數(shù)量關(guān)系:________;(2)問題解決:如圖2,當(dāng)點落在射線上,點落在線段上時,(1)中的結(jié)論是否成立?若不成立,請通過證明探究出線段,與等邊三角形的邊長之間的數(shù)量關(guān)系;(3)拓展應(yīng)用:如圖3,當(dāng)點落在射線上,點落在射線上時,若,,請直接寫出的長和此時的面積.15.如圖1,在等腰三角形中,點分別在邊上,連接點分別為的中點.(1)觀察猜想圖1中,線段的數(shù)量關(guān)系是____,的大小為_____;(2)探究證明把繞點順時針方向旋轉(zhuǎn)到如圖2所示的位置,連接判斷的形狀,并說明理由;(3)拓展延伸把繞點在平面內(nèi)自由旋轉(zhuǎn),若,請求出面積的最大值.16.如圖1所示,邊長為4的正方形與邊長為的正方形的頂點重合,點在對角線上.(問題發(fā)現(xiàn))如圖1所示,與的數(shù)量關(guān)系為________;(類比探究)如圖2所示,將正方形繞點旋轉(zhuǎn),旋轉(zhuǎn)角為,請問此時上述結(jié)論是否還成立?如成立寫出推理過程,如不成立,說明理由;(拓展延伸)若點為的中點,且在正方形的旋轉(zhuǎn)過程中,有點、、在一條直線上,直接寫出此時線段的長度為________17.石家莊某學(xué)校數(shù)學(xué)興趣小組利用機器人開展數(shù)學(xué)活動,在相距150個單位長度的直線跑道AB上,機器人甲從端點A出發(fā),勻速往返于端點A、B之間,機器人乙同時從端點B出發(fā),以大于甲的速度勻速往返于端點B、A之間.他們到達(dá)端點后立即轉(zhuǎn)身折返,用時忽略不計,興趣小組成員探究這兩個機器人迎面相遇的情況,這里的“迎面相遇”包括面對面相遇、在端點處相遇這兩種.(觀察)①觀察圖1,若這兩個機器人第一次迎面相遇時,相遇地點與點A之間的距離為30個單位長度,則他們第二次迎面相遇時,相遇地點與點A之間的距離為個單位長度.②若這兩個機器人第一次迎面相遇時,相遇地點與點A之間的距離為35個單位長度,則他們第二次迎面相遇時,相遇地點與點A之間的距離為個單位長度.(發(fā)現(xiàn))設(shè)這兩個機器人第一次迎面相遇時,相遇地點與點A之間的距離為x個單位長度,他們第二次迎面相遇時,相遇地點與點A之間的距離為y個單位長度,興趣小組成員發(fā)現(xiàn)了y與x的函數(shù)關(guān)系,并畫出了部分函數(shù)圖象(線段OP,不包括點O,如圖2所示)①a=;②分別求出各部分圖象對應(yīng)的函數(shù)解析式,并在圖2中補全函數(shù)圖象.(拓展)設(shè)這兩個機器人第一次迎面相遇時,相遇地點與點A之間的距離為x個單位長度,他們第三次迎面相遇時,相遇地點與點A之間的距離為y個單位長度,若這兩個機器人在第三次迎面相遇時,相遇地點與點A之間的距離y不超過60個單位長度,則他們第一次迎面相遇時,相遇地點與點A之間的距離x的取值范圍是.(直接寫出結(jié)果)18.如圖1,在Rt△ABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.(1)觀察猜想:圖1中,線段PM與PN的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明:把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN面積的最大值.19.問題情境:兩張直角三角形紙片中,.連接,,過點作的垂線,分別交線段,于點,(與在直線異側(cè)).特例分析:(1)如圖1,當(dāng)時,求證:;拓展探究:(2)當(dāng),探究下列問題:①如圖2,當(dāng)時,直接寫出線段與之間的數(shù)量關(guān)系:;②如圖3,當(dāng)時,猜想與之間的數(shù)量關(guān)系,并說明理由;推廣應(yīng)用:(3)若圖3中,,設(shè)的面積為,則的面積為.(用含,的式子表示)20.(性質(zhì)探究)如圖,在矩形ABCD中,對角線AC,BD相交于點O,AE平分∠BAC,交BC于點E.作DF⊥AE于點H,分別交AB,AC于點F,G.(1)判斷△AFG的形狀并說明理由.(2)求證:BF=2OG.(遷移應(yīng)用)(3)記△DGO的面積為S1,△DBF的面積為S2,當(dāng)時,求的值.(拓展延伸)(4)若DF交射線AB于點F,(性質(zhì)探究)中的其余條件不變,連結(jié)EF,當(dāng)△BEF的面積為矩形ABCD面積的時,請直接寫出tan∠BAE的值.【參考答案】***試卷處理標(biāo)記,請不要刪除一、中考幾何壓軸題1.(1)證明見解析;;(2)線段與之間的數(shù)量關(guān)系為;(3)或【分析】(1)①由、結(jié)合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質(zhì)知、,據(jù)此可得、,利用平行線分線段成比例定理可得;(2解析:(1)證明見解析;;(2)線段與之間的數(shù)量關(guān)系為;(3)或【分析】(1)①由、結(jié)合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質(zhì)知、,據(jù)此可得、,利用平行線分線段成比例定理可得;(2)連接CG,只需證即可得;(3)由(2)證出就可得到,再根據(jù)三點在同一直線上分在CD左邊和右邊兩種不同的情況求出AG的長度,即可求出BE的長度.