版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
一、解答題1.在平面直角坐標(biāo)系中,點,滿足關(guān)系式.(1)求,的值;(2)若點滿足的面積等于,求的值;(3)線段與軸交于點,動點從點出發(fā),在軸上以每秒個單位長度的速度向下運動,動點從點出發(fā),以每秒個單位長度的速度向右運動,問為何值時有,請直接寫出的值.解析:(1),;(2)或;(3)或【分析】(1)根據(jù)一個數(shù)的平方與絕對值均非負(fù),且其和為0,則可得它們都為0,從而可求得a和b的值;(2)過點P作直線l垂直于x軸,延長交直線于點,設(shè)點坐標(biāo)為,過作交直線于點,根據(jù)面積關(guān)系求出Q點坐標(biāo),再求出PQ的長度,即可求出n的值;(3)先根據(jù)求出C點坐標(biāo),再根據(jù)求出D點坐標(biāo),根據(jù)題意可得F點坐標(biāo),由得關(guān)于t的方程,求出t值即可.【詳解】(1),,且,,(2)過作直線垂直于軸,延長交直線于點,設(shè)點坐標(biāo)為,過作交直線于點,如圖所示∵∴解得,點坐標(biāo)為∵∴解得:或(3)當(dāng)或時,有.如圖,延長BA交x軸于點D,過A點作AG⊥x軸于點G,過B點作BN⊥x軸于點N,∵∴解得:∴∵∴解得:∵∴當(dāng)運動t秒時,∴∵CE=t∴,∵∴解得:或.【點睛】本題主要考查三角形的面積,含絕對值方程解法,熟練掌握直角坐標(biāo)系的知識,三角形的面積,梯形的面積等知識是解題的關(guān)鍵,難點在于對圖形進(jìn)行割補轉(zhuǎn)化為易求面積的圖形.2.對于平面直角坐標(biāo)系xOy中的圖形G和圖形G上的任意點P(x,y),給出如下定義:將點P(x,y)平移到P'(x+t,y﹣t)稱為將點P進(jìn)行“t型平移”,點P'稱為將點P進(jìn)行“t型平移”的對應(yīng)點;將圖形G上的所有點進(jìn)行“t型平移”稱為將圖形G進(jìn)行“t型平移”.例如,將點P(x,y)平移到P'(x+1,y﹣1)稱為將點P進(jìn)行“l(fā)型平移”,將點P(x,y)平移到P'(x﹣1,y+1)稱為將點P進(jìn)行“﹣l型平移”.已知點A(2,1)和點B(4,1).(1)將點A(2,1)進(jìn)行“l(fā)型平移”后的對應(yīng)點A'的坐標(biāo)為.(2)①將線段AB進(jìn)行“﹣l型平移”后得到線段A'B',點P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點是.②若線段AB進(jìn)行“t型平移”后與坐標(biāo)軸有公共點,則t的取值范圍是.(3)已知點C(6,1),D(8,﹣1),點M是線段CD上的一個動點,將點B進(jìn)行“t型平移”后得到的對應(yīng)點為B',當(dāng)t的取值范圍是時,B'M的最小值保持不變.解析:(1)(3,0);(2)①P1;②或;(3)【分析】(1)根據(jù)“l(fā)型平移”的定義解決問題即可.(2)①畫出線段A1B1即可判斷.②根據(jù)定義求出t最大值,最小值即可判斷.(3)如圖2中,觀察圖象可知,當(dāng)B′在線段B′B″上時,B'M的最小值保持不變,最小值為.【詳解】(1)將點A(2,1)進(jìn)行“l(fā)型平移”后的對應(yīng)點A'的坐標(biāo)為(3,0),故答案為:(3,0);(2)①如圖1中,觀察圖象可知,將線段AB進(jìn)行“﹣l型平移”后得到線段A'B',點P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點是P1,故答案為:P1;②若線段AB進(jìn)行“t型平移”后與坐標(biāo)軸有公共點,則t的取值范圍是﹣4≤t≤﹣2或t=1.故答案為:﹣4≤t≤﹣2或t=1.(3)如圖2中,觀察圖象可知,當(dāng)B′在線段B′B″上時,B'M的最小值保持不變,最小值為,此時1≤t≤3.故答案為:1≤t≤3.【點睛】本題屬于幾何變換綜合題,考查了平移變換,“t型平移”的定義等知識,解題的關(guān)鍵理解題意,靈活運用所學(xué)知識解決問題,學(xué)會利用圖象法解決問題,屬于中考創(chuàng)新題型.3.在平面直角坐標(biāo)系中,如圖正方形的頂點,坐標(biāo)分別為,,點,坐標(biāo)分別為,,且,以為邊作正方形.設(shè)正方形與正方形重疊部分面積為.(1)①當(dāng)點與點重合時,的值為______;②當(dāng)點與點重合時,的值為______.(2)請用含的式子表示,并直接寫出的取值范圍.解析:(1)①1;②;(2).【分析】(1)①②根據(jù)點F的坐標(biāo)構(gòu)建方程即可解決問題.(2)分四種情形:①如圖1中,當(dāng)1≤m≤2時,重疊部分是四邊形BEGN.