綜合解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試題附完整答案詳解【有一套】_第1頁
綜合解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試題附完整答案詳解【有一套】_第2頁
綜合解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試題附完整答案詳解【有一套】_第3頁
綜合解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試題附完整答案詳解【有一套】_第4頁
綜合解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試題附完整答案詳解【有一套】_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計(jì)12分)1、在正方形網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),以格點(diǎn)為頂點(diǎn)的三角形叫做格點(diǎn)三角形.如圖,△ABC是格點(diǎn)三角形,在圖中的6×6正方形網(wǎng)格中作出格點(diǎn)三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格點(diǎn)三角形△ADE只算一個(gè)),這樣的格點(diǎn)三角形一共有()A.4個(gè) B.5個(gè) C.6個(gè) D.7個(gè)2、拋物線的對(duì)稱軸為直線.若關(guān)于的一元二次方程(為實(shí)數(shù))在的范圍內(nèi)有實(shí)數(shù)根,則的取值范圍是()A. B. C. D.3、已知⊙O的半徑為4,點(diǎn)O到直線m的距離為d,若直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè),則d可?。ǎ〢.5 B.4.5 C.4 D.04、在Rt△ABC中,∠C=90°,a、b、c分別是∠A、∠B、∠C的對(duì)邊,則()A. B. C. D.5、如圖,菱形ABCD中,∠BAD=60°,AC、BD交于點(diǎn)O,E為CD延長線上的一點(diǎn),且CD=DE,連接BE分別交AC,AD于點(diǎn)F、G,連結(jié)OG、AE.則下列結(jié)論:①OG=AB;

②四邊形ABDE是菱形;③;其中正確的是(

)A.①② B.①③ C.②③ D.①②③6、西周時(shí)期,丞相周公旦設(shè)置過一種通過測(cè)定日影長度來確定時(shí)間的儀器,稱為圭表.如圖是一個(gè)根據(jù)北京的地理位置設(shè)計(jì)的圭表,其中,立柱AC高為a.已知,冬至?xí)r北京的正午日光入射角∠ABC約為26.5°,則立柱根部與圭表的冬至線的距離(即BC的長)約為()A. B.a(chǎn)sin26.5° C.a(chǎn)cos26.5° D.二、多選題(7小題,每小題2分,共計(jì)14分)1、如圖,在2×3的方格中,畫有格點(diǎn)△ABC,下列選項(xiàng)的方格中所畫格點(diǎn)三角形(陰影部分)與△ABC不相似的是()A. B. C. D.2、下列說法不正確的是()A.相切兩圓的連心線經(jīng)過切點(diǎn) B.長度相等的兩條弧是等弧C.平分弦的直徑垂直于弦 D.相等的圓心角所對(duì)的弦相等3、如圖,在矩形ABCD中,對(duì)角線AC、BD相交于G,E為AD的中點(diǎn),連接BE交AC于F,連接FD,若∠BFA=90°,則下列四對(duì)三角形中相似的為()A.△BEA與△ACD B.△FED與△DEB C.△CFD與△ABG D.△ADF與△EFD4、如圖,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,則下列結(jié)論不正確的是()A.sinA= B.tanA= C.cosB= D.tanB=5、下列四個(gè)命題中正確的命題有(