【詳解】(1)證明:四邊形是正方形,四邊形是矩形,四邊形是正方形;解:由①知四邊形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴故答案為:.(2)如下圖所示連接由旋轉(zhuǎn)性質(zhì)知在和中,,線段與之間的數(shù)量關(guān)系為;(3)解:當(dāng)正方形在繞點旋轉(zhuǎn)到如下圖所示時:當(dāng)三點在一條直線上時,由(2)可知,,∠CEG=∠CEA=∠ABC=90°,,當(dāng)正方形在繞點旋轉(zhuǎn)到如下圖所示時:當(dāng)三點在一條直線上時,由(2)可知,,∠CEA=∠ABC=90°,,故答案為:或.【點睛】本題考查了正方形的性質(zhì)與判定,相似三角形的判定與性質(zhì)等,綜合性較強,有一定的難度,正確添加輔助線,熟練掌握正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.2.(1);(2)BE+BD的值不會發(fā)生改變,理由見解答;(3)2k?sin【分析】(1)只要證明,即可解決問題;(2)如圖2中,作交于,過點作交于.利用(1)中結(jié)論即可解決問題;(3)如圖③中解析:(1);(2)BE+BD的值不會發(fā)生改變,理由見解答;(3)2k?sin【分析】(1)只要證明,即可解決問題;(2)如圖2中,作交于,過點作交于.利用(1)中結(jié)論即可解決問題;(3)如圖③中,作交的延長線于,作于.只要證明,可證,即可解決問題.【詳解】解:(1)如圖1中,,,,,,,,,,,,故答案為:.(2)的值不會發(fā)生改變,理由如下:作交于,過點作交于,,,,,,是等腰直角三角形,,,,是等腰直角三角形,,,,由(1),知,,,,為邊上的中點,,,,,,,,,,;(3)如圖3中,作交的延長線于,作于.,,,,,,,,,,,,,,,,,,..故答案為:.【點睛】本題考查幾何變換綜合題、等腰三角形的性質(zhì)、全等三角形的判定和性質(zhì)、銳角三角函數(shù)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸題.3.(1),;(2)成立,不成立,與的關(guān)系為,見解析;(3)2或14【分析】(1)連接AE,證明△ABC、△APE為等邊三角形,再證明,根據(jù)全等三角形的性質(zhì)可得BP=CE,,再求得,即可得,所有.解析:(1),;(2)成立,不成立,與的關(guān)系為,見解析;(3)2或14【分析】(1)連接AE,證明△ABC、△APE為等邊三角形,再證明,根據(jù)全等三角形的性質(zhì)可得BP=CE,,再求得,即可得,所有.(2)成立,不成立,與的關(guān)系為.選圖2證明:連接,易證,根據(jù)相似三角形的性質(zhì)可得,,根據(jù)等腰直角三角形的性質(zhì)可得,由此可得,結(jié)論可證;選圖3證明,類比圖2的證明方法即可;(3)分圖2和圖3兩種情況求CE的長即可.【詳解】(1)如圖,連接AE,∵,且,∴△ABC為等邊三角形,∴,AB=AC,∵,且,∴△APE為等邊三角形,∴,AP=AE,∴,∴;在△BAP和△CAE中,,∴,∴BP=CE,,∵,,,∴∠ABP=30°,∴,∴,∴.故答案為:,.(2)成立,不成立,與的關(guān)系為.理由如下:選圖2證明:連接,由題意可知:、均為等腰直角三角形,∴,,∴,即;又∵,∴,∴,,∵,,∴,∴,∴,∴,.選圖3證明:理由如下:連接,由題意可知:、均為等腰直角三角形,∴,,∴,即,又∵,∴,∴,,∵,,∴,∴,∴,∴,;(3)或14.如圖,∵,∴,∵,∴在中,,∴,由(2)知:,∴;如圖,同理可得,∴,∴.綜上:的長為2或14.【點睛】本題是三角形綜合題,考查了全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理等知識,熟練運用相關(guān)知識是解決問題的關(guān)鍵.4.(1)90度;1;(2)的度數(shù)為90度,的值為;(3)BM的最小值為1.【分析】(1)度,利用SAS證明,即可得出,的值為1;(2)度,證明,即可得出,;(3)當(dāng)CD最小時,即CD垂直于AB解析:(1)90度;1;(2)的度數(shù)為90度,的值為;(3)BM的最小值為1.【分析】(1)度,利用SAS證明,即可得出,的值為1;(2)度,證明,即可得出,;(3)當(dāng)CD最小時,即CD垂直于AB時,CD最小,此時DE最小,而BM是直角三角形DBE斜邊上的中線,直角三角形斜邊上的中線等于斜邊的一半.