②如圖2中,當(dāng)0<m<1時,重疊部分是正方形EFGH.③如圖3中,-1<m<時,重疊部分是矩形AEHN.④如圖4中,當(dāng)-≤m<0時,重疊部分是正方形EFGH.分別求解即可解決問題.【詳解】解:(1)①當(dāng)點F與點B重合時,由題意3m=3,∴m=1.②當(dāng)點F與點A重合時,由題意3m=-1,∴m=,故答案為1,.(2)①當(dāng)時,如圖1.,..②當(dāng)時,如圖2...③當(dāng)時,如圖3.,.④當(dāng)時,如圖4...綜上,.【點睛】本題屬于四邊形綜合題,考查了正方形的性質(zhì),平移變換,四邊形的面積等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,屬于中考??碱}型.4.如圖,已知,,且滿足.(1)求、兩點的坐標(biāo);(2)點在線段上,、滿足,點在軸負(fù)半軸上,連交軸的負(fù)半軸于點,且,求點的坐標(biāo);(3)平移直線,交軸正半軸于,交軸于,為直線上第三象限內(nèi)的點,過作軸于,若,且,求點的坐標(biāo).解析:(1),;(2);(3)【解析】【分析】(1)利用非負(fù)數(shù)的性質(zhì)即可解決問題;(2)利用三角形面積求法,由列方程組,求出點C坐標(biāo),進(jìn)而由△ACD面積求出D點坐標(biāo).(3)由平行線間距離相等得到,繼而求出E點坐標(biāo),同理求出F點坐標(biāo),再由GE=12求出G點坐標(biāo),根據(jù)求出PG的長即可求P點坐標(biāo).【詳解】解:(1),∴,,,,,,,(2)由∴,,,如圖1,連,作軸,軸,,即,,,而,,,,(3)如圖2:∵EF∥AB,∴,∴,即,,,,,,,,,,,,,,【點睛】本題考查的是二元一次方程的應(yīng)用、三角形的面積公式、坐標(biāo)與圖形的性質(zhì)、平移的性質(zhì),靈活運用分情況討論思想、掌握平移規(guī)律是解題的關(guān)鍵.5.如圖,以直角三角形AOC的直角頂點O為原點,以O(shè)C、OA所在直線為x軸和y軸建立平面直角坐標(biāo)系,點A(0,a),C(b,0)滿足+|b﹣2|=0,D為線段AC的中點.在平面直角坐標(biāo)系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段中點坐標(biāo)為(,).(1)則A點的坐標(biāo)為;點C的坐標(biāo)為,D點的坐標(biāo)為.(2)已知坐標(biāo)軸上有兩動點P、Q同時出發(fā),P點從C點出發(fā)沿x軸負(fù)方向以1個單位長度每秒的速度勻速移動,Q點從O點出發(fā)以2個單位長度每秒的速度沿y軸正方向移動,點Q到達(dá)A點整個運動隨之結(jié)束.設(shè)運動時間為t(t>0)秒.問:是否存在這樣的t,使S△ODP=S△ODQ,若存在,請求出t的值;若不存在,請說明理由.(3)點F是線段AC上一點,滿足∠FOC=∠FCO,點G是第二象限中一點,連OG,使得∠AOG=∠AOF.點E是線段OA上一動點,連CE交OF于點H,當(dāng)點E在線段OA上運動的過程中,請確定∠OHC,∠ACE和∠OEC的數(shù)量關(guān)系,并說明理由.解析:(1),,;(2)存在,;(3)【分析】(1)根據(jù)絕對值和算術(shù)平方根的非負(fù)性,求得a,b的值,得出點A,C的坐標(biāo),再運用中點公式求出點D的坐標(biāo);(2)根據(jù)題意可得CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根據(jù)S△ODP=S△ODQ,列方程求解即可;(3)過點H作HP∥AC交x軸于點P,先證明OG∥AC,再根據(jù)角的和差關(guān)系以及平行線性質(zhì),得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入可得.【詳解】解:(1),,,,,,,設(shè),為線段的中點.,,,故答案為:,,;(2)存在,.由條件可知:點從點運動到點需要時間為2秒,點從點運動到點需要時間2秒,,點在線段上,,,,,,,,,.(3)如圖2,,,,,,,,如圖,過點作交軸于點,則,,,,∴.【點睛】本題考查了平行線的性質(zhì),三角形面積,非負(fù)數(shù)的性質(zhì),中點坐標(biāo)公式等,是一道三角形綜合題,解題關(guān)鍵是學(xué)會添加輔助線,運用轉(zhuǎn)化的思想思考問題.6.如圖,在長方形中,為平面直角坐標(biāo)系的原點,點的坐標(biāo)為,點的坐標(biāo)為且、滿足,點在第一象限內(nèi),點從原點出發(fā),以每秒2個單位長度的速度沿著的線路移動.