)A.兩個(gè)矩形一定相似 B.兩個(gè)菱形都有一個(gè)角是40°,那么這兩個(gè)菱形相似C.兩個(gè)正方形一定相似 D.有一個(gè)角相等的兩個(gè)等腰梯形相似6、在△ABC中,∠A、∠B、∠C的對(duì)邊分別為a、b、c,且a=5,b=12,c=16,下面四個(gè)式子中錯(cuò)誤的有()A.sinA= B.cosA= C.tanA= D.sinB=7、在△ABC中,∠C=90°,下列各式一定成立的是(

)A.a(chǎn)=b?cosA B.a(chǎn)=c?cosB C.c= D.a(chǎn)=b?tanA第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計(jì)14分)1、將拋物線向上平移()個(gè)單位長度,<k<,平移后的拋物線與雙曲線y=(x>0)交于點(diǎn)P(p,q),M(1+,n),則下列結(jié)論正確的是__________.(寫出所有正確結(jié)論的序號(hào))①0<p<1-;

②1-<p<1;

③q<n;

④q>2k-k.2、如圖,小亮為了測(cè)量校園里教學(xué)樓AB的高度,將測(cè)角儀CD豎直放置在與教學(xué)樓水平距離為18m的地面上,若測(cè)角儀的高度為I.5m,測(cè)得教學(xué)樓的頂部A處的仰角為30°,則教學(xué)樓的高度是____.3、若二次函數(shù)的頂點(diǎn)在x軸上,則__________.4、如圖,是⊙O的內(nèi)接正三角形,點(diǎn)是圓心,點(diǎn),分別在邊,上,若,則的度數(shù)是____度.5、如圖,在平面直角坐標(biāo)系中,一條過原點(diǎn)的直線與反比例函數(shù)的圖象x相交于兩點(diǎn),若,,則該反比例函數(shù)的表達(dá)式為______.6、如圖,小明在距離地面30米的P處測(cè)得A處的俯角為15°,B處的俯角為60°.若斜面坡度為1:,則斜坡AB的長是__________米.7、如圖,直線MN∥PQ,直線AB分別與MN,PQ相交于點(diǎn)A,B.小宇同學(xué)利用以下步驟作圖:①以點(diǎn)A為圓心,適當(dāng)長為半徑作弧交射線AN于點(diǎn)C,交線段AB于點(diǎn)D;②以點(diǎn)C為圓心,適當(dāng)長為半徑畫??;然后再以點(diǎn)D為圓心,同樣長為半徑畫?。昂髢苫≡凇螻AB內(nèi)交于點(diǎn)E;③作射線AE,交PQ于點(diǎn)F;若AF=2,∠FAN=30°,則線段BF的長為_____.四、解答題(6小題,每小題10分,共計(jì)60分)1、如圖所示,直線y=x+2與坐標(biāo)軸交于A、B兩點(diǎn),與反比例函數(shù)y=(x>0)交于點(diǎn)C,已知AC=2AB.(1)求反比例函數(shù)解析式;(2)若在點(diǎn)C的右側(cè)有一平行于y軸的直線,分別交一次函數(shù)圖象與反比例函數(shù)圖象于D、E兩點(diǎn),若CD=CE,求點(diǎn)D坐標(biāo).2、某超市經(jīng)銷一種商品,每件成本為50元.經(jīng)市場(chǎng)調(diào)研,當(dāng)該商品每件的銷售價(jià)為60元時(shí),每個(gè)月可銷售300件,若每件的銷售價(jià)每增加1元,則每個(gè)月的銷售量將減少10件.設(shè)該商品每件的銷售價(jià)為x元,每個(gè)月的銷售量為y件.(1)求y與x的函數(shù)表達(dá)式;(2)當(dāng)該商品每件的銷售價(jià)為多少元時(shí),每個(gè)月的銷售利潤最大?