【詳解】(1)①∵∴∴∵,∴∴,∴∴,∴,的值為1;(2)在中,,令,則,同理令,∴,∴①∵即∴②有①②得∴,∴(3)在中,,∴,當(dāng)CD最小時,即CD垂直于AB時,CD最小,此時DE最小,而,∴,而BM是直角三角形DBE斜邊上的中線,∴【點睛】本題涉及全等三角形的性質(zhì)與判定、相似三角形的性質(zhì)與判定、特殊的三角函數(shù)值和直角三角形的性質(zhì).是一個綜合性比較強的題目,要熟練掌握各個知識點.5.(1)①;或;證明見解析;②菱形,證明見解析;(2)①;②;③【分析】(1)①利用矩形的性質(zhì)與軸對稱的性質(zhì)證明如圖1,連接證明即可得到答案;②如圖1,由①得:再證明四邊形為平行四邊形解析:(1)①;或;證明見解析;②菱形,證明見解析;(2)①;②;③【分析】(1)①利用矩形的性質(zhì)與軸對稱的性質(zhì)證明如圖1,連接證明即可得到答案;②如圖1,由①得:再證明四邊形為平行四邊形與可得結(jié)論;(2)①如圖2,連接由折疊可得:再利用勾股定理可得答案;②如圖3,連接交于證明四邊形是菱形,可得從而可得答案;③由②得:可得,再利用二次函數(shù)的性質(zhì)可得答案.【詳解】解:(1)①矩形由折疊可得:如圖1,連接由折疊可得:同理:故答案為:,或②如圖1,由①得:矩形四邊形為平行四邊形,四邊形為菱形,(2)①如圖2,連接由折疊可得:矩形,,故答案為:②如圖3,連接交于矩形重合,同理可得:由對折可得:四邊形是菱形,,,故答案為:③由②得:當(dāng)時,最小,最小值為的最小值為:故答案為:【點睛】本題考查的是全等三角形的判定與性質(zhì),平行四邊形的判定,矩形的性質(zhì),菱形的判定與性質(zhì),勾股定理的應(yīng)用,二次函數(shù)的性質(zhì),熟練掌握以上知識是解題的關(guān)鍵.6.(1)①EF=BE+DF;②成立,理由見解析;(2).【分析】(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根據(jù)SAS推出△EAF≌△GA解析:(1)①EF=BE+DF;②成立,理由見解析;(2).【分析】(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可求出答案;②根據(jù)旋轉(zhuǎn)的性質(zhì)把△ABE繞A點旋轉(zhuǎn)到△ADG,使AB和AD重合,得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,推出C、D、G在一條直線上,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可得出結(jié)果;

(2)把△AEC繞A點旋轉(zhuǎn)到△AFB,使AB和AC重合,連接DF.根據(jù)等腰直角三角形性質(zhì)和勾股定理求出∠ABC=∠C=45°,BC=4,根據(jù)旋轉(zhuǎn)的性質(zhì)得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD=∠DAE=45°,證△FAD≌△EAD,根據(jù)全等得出DF=DE,設(shè)DE=x,則DF=x,BF=CE=3-x,根據(jù)勾股定理得出方程,求出x即可.【詳解】解:(1)①如圖1中,∵把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,使AB與AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∠B=∠ADG=90°,

∵∠ADC=90°,∴∠ADC+∠ADG=90°∴F、D、G共線.

∵∠BAD=90°,∠EAF=45°,

∴∠BAE+∠DAF=45°,

∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,

在△EAF和△GAF中,,∴△EAF≌△GAF(SAS),∴EF=GF,

∵BE=DG,

∴EF=GF=DF+DG=BE+DF,

故答案為:EF=BE+DF;②成立,理由如下:如圖2,把△ABE繞A點旋轉(zhuǎn)到△ADG,使AB和AD重合,則AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴C、D、G在一條直線上,與①同理得,∠EAF=∠GAF=45°,在△EAF和△GAF中,,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)∵△ABC中,,∠BAC=90°,∴∠ABC=∠C=45°,.如圖3,把△AEC繞A點旋轉(zhuǎn)到△AFB,使AB和AC重合,連接DF.則AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC-∠DAE=90°-45°=45°,∴∠FAD=∠DAE=45°,在△FAD和△EAD中,,∴△FAD≌△EAD(SAS),∴DF=DE,設(shè)DE=x,則DF=x,∵BC=4,∴BF=CE=4-1-x=3-x,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:DF2=BF2+BD2,x2=(3-x)2+12,解得:,即DE=.