(1)點的坐標(biāo)為___________;當(dāng)點移動5秒時,點的坐標(biāo)為___________;(2)在移動過程中,當(dāng)點到軸的距離為4個單位長度時,求點移動的時間;(3)在的線路移動過程中,是否存在點使的面積是20,若存在直接寫出點移動的時間;若不存在,請說明理由.解析:(1)(8,12),(0,10);(2)2秒或14秒;(3)存在,t=2.5s或【分析】(1)由非負(fù)數(shù)的性質(zhì)可得a、b的值,據(jù)此可得點B的坐標(biāo);由點P運動速度和時間可得其運動5秒的路程,得到OP=10,從而得出其坐標(biāo);(2)先根據(jù)點P運動11秒判斷出點P的位置,再根據(jù)三角形的面積公式求解可得;(3)分為點P在OC、BC上分類計算即可.【詳解】解:(1)∵a,b滿足,∴a=8,b=12,∴點B(8,12);當(dāng)點P移動5秒時,其運動路程為5×2=10,∴OP=10,則點P坐標(biāo)為(0,10),故答案為:(8,12)、(0,10);(2)由題意可得,第一種情況,當(dāng)點P在OC上時,點P移動的時間是:4÷2=2秒,第二種情況,當(dāng)點P在BA上時.點P移動的時間是:(12+8+8)÷2=14秒,所以在移動過程中,當(dāng)點P到x軸的距離為4個單位長度時,點P移動的時間是2秒或14秒.(3)如圖1所示:∵△OBP的面積=20,∴OP?BC=20,即×8×OP=20.解得:OP=5.∴此時t=2.5s如圖2所示;∵△OBP的面積=20,∴PB?OC=20,即×12×PB=20.解得:BP=.∴CP=.∴此時t=,綜上所述,滿足條件的時間t=2.5s或【點睛】本題考查矩形的性質(zhì),三角形的面積,坐標(biāo)與圖形的性質(zhì),解題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答問題.7.已知,AB∥DE,點C在AB上方,連接BC、CD.(1)如圖1,求證:∠BCD+∠CDE=∠ABC;(2)如圖2,過點C作CF⊥BC交ED的延長線于點F,探究∠ABC和∠F之間的數(shù)量關(guān)系;(3)如圖3,在(2)的條件下,∠CFD的平分線交CD于點G,連接GB并延長至點H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.解析:(1)證明見解析;(2);(3).【分析】(1)過點作,先根據(jù)平行線的性質(zhì)可得,再根據(jù)平行公理推論可得,然后根據(jù)平行線的性質(zhì)可得,由此即可得證;(2)過點作,同(1)的方法,先根據(jù)平行線的性質(zhì)得出,,從而可得,再根據(jù)垂直的定義可得,由此即可得出結(jié)論;(3)過點作,延長至點,先根據(jù)平行線的性質(zhì)可得,,從而可得,再根據(jù)角平分線的定義、結(jié)合(2)的結(jié)論可得,然后根據(jù)角的和差、對頂角相等可得,由此即可得出答案.【詳解】證明:(1)如圖,過點作,,,,,即,,;(2)如圖,過點作,,,,,即,,,,,;(3)如圖,過點作,延長至點,,,,,平分,平分,,由(2)可知,,,又,.【點睛】本題考查了平行線的性質(zhì)、對頂角相等、角平分線的定義等知識點,熟練掌握平行線的性質(zhì)是解題關(guān)鍵.8.如圖①,將一張長方形紙片沿對折,使落在的位置;(1)若的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);(2)如圖②,再將紙片沿對折,使得落在的位置.①若,的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);②若,的度數(shù)比的度數(shù)大,試計算的度數(shù).解析:(1);(2)①;②【分析】(1)由平行線的性質(zhì)得到,由折疊的性質(zhì)可知,∠2=∠BFE,再根據(jù)平角的定義求解即可;(2)①由(1)知,,根據(jù)平行線的性質(zhì)得到,再由折疊的性質(zhì)及平角的定義求解即可;②由(1)知,∠BFE=,由可知:,再根據(jù)條件和折疊的性質(zhì)得到,即可求解.【詳解】解:(1)如圖,由題意可知,∴,∵,∴,,由折疊可知.(2)①由題(1)可知,∵,,再由折疊可知:,;②由可知:,由(1)知,,又的度數(shù)比的度數(shù)大,,,,.【點睛】此題考查了平行線的性質(zhì),屬于綜合題,有一定難度,熟記“兩直線平行,同位角相等”、“兩直線平行,內(nèi)錯角相等”及折疊的性質(zhì)是解題的關(guān)鍵.9.綜合與探究(問題情境)王老師組織同學(xué)們開展了探究三角之間數(shù)量關(guān)系的數(shù)學(xué)活動(1)如圖1,,點、分別為直線、上的一點,點為平行線間一點,請直接寫出、和之間的數(shù)量關(guān)系;(問題遷移)(2)如圖2,射線與射線交于點,直線,直線分別交、于點、,直線分別交、于點、,點在射線上運動,①當(dāng)點在、(不與、重合)兩點之間運動時,設(shè),.