最大利潤是多少?3、已知,且,求x,y的值.4、根據(jù)下列條件,求二次函數(shù)的解析式.(1)圖象經(jīng)過(0,1),(1,﹣2),(2,3)三點(diǎn);(2)圖象的頂點(diǎn)(2,3),且經(jīng)過點(diǎn)(3,1);5、五一期間,小明跟父母去烏鎮(zhèn)旅游,欣賞烏鎮(zhèn)水鄉(xiāng)的美景.如圖,當(dāng)小明走到烏鎮(zhèn)古橋的C處時(shí),發(fā)現(xiàn)遠(yuǎn)處有一瞍船勻速行駛過來,當(dāng)船行駛到A處時(shí),小明測(cè)得船頭的俯角為30°,同時(shí)小明開始計(jì)時(shí),船在航行過小明所在的橋之后,繼續(xù)向前航行到達(dá)B處,此時(shí)測(cè)得船尾的俯角為45°;從小明開始計(jì)時(shí)到船行駛至B處,共用時(shí)15min;已知小明所在位置距離水面6m,船長3m,船到水面的距離忽略不計(jì),請(qǐng)你幫助小明計(jì)算一下船的航行速度(結(jié)果保留根號(hào))6、如圖,在中,,,,為的中點(diǎn).動(dòng)點(diǎn)從點(diǎn)出發(fā)以每秒個(gè)單位向終點(diǎn)勻速運(yùn)動(dòng)(點(diǎn)不與、、重合),過點(diǎn)作的垂線交折線于點(diǎn).以、為鄰邊構(gòu)造矩形.設(shè)矩形與重疊部分圖形的面積為,點(diǎn)的運(yùn)動(dòng)時(shí)間為秒.(1)直接寫出的長(用含的代數(shù)式表示);(2)當(dāng)點(diǎn)落在的邊上時(shí),求的值;(3)當(dāng)矩形與重疊部分圖形不是矩形時(shí),求與的函數(shù)關(guān)系式,并寫出的取值范圍;(4)沿直線將矩形剪開,得到兩個(gè)圖形,用這兩個(gè)圖形拼成不重疊且無縫隙的圖形恰好是三角形.請(qǐng)直接寫出所有符合條件的的值.-參考答案-一、單選題1、C【解析】【分析】根據(jù)題意,得出ABC的三邊之比,并在直角坐標(biāo)系中找出與ABC各邊長成比例的相似三角形,并在直角坐標(biāo)系中無一遺漏地表示出來.【詳解】解:ABC的三邊之比為,如圖所示,可能出現(xiàn)的相似三角形共有以下六種情況:所以使得△ADE∽△ABC的格點(diǎn)三角形一共有6個(gè),故選:C.【考點(diǎn)】本題考察了在直角坐標(biāo)系中畫出與已知三角形相似的圖形,解題的關(guān)鍵在于找出與已知三角形各邊長成比例的三角形,并在直角坐標(biāo)系中無一遺漏地表示出來.2、A【解析】【分析】根據(jù)給出的對(duì)稱軸求出函數(shù)解析式為,將一元二次方程的實(shí)數(shù)根可以看做與函數(shù)的有交點(diǎn),再由的范圍確定的取值范圍即可求解;【詳解】∵的對(duì)稱軸為直線,∴,∴,∴一元二次方程的實(shí)數(shù)根可以看做與函數(shù)的有交點(diǎn),∵方程在的范圍內(nèi)有實(shí)數(shù)根,當(dāng)時(shí),,當(dāng)時(shí),,函數(shù)在時(shí)有最小值2,∴,故選A.【考點(diǎn)】本題考查二次函數(shù)的圖象及性質(zhì);能夠?qū)⒎匠痰膶?shí)數(shù)根問題轉(zhuǎn)化為二次函數(shù)與直線的交點(diǎn)問題,借助數(shù)形結(jié)合解題是關(guān)鍵.3、D【解析】【分析】根據(jù)直線和圓的位置關(guān)系判斷方法,可得結(jié)論.【詳解】∵直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè)∴直線與圓相交∴d<半徑=4故選D.【考點(diǎn)】本題考查了直線與圓的位置關(guān)系,掌握直線和圓的位置關(guān)系判斷方法:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d.①直線l和⊙O相交?d<r②直線l和⊙O相切?d=r,③直線l和⊙O相離?d>r.4、C【解析】【分析】根據(jù)Rt△ABC中,cos