【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),勾股定理以及等腰三角形的性質(zhì)等知識,此題運用了類比的思想,一般先在特殊圖形中找到規(guī)律,然后再推廣到一般圖形中,對學(xué)生的分析問題,解決問題的能力要求比較高.7.(1);(2),見解析;(3)【分析】(1)根據(jù)SAS可證△ABE≌△ACD,進(jìn)而可得BE=CD,結(jié)合BD+CD=BC可得BD+BE=BC,再根據(jù)等腰直角三角形中BC=即可證得;(2)過點A解析:(1);(2),見解析;(3)【分析】(1)根據(jù)SAS可證△ABE≌△ACD,進(jìn)而可得BE=CD,結(jié)合BD+CD=BC可得BD+BE=BC,再根據(jù)等腰直角三角形中BC=即可證得;(2)過點A作AH⊥BC,根據(jù)∠BAC=120°,AB=AC可得∠ABC=30°,,則,由(1)可知BD+BE=BC,由此即可得;(3)過Q點作QF∥AC交BC延長線于點F,先證∠BQF=120°,BQ=QF,進(jìn)而可由(2)同理可知,△QBE≌△QFD,,進(jìn)而可證得,再根據(jù)cos∠EBD==cos60°=可求得,進(jìn)而求得,最后根據(jù)AQ=BQ-AB即可得到答案.【詳解】解:(1)理由如下:∵∠EAD=∠BAC=90°∴∠EAB=∠DAC在△ABE與△ACD中,∴△ABE≌△ACD(SAS)∴BE=CD,∵BD+CD=BC∴BD+BE=BC∵在Rt△ABC中,∠BAC=90°,AB=AC,∴BC=∴BD+BE=;(2)結(jié)論:,理由如下:過點A作AH⊥BC,∵∠BAC=120°,AB=AC∴∠ABC=30°,在Rt△ABH中,cos∠ABH==cos30°=∴BH=AB,∴由(1)同理可知BD+BE=BC,∴;(3)過Q點作QF∥AC交BC延長線于點F,∴∴∠QFC=∠QBF=30°,∠BQF=120°∴BQ=QF由(2)同理可知,△QBE≌△QFD,∴cos∠EBD==cos60°=∵,∴AQ=BQ-AB=.【點睛】本題考查了全等三角形的判定及性質(zhì),等腰直角三角形的性質(zhì),解直角三角形的應(yīng)用,熟練掌握相關(guān)圖形的判定及性質(zhì)以及能夠作出正確的輔助線是解決本題的關(guān)鍵.8.(1)1;(2)或;(3)見解析;(4)以的中點為圓心,為半徑作,則與河邊的交點為所求點的位置,畫出示意圖見解析;簡要理由見解析.【分析】(1)直接利用垂直平分線的性質(zhì)證明即可;(2)根據(jù)求解析:(1)1;(2)或;(3)見解析;(4)以的中點為圓心,為半徑作,則與河邊的交點為所求點的位置,畫出示意圖見解析;簡要理由見解析.【分析】(1)直接利用垂直平分線的性質(zhì)證明即可;(2)根據(jù)求出的長,再根據(jù),即可求出點的坐標(biāo);(3)連接,根據(jù)推出,從而推出,證明,即可證明;(4)在線段上作點,使,在線段的延長線上作點,使,以的中點為圓心,為半徑作,則與河邊的交點為所求點的位置.同(3)證明即可證明結(jié)論.【詳解】(1)∵點是線段垂直平分線上的一點,∴,∴,故答案為:1;(2)∵∴,∵,∴,∴點的坐標(biāo)為或,故答案為:或;(3)如圖,連接,∵,,∴,∵的半徑為,∴,∴.∴,∴.∵,∴,∴.∴.(4)如圖,在線段上作點,使,在線段的延長線上作點,使.以的中點為圓心,為半徑作,則與河邊的交點為所求點的位置.簡要理由:由于水路速度為陸路速度的,且時間相等,所以水路的距離必為陸路距離的,即需,連接,同(3)可證,∵,,∴,∴,∴,同理可得,∴又∵,由此,得.【點睛】本題主要考查了相似三角形的判定和性質(zhì),垂直平分線的性質(zhì),準(zhǔn)確的理解題意畫出圖形和作出正確的輔助線是解題的關(guān)鍵.9.(1);(2)①,證明見解析;②;(3),【分析】(1)由等腰三角形的性質(zhì),結(jié)合等量代換即可求解;(2)①根據(jù)SAS證明,然后根據(jù)全等三角形的性質(zhì)即可證明;②由全等三角形的性質(zhì)得,然后利用等解析:(1);(2)①,證明見解析;②;(3),【分析】(1)由等腰三角形的性質(zhì),結(jié)合等量代換即可求解;(2)①根據(jù)SAS證明,然后根據(jù)全等三角形的性質(zhì)即可證明;②由全等三角形的性質(zhì)得,然后利用等量代換即可求解;(3)首先證明,然后根據(jù)相似三角形的性質(zhì)得到,和,即可求解.【詳解】(1)∵和均為等邊三角形∴CA=CB,CD=CE∴AC-CD=BC-CE,即AD=BE∴AD=BE;(2)①AD=BE證明:∵和均為等邊三角形∴CA=CB,CD=CE,∴∴∴AD=BE②∵∴設(shè)BC和AF交于點O,如圖2∵∴,即∴;(3)結(jié)論,證明:∵,AB=BC,DE=EC∴,∴∴,∴∵∴【點睛】本題考查了幾何變換綜合,全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形,關(guān)鍵證明全等和相似,并且分類討論.10.(1)BE=DG,BE⊥DG,見解析;(2)5﹣5;(3)6或8【分析】(1)由“SAS”可證△GAD≌△EAB,可得BE=DG,∠ADG=∠ABE,由直角三角形的性質(zhì)可得BE⊥DG;(2)由解析:(1)BE=DG,BE⊥DG,見解析;(2)5﹣5;(3)6或8【分析】(1)由“SAS”可證△GAD≌△EAB,可得BE=DG,∠ADG=∠ABE,由直角三角形的性質(zhì)可得BE⊥DG;(2)由“SAS”可證△GAD≌△EAB,可得BE=DG,∠ADG=∠ABE=15°,可得∠DEB=90°,由直角三角形的性質(zhì)可求解;(3)分兩種情況討論,通過證明△AGD∽△AEB,可得,∠DGA=∠AEB,由勾股定理和三角形中位線定理可求解.【詳解】解:(1)BE=DG,BE⊥DG,理由如下:如圖1:延長BE交AD于N,交DG于H,∵四邊形ABCD是正方形,四邊形AEFG是正方形,∴AG=AE,AB=AD,∠GAE=∠DAB=90°,∴∠GAD=∠EAB,∴△GAD≌△EAB(SAS),∴BE=DG,∠ADG=∠ABE,∵∠ABE+∠ANB=90°,∴∠ADG+∠DNH=90°,∴∠DHN=90°,∴BE⊥DG;(2)如圖,當(dāng)點G在線段DE上時,連接BD,∵四邊形ABCD是正方形,四邊形AEFG是正方形,∴AG=AE,AB=AD=10,∠GAE=∠DAB=90°,∠ADB=45°=∠ABD,BD=AB=10,GE=AE,∴∠GAD=∠EAB,∴△GAD≌△EAB(SAS),∴BE=DG,∠ADG=∠ABE=15°,∴∠BDE=45°﹣15°=30°,∠DBE=45°+15°=60°,∴∠DEB=90°,∴BE=BD=5=DG,DE=BE=5,∴GE=5﹣5,∴AE==5﹣5,當(dāng)點E在線段DG上時,同理可求AE=5﹣5,故答案為:5﹣5;(3)如圖,若點G在線段DE上時,∵AD=4,AB=4,AG=4,AE=4,∴DB===8,GE===8,∠DAB=∠GAE=90°,∴∠DAG=∠BAE,又∵,∴△AGD∽△AEB,∴,∠DGA=∠AEB,∴BE=DG,∵∠DGA=∠GAE+∠DEA,∠AEB=∠DEB+∠AED,∴∠GAE=∠DEB=90°,∵DB2=DE2+BE2,∴64×13=(DG+8)2+3DG2,∴DG=12或DG=﹣16(舍去),∴BE=12,∵點M,N分別是BD,DE的中點,∴MN=BE=6;如圖,當(dāng)點E在線段DG上時,同理可求:BE=16,∵點M,N分別是BD,DE的中點,∴MN=BE=8,綜上所述:MN為6或8,故答案為:6或8.【點睛】本題是四邊形綜合題,考查了全等三角形的判定和性質(zhì),正方形的性質(zhì),矩形的性質(zhì),勾股定理的應(yīng)用,相似三角形的判定和性質(zhì),利用分類討論思想解決問題是本題的關(guān)鍵.11.(1),;(2)結(jié)論成立,理由見解析;(3).【分析】(1)先根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再根據(jù)等腰三角形的性質(zhì)、三角形的外角性質(zhì)即可求出的度數(shù);(2)如圖(見解析),先根據(jù)解析:(1),;(2)結(jié)論成立,理由見解析;(3).【分析】(1)先根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再根據(jù)等腰三角形的性質(zhì)、三角形的外角性質(zhì)即可求出的度數(shù);(2)如圖(見解析),先根據(jù)直角三角形斜邊上的中線等于斜邊的一半、三角形中位線定理可得,再根據(jù)等腰三角形的性質(zhì)、平行線的性質(zhì)、三角形的外角性質(zhì)可得,然后根據(jù)三角形全等的判定定理與性質(zhì)可得,最后根據(jù)平行線的性質(zhì)、等邊三角形的判定與性質(zhì)、角的和差即可求出的度數(shù);(3)如圖(見解析),先根據(jù)直角三角形的性質(zhì)可得,從而可得,再分別在和中,根據(jù)直角三角形的性質(zhì)、勾股定理可得,從而可得,然后在中,利用勾股定理即可得.【詳解】(1)在中,,點是中點,,同理可得:,,在中,,,,又,,,,,,,;(2)結(jié)論成立,理由如下:如圖,分別取AB的中點為M,取AD的中點為N,連接FM、CM、EN、FN,,,又點是中點,是的中位線,,,同理可得:,,繞點按順時針方向旋轉(zhuǎn)角,,,,,,,,,同理可得:,,在和中,,,,,是等邊三角形,,,,,,,;(3)如圖,過點G作,交AE延長線于點F,在中,,,,,由旋轉(zhuǎn)的性質(zhì)得:,在中,,,在中,,,,則在中,.【點睛】本題考查了直角三角形的性質(zhì)、三角形中位線定理、三角形全等的判定定理與性質(zhì)、旋轉(zhuǎn)的性質(zhì)等知識點,較難的是題(2),通過作輔助線,構(gòu)造全等三角形是解題關(guān)鍵.12.(1),;(2)不成立,見解析;(3)2或4【分析】(1)根據(jù)題意,利用等邊三角形的性質(zhì),得出,再根據(jù)全等三角形對應(yīng)角相等,得出,故得出與所夾的銳角為60°.