B,tan

B,sin

A的定義,進(jìn)行判斷.【詳解】∵Rt△ABC中,sinA=,cosA=,sin

B=,tanB=,∴選項(xiàng)C正確,選項(xiàng)A、B、D錯(cuò)誤,故選C.【考點(diǎn)】本題考查了銳角三角函數(shù)的定義.關(guān)鍵是熟練掌握銳角三角函數(shù)的定義及其變形.5、D【解析】【分析】證明四邊形ABDE為平行四邊形可得OB=OD,由菱形ABCD可得AG=DG,根據(jù)三角形中位線定理可判斷①;根據(jù)等邊三角形的性質(zhì)和判定可得△ABD為等邊三角形AB=BD,從而可判斷平行四邊形ABDE是菱形,由此判斷②;借助相似三角形的性質(zhì)和判定,三角形中線有關(guān)的面積問題可判斷③.【詳解】解:∵四邊形ABCD是菱形,∴AB∥CD,AB=CD=AD,OA=OC,OB=OD,∵CD=DE,∴AB=DE.又∵AB∥DE,∴四邊形ABDE是平行四邊形,∴BG=EG,AB=DE,AG=DG,又∵OD=OB,∴OG是△BDA是中位線,∴OG=AB,故①正確;∵∠BAD=60°,AB=AD,∴△BAD是等邊三角形,∴BD=AB,∴是菱形,故②正確;∵OB=OD,AG=DG,∴OG是△ABD的中位線,∴OG∥AB,OG=AB,∴△GOD∽△ABD(ASA),△ABF∽△OGF(ASA),∴△GOD的面積=△ABD的面積,△ABF的面積=△OGF的面積的4倍,AF:OF=2:1,∴△AFG的面積=△OGF的面積的2倍,又∵△GOD的面積=△AOG的面積=△BOG的面積,∴S四邊形ODGF=S△ABF;故③正確;故選:D.【考點(diǎn)】本題考查了菱形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、三角形中位線定理、相似三角形的判定與性質(zhì)等知識(shí).判斷①的關(guān)鍵是三角形中位線定理的運(yùn)用,②的關(guān)鍵是利用等邊三角形證明BD=AB;③的關(guān)鍵是通過相似得出面積之間的關(guān)系.6、A【解析】【分析】根據(jù)題意和圖形,可以用含a的式子表示出BC的長,從而可以解答本題.【詳解】由題意可得,立柱根部與圭表的冬至線的距離為:,故選:A.【考點(diǎn)】此題考查解直角三角形的應(yīng)用,解題的關(guān)鍵是明確題意,利用銳角三角函數(shù)解答.二、多選題1、BCD【解析】【分析】先判斷格中所畫格點(diǎn)三角形為直角三角形,利用兩組對(duì)應(yīng)邊的比相等且夾角對(duì)應(yīng)相等的兩個(gè)三角形相似,否則不相似,對(duì)各選項(xiàng)進(jìn)行判斷.【詳解】解:由圖知:∠ACB=90°,AC=2,BC=1,AC:BC=2,A選項(xiàng)中,三條線段的長為,因?yàn)椋巳切螢橹苯侨切?,長直角邊與短直角邊的比為2,所以A選項(xiàng)的方格中所畫格點(diǎn)三角形(陰影部分)與△ABC相似,不符合題意;B選項(xiàng)中,長直角邊與短直角邊的比為3,所以B中格點(diǎn)三角形與△ABC不相似,符合題意;C選項(xiàng)中,三條線段的長為√,因?yàn)?,此三角形為直角三角形,兩直角邊的比?,所以C選項(xiàng)的方格中所畫格點(diǎn)三角形(陰影部分)與△ABC不相似,符合題意;D選項(xiàng)中,三角形的兩直角邊的比為1:1.所以D中格點(diǎn)三角形與△ABC不相似,符合題意,故選:BCD.【考點(diǎn)】本題考查相似三角形的判定,能在格點(diǎn)中表示各個(gè)線段的長度和掌握相似三角形的判定定理是解決此題的關(guān)鍵.2、BCD【解析】【分析】要找出正確命題,可運(yùn)用相關(guān)基礎(chǔ)知識(shí)分析找出正確選項(xiàng),也可以通過舉反例排除不正確選項(xiàng),從而得出正確選項(xiàng).