(2)根據(jù)題意,利用等腰直角三角形解析:(1),;(2)不成立,見解析;(3)2或4【分析】(1)根據(jù)題意,利用等邊三角形的性質(zhì),得出,再根據(jù)全等三角形對應(yīng)角相等,得出,故得出與所夾的銳角為60°.(2)根據(jù)題意,利用等腰直角三角形的性質(zhì)可推出,再根據(jù)相似三角形對應(yīng)角相等,得出,故得出直線與所夾的銳角為45°,與(1)結(jié)論不符.(3)此問需要分兩種情況討論,一種情況是當(dāng)在直線上,該種情況需要先證明,從而根據(jù)相似三角形的性質(zhì)得到,最后根據(jù)全等三角形的性質(zhì)求出;另一種情況是,當(dāng)在直線下,先證明,從而證明四邊形為矩形,最后求出.【詳解】解:(1);60°解答如下:如圖1,與為等邊三角形,,在與中,,故答案為:;直線與所夾的銳角為60°.(2)不成立理由如下:與為等腰直角三角形,,,,即:,在與中,故(1)中的結(jié)論不成立;(3)的長度為2或4;①點在直線上方時如圖4,,,②點在直線下方時,如圖5,∥根據(jù)題意,易證四邊形為矩形,,故答案為綜上可得的長度為2或4【點睛】本題考查了等邊三角形的性質(zhì)、等腰直角三角形的三邊關(guān)系、旋轉(zhuǎn)的性質(zhì)、矩形的判定及性質(zhì)相似三角形的判定及性質(zhì),綜合性比較強,熟練掌握性質(zhì)定理是解題的關(guān)鍵.(1)利用等邊三角形的性質(zhì),從而證明三角形全等是解答該小問的關(guān)鍵.(2)根據(jù)等腰直角三角形的三邊關(guān)系,證明兩個三角形相似是解答第二問的關(guān)鍵,重點掌握相似三角形的判定方法.(3)解答本題時,首先要認(rèn)識到旋轉(zhuǎn)過程中滿足題意的兩種情況,其次證明過程可參考上面的證明過程,最后如何判定四邊形為矩形也是解答最后一題第二種情況的關(guān)鍵.13.(1);(2)結(jié)論成立,見解析;(3)1或2【分析】(1)問題發(fā)現(xiàn):通過角的關(guān)系可證△ABD∽△DCE,根據(jù)相似三角形對應(yīng)邊成比例可得到線段的關(guān)系;(2)拓展探究:可證明△ABD∽△DCE,解析:(1);(2)結(jié)論成立,見解析;(3)1或2【分析】(1)問題發(fā)現(xiàn):通過角的關(guān)系可證△ABD∽△DCE,根據(jù)相似三角形對應(yīng)邊成比例可得到線段的關(guān)系;(2)拓展探究:可證明△ABD∽△DCE,即可得到結(jié)論;(3)解決問題:可證△PBM∽△MCG,然后得到,用t可表示線段的長,當(dāng)G點在線段AC上時,若△APG為等腰三角形時,則AP=AG,代入計算即可;當(dāng)G點在CA延長線上時,若△APG為等腰三角形時,則△APG為等邊三角形,代入計算得到t.【詳解】解:(1)問題發(fā)現(xiàn)AB,CE,BD,DC之間的數(shù)量關(guān)系是:,理由:∵△ABC是等邊三角形,∴∠B=∠C=60°,∴∠BAD+∠ADB=180°﹣60°=120°,∠ADE=60°,∴∠CDE+∠ADB=180°﹣60°=120°,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴.故答案為:.(2)拓展探究(1)中的結(jié)論成立,∵AB=AC,∠B=α,∴∠B=∠C=α,∴∠BAD+∠ADB=180°﹣α,∵∠ADE=α,∴∠CDE+∠ADB=180°﹣α,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴;(3)解決問題∵∠B=30°,AB=AC=4cm,∴∠B=∠C=30°,∴∠BPM+∠PMB=180°﹣30°=150°,∵∠PMG=30°,∴∠CMG+∠PMB=180°﹣30°=150°,∴∠BPM=∠CMG,又∠B=∠C=30°,∴△PBM∽△MCG,∴,由題意可知AP=t,BM=t,即BP=4﹣t,如圖1,過點A作AH⊥BC于H,∵∠B=30°,AB=AC=4cm,∴AH=2cm,BH===2cm,∵AB=AC,AH⊥BC,∴BC=2BH=4cm,∴MC=(4t)cm,∴,即CG=3t,當(dāng)G點在線段AC上時,若△APG為等腰三角形時,則AP=AG,如圖2,此時AG=AC﹣CG=4﹣3t,∴4﹣3t=t,解得:t=1,當(dāng)G點在CA延長線上時,若△APG為等腰三角形時,如圖3,此時∠PAG=180°﹣120°=60°,則△APG為等邊三角形,AP=AG,此時AG=CG﹣AC=3t﹣4,∴3t﹣4=t,解得:t=2,∴當(dāng)△APG為等腰三角形時,t的值為1或2.【點睛】本題是三角形綜合題,考查了等腰三角形的性質(zhì),等邊三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),熟練掌握分類的思想方法是解題的關(guān)鍵.14.(1);(2)不成立,理由見解析;;(3),.【分析】(1)根據(jù)等邊三角形的性質(zhì)可得每一個內(nèi)角都是,則可知△BDE與△CDF是含角的直角三角形,根據(jù)角所對直角邊是斜邊的一半即可得到結(jié)果;(2)解析:(1);(2)不成立,理由見解析;;(3),.