(1)等弧指的是在同圓或等圓中,能夠完全重合的?。L度相等的兩條弧,不一定能夠完全重合;(2)此弦不能是直徑;(3)相等的圓心角所對(duì)的弦相等指的是在同圓或等圓中.【詳解】解:A、根據(jù)圓的軸對(duì)稱性可知此命題正確,不符合題意;B、等弧指的是在同圓或等圓中,能夠完全重合的?。嗣}沒有強(qiáng)調(diào)在同圓或等圓中,所以長度相等的兩條弧,不一定能夠完全重合,此命題錯(cuò)誤,符合題意;B、此弦不能是直徑,命題錯(cuò)誤,符合題意;C、相等的圓心角指的是在同圓或等圓中,此命題錯(cuò)誤,符合題意;故選:BCD.【考點(diǎn)】本題考查的是兩圓的位置關(guān)系、圓周角定理以及垂徑定理,熟知平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧是解答此題的關(guān)鍵.3、ABCD【解析】【分析】根據(jù)判定三角形相似的條件對(duì)選項(xiàng)逐一進(jìn)行判斷.【詳解】解:根據(jù)題意得:∠BAE=∠ADC=∠AFE=90°∴∠AEF+∠EAF=90°,∠DAC+∠ACD=90°∴∠AEF=∠ACD∴△BEA∽△ACD;∵∠AEB=∠FEA,∠AFE=∠EAB=90°,∴△AFE∽△BAE,∴,又∵AE=ED,∴而∠BED=∠BED,∴△FED∽△DEB;∵ABCD,∴∠BAC=∠GCD,∵∠ABE=∠DAF,∠EBD=∠EDF,且∠ABG=∠ABE+∠EBD,∴∠ABG=∠DAF+∠EDF=∠DFC;∵∠ABG=∠DFC,∠BAG=∠DCF,∴△CFD∽△ABG;∵△FED∽△DEB,∴∠EFD=∠EDB,∵AG=DG,∴∠DAF=∠ADG,∴∠DAF=∠EFD,∴△ADF∽△EFD.故選:ABCD.【考點(diǎn)】此題考查了相似三角形的判定:①有兩個(gè)對(duì)應(yīng)角相等的三角形相似;②有兩個(gè)對(duì)應(yīng)邊的比相等,且其夾角相等,則兩個(gè)三角形相似;③三組對(duì)應(yīng)邊的比相等,則兩個(gè)三角形相似.4、ABC【解析】【分析】先根據(jù)勾股定理求出AC=,再根據(jù)三角函數(shù)的定義分別求解可得.【詳解】解:A、sinA=,故該選項(xiàng)符合題意;B、tanA=,故該選項(xiàng)符合題意;C、cosB=,故該選項(xiàng)符合題意;D、tanB==,故該選項(xiàng)不符合題意;故選:ABC.【考點(diǎn)】本題主要考查了銳角三角函數(shù),正確記憶相關(guān)比例關(guān)系是解題關(guān)鍵.5、BC【解析】【分析】根據(jù)兩個(gè)圖形相似的性質(zhì)及判定方法,對(duì)應(yīng)邊的比相等,對(duì)應(yīng)角相等,兩個(gè)條件同時(shí)滿足來判斷正誤.【詳解】解:A兩個(gè)矩形對(duì)應(yīng)角都是直角相等,對(duì)應(yīng)邊不一定成比例,所以不一定相似,故本小題錯(cuò)誤;B兩個(gè)菱形有一個(gè)角相等,則其它對(duì)應(yīng)角也相等,對(duì)應(yīng)邊成比例,所以一定相似,故本小題正確;C兩個(gè)正方形一定相似,正確;D有一個(gè)角相等的兩個(gè)等腰梯形,對(duì)應(yīng)角一定相等,但對(duì)應(yīng)邊的比不一定相等,故本小題錯(cuò)誤.故選:BC.【考點(diǎn)】本題考查的是相似多邊形的判定及菱形,矩形,正方形,等腰梯形的性質(zhì)及其定義.6、ABCD【解析】【分析】根據(jù)三角函數(shù)的定義即可得到結(jié)論.【詳解】解:∵a=5,b=12,c=16,∴a2+b2≠c2,∴△ABC不是直角三角形,∴A、B、C、D四個(gè)選項(xiàng)都不對(duì),故選:ABCD.【考點(diǎn)】本題考查的是銳角三角函數(shù)的定義,銳角A的對(duì)邊a與斜邊c的比叫做∠A的正弦;銳角A的鄰邊b與斜邊c的比叫做∠A的余弦;銳角A的對(duì)邊a與鄰邊b的比叫做∠A的正切.7、BCD【解析】【分析】作出圖形,然后根據(jù)三角函數(shù)的定義對(duì)各選項(xiàng)分析判斷后利用排除法求解.【詳解】解:如圖,A、a=b?tanA,故選項(xiàng)A錯(cuò)誤,不符合題意;B、a=c?cosB正確,故關(guān)系式一定成立;C、c=正確,故關(guān)系式一定成立;D、a=b?tanA正確,故關(guān)系式一定成立;故選BCD.【考點(diǎn)】本題考查銳角三角函數(shù)的定義及運(yùn)用:在直角三角形中,銳角的正弦為對(duì)邊比斜邊,余弦為鄰邊比斜邊,正切為對(duì)邊比鄰邊.三、填空題1、②④##④②【解析】【分析】先畫出函數(shù)圖像,判斷出當(dāng)時(shí)拋物線和反比例函數(shù)圖象上的點(diǎn)的縱坐標(biāo)的關(guān)系,確定拋物線右支與反比例函數(shù)圖象的交點(diǎn)個(gè)數(shù),再利用拋物線的對(duì)稱性與反比例函數(shù)的圖象與性質(zhì)直接判斷即可.【詳解】解:∵拋物線,∴該拋物線對(duì)稱軸為,頂點(diǎn)坐標(biāo)為(1,),將該拋物線向上平移()個(gè)單位長度,則頂點(diǎn)坐標(biāo)為(1,),當(dāng)時(shí),反比例函數(shù)圖象上點(diǎn)的坐標(biāo)為(1,),如圖所示,拋物線平移后的頂點(diǎn)縱坐標(biāo)即為m,反比例函數(shù)上橫坐標(biāo)為1的點(diǎn)的縱坐標(biāo)即為s,∴m-s=,∵<k<,∴∴拋物線的右支與反比例函數(shù)圖象只有一個(gè)交點(diǎn),且該交點(diǎn)橫坐標(biāo)大于1;∵平移后的拋物線與雙曲線y=(x>0)交于點(diǎn)P(p,q),M(1+,n),∴點(diǎn)M為拋物線右支與反比例函數(shù)圖象的交點(diǎn),∴點(diǎn)P為拋物線左支與反比例函數(shù)圖象的交點(diǎn),由于反比例函數(shù)的圖像在第一象限內(nèi)y隨x的增大而減小,且拋物線關(guān)于直線對(duì)稱∴1-<p<1;q>2k-k.∴②④正確;故答案為:②④.【考點(diǎn)】本題考查了拋物線與反比例函數(shù)的圖像與性質(zhì),解題關(guān)鍵是弄清楚這兩個(gè)交點(diǎn)分別位于拋物線的左支和右支上,再利用拋物線的軸對(duì)稱性和反比例函數(shù)圖像的增減性進(jìn)行判斷.2、19.5m.【解析】【分析】作DE⊥AB于E,根據(jù)tan∠ADE=求出AE,故可求解.【詳解】解:作DE⊥AB于E,在Rt△ADE中,tan∠ADE=,∴AE=DE?tan∠ADE=18×=18,∴AB=AE+EB=18+1.5=19.5(m),故答案為:19.5m.【考點(diǎn)】此題主要考查解直角三角形的應(yīng)用-仰角俯角問題,解題的關(guān)鍵是熟知正切的定義.3、-2或【解析】【分析】根據(jù)二次函數(shù)一般式的頂點(diǎn)坐標(biāo)公式表示出頂點(diǎn),再根據(jù)頂點(diǎn)在x軸上,建立等量關(guān)系求解即可.【詳解】解:的頂點(diǎn)坐標(biāo)為:∵頂點(diǎn)在x軸上∴解得:故答案為:或【考點(diǎn)】本題考查二次函數(shù)一般式的頂點(diǎn)坐標(biāo),掌握二次函數(shù)一般式的頂點(diǎn)坐標(biāo)公式是解題關(guān)鍵.4、120【解析】【分析】本題可通過構(gòu)造輔助線,利用垂徑定理證明角等,繼而利用SAS定理證明三角形全等,最后根據(jù)角的互換結(jié)合同弧所對(duì)的圓周角等于圓心角的一半求解本題.