【分析】(1)根據(jù)等邊三角形的性質(zhì)可得每一個內(nèi)角都是,則可知△BDE與△CDF是含角的直角三角形,根據(jù)角所對直角邊是斜邊的一半即可得到結(jié)果;(2)根據(jù)題意可證得,得到,,進(jìn)而求出,得到,在中,,,即.(3)過點作,可求得,根據(jù)頂角為的等腰三角形面積的算法可求出的面積,【詳解】(1)∵△ABC是等邊三角形,∴,又∵,,∴,∴,,∴.(2)不成立.理由如下:如圖1,分別過點作于點,于點,易證得,則,.∵,,∴.∵,∴,則,∴,∴,即.在中,,∴,即.(3),.解法提示:如圖2,過點作,可求得.同(2)可證,可求得.在中可求出,根據(jù)頂角為的等腰三角形面積的算法可求出的面積為.【點睛】本題主要考查了三角形的綜合應(yīng)用,準(zhǔn)確理解三角形全等判定與性質(zhì)、直角三角形的性質(zhì)是解題的關(guān)鍵.15.(1)相等,;(2)是等邊三角形,理由見解析;(3)面積的最大值為.【分析】(1)根據(jù)"點分別為的中點",可得MNBD,NPCE,根據(jù)三角形外角和定理,等量代換求出.(2)先求出,得出,根據(jù)解析:(1)相等,;(2)是等邊三角形,理由見解析;(3)面積的最大值為.【分析】(1)根據(jù)"點分別為的中點",可得MNBD,NPCE,根據(jù)三角形外角和定理,等量代換求出.(2)先求出,得出,根據(jù)MNBD,NPCE,和三角形外角和定理,可知MN=PN,再等量代換求出,即可求解.(3)根據(jù),可知BD最大值,繼而求出面積的最大值.【詳解】由題意知:AB=AC,AD=AE,且點分別為的中點,∴BD=CE,MNBD,NPCE,MN=BD,NP=EC∴MN=NP又∵M(jìn)NBD,NPCE,∠A=,AB=AC,∴∠MNE=∠DBE,∠NPB=∠C,∠ABC=∠C=根據(jù)三角形外角和定理,得∠ENP=∠NBP+∠NPB∵∠MNP=∠MNE+∠ENP,∠ENP=∠NBP+∠NPB,∠NPB=∠C,∠MNE=∠DBE,∴∠MNP=∠DBE+∠NBP+∠C=∠ABC+∠C=.是等邊三角形.理由如下:如圖,由旋轉(zhuǎn)可得在ABD和ACE中.點分別為的中點,是的中位線,且同理可證且.在中∵∠MNP=,MN=PN是等邊三角形.根據(jù)題意得:即,從而的面積.∴面積的最大值為.【點睛】本題主要考查了三角形中點的性質(zhì)、三角形相似的判定定理、三角形外角和定理以及圖形旋轉(zhuǎn)的相關(guān)知識;正確掌握三角形相似的判定定理、三角形外角和定理以及圖形旋轉(zhuǎn)的相關(guān)知識是解題的關(guān)鍵.16.【問題發(fā)現(xiàn)】;【類比探究】上述結(jié)論還成立,理由見解析;【拓展延伸】或.【分析】問題發(fā)現(xiàn):證出AB∥EF,由平行線分線段成比例定理得出,即可得出結(jié)論;類比探究:證明△ACE∽△BCF,得出,即解析:【問題發(fā)現(xiàn)】;【類比探究】上述結(jié)論還成立,理由見解析;【拓展延伸】或.【分析】問題發(fā)現(xiàn):證出AB∥EF,由平行線分線段成比例定理得出,即可得出結(jié)論;類比探究:證明△ACE∽△BCF,得出,即可的結(jié)論;拓展延伸:分兩種情況,連接CE交GF于H,由正方形的性質(zhì)得出AB=BC=4,AC=AB=4,GF=CE=CF,GH=HF=HE=HC,得出CF=BC=2,GF=CE=2,HF=HE=HC=,由勾股定理求出AH==,即可得出答案.【詳解】問題發(fā)現(xiàn):AE=BF,理由如下:∵四邊形和四邊形是正方形,∴,,CE=CF,,∴,∴,∴AE=BF;故答案為:AE=BF;類比探究:上述結(jié)論還成立,理由如下:連接,如圖2所示:∵,∴,在和中,CE=CF,CA=CB,∴,∴,∴,∴AE=BF;拓展延伸:分兩種情況:①如圖3所示:連接交于,∵四邊形和四邊形是正方形,∴,AC=AB=4,GF=CE=CF,,∵點為的中點,∴,GF=CE=2,GH=HF=HE=HC=,∴∴AG=AH+HG=;②如圖4所示:連接交于,同①得:GH=HF=HE=HC=,∴,∴AG=AH-HG=;故答案為:或.【點睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、平行線分線段成比例定理、相似三角形的判定與性質(zhì)、勾股定理等知識;熟練掌握正方形的性質(zhì),證明三角形相似是解題的關(guān)鍵.17.