【詳解】連接OA,OB,作OH⊥AC,OM⊥AB,如下圖所示:因?yàn)榈冗吶切蜛BC,OH⊥AC,OM⊥AB,由垂徑定理得:AH=AM,又因?yàn)镺A=OA,故△OAH△OAM(HL).∴∠OAH=∠OAM.又∵OA=OB,AD=EB,∴∠OAB=∠OBA=∠OAD,∴△ODA△OEB(SAS),∴∠DOA=∠EOB,∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB.又∵∠C=60°以及同弧,∴∠AOB=∠DOE=120°.故本題答案為:120.【考點(diǎn)】本題考查圓與等邊三角形的綜合,本題目需要根據(jù)等角的互換將所求問題進(jìn)行轉(zhuǎn)化,構(gòu)造輔助線是本題難點(diǎn),全等以及垂徑定理的應(yīng)用在圓綜合題目極為常見,圓心角、弧、圓周角的關(guān)系需熟練掌握.5、y=.【解析】【分析】由正比例函數(shù)與反比例函數(shù)的兩個(gè)交點(diǎn)關(guān)于原點(diǎn)對(duì)稱,可得m2-7=2,由點(diǎn)A在第三象限可求m的值,即可求點(diǎn)A坐標(biāo),代入解析式可求解.【詳解】解:∵一條過原點(diǎn)的直線與反比例函數(shù)的圖象相交于A、B兩點(diǎn),∴點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,∴m2-7=2,∴m=±3,∵點(diǎn)A在第三象限,∴m<0,∴m=-3,∴點(diǎn)A(-3,-2),∵點(diǎn)A在反比例函數(shù)的圖象上,∴k=-3×(-2)=6,∴反比例函數(shù)的表達(dá)式為y=,故答案為:y=.【考點(diǎn)】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,掌握正比例函數(shù)與反比例函數(shù)的兩個(gè)交點(diǎn)關(guān)于原點(diǎn)對(duì)稱是本題的關(guān)鍵.6、【解析】【分析】首先根據(jù)題意得出∠ABF=30°,進(jìn)而得出∠PBA=90°,∠BAP=45°,再利用銳角三角函數(shù)關(guān)系求出即可.【詳解】解:如圖所示:過點(diǎn)A作AF⊥BC于點(diǎn)F,∵斜面坡度為1:,∴tan∠ABF=,∴∠ABF=30°,∵在距離地面30米的P處測(cè)得A處的俯角為15°,B處的俯角為60°,∴∠HPB=30°,∠APB=45°,∴∠HBP=60°,∴∠PBA=90°,∠BAP=45°,∴PB=AB,∵PH=30m,sin60°=,解得:PB=,故AB=m,故答案為:.【考點(diǎn)】此題主要考查了解直角三角形的應(yīng)用,正確得出PB=AB是解題關(guān)鍵.7、2【解析】【分析】過B作BG⊥AF于G,依據(jù)AB=BF,運(yùn)用等腰三角形的性質(zhì),即可得出GF的長,進(jìn)而得到BF的長.【詳解】解:如圖,過B作BG⊥AF于G,∵M(jìn)N∥PQ,∴∠FAN=∠3=30°,由題意得:AF平分∠NAB,∴∠1=∠2=30°,∴∠1=∠3=30°,∴AB=BF,又∵BG⊥AF,∴AG=GF=AF=,∴Rt△BFG中,BF=,故答案為:2.【考點(diǎn)】本題考查了平行線的性質(zhì)、角平分線的基本作圖、直角三角形30度角的性質(zhì),熟練掌握平行線和角平分線的基本作圖是關(guān)鍵.四、解答題1、(1)y=;(2)D(6,8).【解析】【分析】(1)作CM⊥y軸于M,如圖,利用直線解析式確定A(0,2),B(﹣2,0),再根據(jù)平行線分線段成比例定理求出MC=4,AM=4,則C(4,6),然后把C點(diǎn)坐標(biāo)代入y=中求出k得到反比例函數(shù)解析式;(2)MC交直線DE于N,如圖,證明△CND為等腰直角三角形得到CN=DN,再利用CD=CE得到CN=NE=DN,設(shè)CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),然后把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,最后解方程求出t得到D點(diǎn)坐標(biāo).【詳解】解:(1)作CM⊥y軸于M,如圖,當(dāng)x=0時(shí),y=x+2=2,則A(0,2),當(dāng)y=0時(shí),x+2=0,解得x=﹣2,則B(﹣2,0),∵M(jìn)C∥OB,∴===2,∴MC=2OB=4,AM=2OA=4,∴C(4,6),把C(4,6)代入y=得k=4×6=24,∴反比例函數(shù)解析式為y=;(2)MC交直線DE于N,如圖,∵M(jìn)C=MA,∴△MAC為等腰直角三角形,∴∠ACM=45°,∴∠DCN=45°,∴△CND為等腰直角三角形,∴CN=DN,∵CD=CE,∴CN=NE=DN,設(shè)CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,解得t1=0(舍去),t2=2,∴D(6,8).【考點(diǎn)】本題是反比例函數(shù)與一次函數(shù)的綜合題,涉及到待定系數(shù)法求函數(shù)解析式、平行線分線段成比例定理、等腰三角形的性質(zhì),有一定的難度2、(1)y=-10x+900;(2)每件銷售價(jià)為70元時(shí),獲得最大利潤;最大利潤為4000元【解析】【分析】(1)根據(jù)等量關(guān)系“利潤=(售價(jià)﹣進(jìn)價(jià))×銷量”列出函數(shù)表達(dá)式即可.(2)根據(jù)(1)中列出函數(shù)關(guān)系式,配方后依據(jù)二次函數(shù)的性質(zhì)求得利潤最大值.【詳解】解:(1)根據(jù)題意,y=300﹣10(x﹣60)=-10x+900,∴y與x的函數(shù)表達(dá)式為:y=-10x+900;(2)設(shè)利潤為w,由(1)知:w=(x﹣50)(-10x+900)=﹣10x2+1400x﹣45000,∴w=﹣10(x﹣70)2+4000,∴每件銷售價(jià)為70元時(shí),獲得最大利潤;最大利潤為4000元.【考點(diǎn)】本題考查的是二次函數(shù)在實(shí)際生活中的應(yīng)用.此題難度不大,解題的關(guān)鍵是理解題意,找到等量關(guān)系,求得二次函數(shù)解析式.3、x=6,y=10【解析】【分析】設(shè),則x=3k,y=5k,z=6k,由可求得k的值,從而可求得x與y的值.【詳解】設(shè),則x=3k,y=5k,z=6k∵∴解得:k=2∴x=3×2=6,y=5×2=10即x、y的值分別為6、10【考點(diǎn)】本題考查了比例的性質(zhì),若幾個(gè)比相等,即,常常設(shè)其比值為k,則有a=kb,c=kd,e=kf,再根據(jù)題目條件解答則更簡(jiǎn)便.4、(1)y=4x2﹣7x+1;(2)y=﹣2(x﹣2)2+3.【解析】【分析】(1)先設(shè)出拋物線的解析式為y=ax2+bx+c,再將點(diǎn)(0,1),(1,?2),(2,3)代入解析式中,即可求得拋物線的解析式;(2)由于已知拋物線的頂點(diǎn)坐標(biāo),則可設(shè)頂點(diǎn)式y(tǒng)=a(x?2)2+3,然后把(3,1)代入求出a的值即可.【詳解】解:(1)設(shè)出拋物線的解析式為y=ax2+bx+c,將(0,1),(1,﹣2),(2,3)代入解析式,得:,解得:,∴拋物線解析式為:y=4x2﹣7x+1;(2)設(shè)拋物線解析式為y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論