【觀察】①90;②105;【發(fā)現(xiàn)】①50;②y=,補全圖象見解析;【拓展】0<x≤12或48≤x≤72【分析】【觀察】①先據(jù)題意求出兩個機器人速度的關(guān)系,再確定第二次迎面相遇的位置,然后設(shè)此時相解析:【觀察】①90;②105;【發(fā)現(xiàn)】①50;②y=,補全圖象見解析;【拓展】0<x≤12或48≤x≤72【分析】【觀察】①先據(jù)題意求出兩個機器人速度的關(guān)系,再確定第二次迎面相遇的位置,然后設(shè)此時相遇點距點A為m個單位,根據(jù)題意列方程即可求出結(jié)果;②仿照①的解題思路和方法解答即可;【發(fā)現(xiàn)】①當(dāng)點第二次相遇地點剛好在點B時,根據(jù)題意可列方程150﹣x=2x,解出的x的值即為a的值;②分0<x≤50與50<x<75兩種情況,分別求出正比例函數(shù)與一次函數(shù)的關(guān)系式,進(jìn)一步即可補全函數(shù)圖象;【拓展】分三種情況畫出圖形,然后根據(jù)題意得出相應(yīng)的分式方程,解方程即可得出y與x的關(guān)系,進(jìn)而可得關(guān)于x的不等式,解不等式即可得到結(jié)論.【詳解】解:【觀察】①∵相遇地點與點A之間的距離為30個單位長度,∴相遇地點與點B之間的距離為150﹣30=120個單位長度,設(shè)機器人甲的速度為v,則機器人乙的速度為v=4v,∴機器人甲從相遇點到點B所用的時間為,機器人乙從相遇地點到點A再返回到點B所用時間為,而,∴機器人甲與機器人乙第二次迎面相遇時,機器人乙從第一次相遇地點到點A,返回到點B,再返回向A時和機器人甲第二次迎面相遇,設(shè)此時相遇點距點A為m個單位,根據(jù)題意得,30+150+150﹣m=4(m﹣30),解得:m=90,故答案為:90;②∵相遇地點與點A之間的距離為35個單位長度,∴相遇地點與點B之間的距離為150﹣35=115個單位長度,設(shè)機器人甲的速度為v,則機器人乙的速度為,∴機器人乙從相遇點到點A再到點B所用的時間為,機器人甲從相遇點到點B所用時間為,而,∴機器人甲與機器人乙第二次迎面相遇時,機器人乙從第一次相遇地點到點A,返回到點B,再返回向A時和機器人甲第二次迎面相遇,設(shè)此時相遇點距點A為m個單位,根據(jù)題意得,35+150+150﹣m=(m﹣35),解得:m=105,故答案為:105;【發(fā)現(xiàn)】①當(dāng)?shù)诙蜗嘤龅攸c剛好在點B時,設(shè)機器人甲的速度為v,則機器人乙的速度為,根據(jù)題意知,150﹣x=2x,∴x=50,即:a=50,故答案為:50;②當(dāng)0<x≤50時,點P(50,150)在線段OP上,∴線段OP的表達(dá)式為y=3x,當(dāng)v<時,即當(dāng)50<x<75,此時,第二次相遇地點是機器人甲在到點B返回向點A時,設(shè)機器人甲的速度為v,則機器人乙的速度為,根據(jù)題意知,x+y=(150﹣x+150﹣y),整理,得y=﹣3x+300,∴y與x的函數(shù)關(guān)系式是y=,補全圖象如圖2所示:【拓展】①如圖,由題意知,,∴y=5x,∵0<y≤60,∴0<x≤12;②如圖,∴,∴y=﹣5x+300,∵0≤y≤60,∴48≤x≤60,③如圖,由題意得,=,∴y=5x﹣300,∵0≤y≤60,∴60≤x≤72,∵0<x<75,∴48≤x≤72,綜上所述,相遇地點與點A之間的距離x的取值范圍是0<x≤12或48≤x≤72,故答案為:0<x≤12或48≤x≤72.【點睛】本題考查了一次函數(shù)的應(yīng)用、分式方程的應(yīng)用、兩點間的距離、一元一次方程和一元一次不等式的應(yīng)用,難度較大,正確理解題意、靈活應(yīng)用數(shù)形結(jié)合的思想是解題的關(guān)鍵.18.(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由見解析;(3)S△PMN最大=.【分析】(1)由已知易得,利用三角形的中位線得出,,即可得出數(shù)量關(guān)系,再利用三角形的中位線得出得解析:(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由見解析;(3)S△PMN最大=.【分析】(1)由已知易得,利用三角形的中位線得出,,即可得出數(shù)量關(guān)系,再利用三角形的中位線得出得出,最后用互余即可得出位置關(guān)系;(2)先判斷出,得出,同(1)的方法得出,,即可得出,同(1)的方法由,即可得出結(jié)論;(3)方法1:先判斷出最大時,的面積最大,進(jìn)而求出,,即可得出最大,最后用面積公式即可得出結(jié)論.方法2:先判斷出最大時,的面積最大,而最大是,即可得出結(jié)論.【詳解】解:(1)點,是,的中點,,,點,是,的中點,,,,,,,,,,,,,,,故答案為:,;(2)是等腰直角三角形.由旋轉(zhuǎn)知,,,,,,,利用三角形的中位線得,,,,是等腰三角形,同(1)的方法得,,,同(1)的方法得,,,,,,,,是等腰直角三角形;(3)方法1:如圖2,同(2)的方法得,是等腰直角三角形,最大時,的面積最大,且在頂點上面,最大,連接,,在中,,,,在中,,,,.方法2:由(2)知,是等腰直角三角形,,最大時,面積最大,點在的延長線上,,,.【點睛】此題屬于幾何變換綜合題,主要考查了三角形的中位線定理,等腰直角三角形的判定和性質(zhì),全等三角形的判斷和性質(zhì),直角三角形的性質(zhì)的綜合運用;解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論