則,,之間有何數(shù)量關(guān)系?請說明理由.②若點不在線段上運動時(點與點、、三點都不重合),請你畫出滿足條件的所有圖形并直接寫出,,之間的數(shù)量關(guān)系.解析:(1);(2)①,理由見解析;②圖見解析,或【分析】(1)作PQ∥EF,由平行線的性質(zhì),即可得到答案;(2)①過作交于,由平行線的性質(zhì),得到,,即可得到答案;②根據(jù)題意,可對點P進(jìn)行分類討論:當(dāng)點在延長線時;當(dāng)在之間時;與①同理,利用平行線的性質(zhì),即可求出答案.【詳解】解:(1)作PQ∥EF,如圖:∵,∴,∴,,∵∴;(2)①;理由如下:如圖,過作交于,∵,∴,∴,,∴;②當(dāng)點在延長線時,如備用圖1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;當(dāng)在之間時,如備用圖2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【點睛】本題考查了平行線的性質(zhì),解題的關(guān)鍵是熟練掌握兩直線平行同旁內(nèi)角互補,兩直線平行內(nèi)錯角相等,從而得到角的關(guān)系.10.如圖,已知,是的平分線.(1)若平分,求的度數(shù);(2)若在的內(nèi)部,且于,求證:平分;(3)在(2)的條件下,過點作,分別交、于點、,繞著點旋轉(zhuǎn),但與、始終有交點,問:的值是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍.解析:(1)90°;(2)見解析;(3)不變,180°【分析】(1)根據(jù)鄰補角的定義及角平分線的定義即可得解;(2)根據(jù)垂直的定義及鄰補角的定義、角平分線的定義即可得解;(3),過,分別作,,根據(jù)平行線的性質(zhì)及平角的定義即可得解.【詳解】解(1),分別平分和,,,,;(2),,即,,是的平分線,,,又,,又在的內(nèi)部,平分;(3)如圖,不發(fā)生變化,,過,分別作,,則有,,,,,,,,,,,,不變.【點睛】此題考查了平行線的性質(zhì),熟記平行線的性質(zhì)及作出合理的輔助線是解題的關(guān)鍵.11.已知,.點在上,點在上.(1)如圖1中,、、的數(shù)量關(guān)系為:;(不需要證明);如圖2中,、、的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,平分,平分,且,求的度數(shù);(3)如圖4中,,平分,平分,且,則的大小是否發(fā)生變化,若變化,請說明理由,若不變化,求出么的度數(shù).解析:(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.【分析】(1)過E作EHAB,易得EHABCD,根據(jù)平行線的性質(zhì)可求解;過F作FHAB,易得FHABCD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF?∠FND=180°,可求解∠BMF=60°,進(jìn)而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進(jìn)而可求解.【詳解】解:(1)過E作EHAB,如圖1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN?∠END.如圖2,過F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK?∠KFN=∠BMF?∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF?∠FND=180°,∴2∠BME+2∠END+∠BMF?∠FND=180°,即2∠BMF+∠FND+∠BMF?∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN?∠NEQ=(∠BME+∠END)?∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作輔助線是解題的關(guān)鍵.12.如圖1,已知直線CD∥EF,點A,B分別在直線CD與EF上.P為兩平行線間一點.(1)若∠DAP=40°,∠FBP=70°,則∠APB=(2)猜想∠DAP,∠FBP,∠APB之間有什么關(guān)系?并說明理由;(3)利用(2)的結(jié)論解答:①如圖2,AP1,BP1分別平分∠DAP,∠FBP,請你寫出∠P與∠P1的數(shù)量關(guān)系,并說明理由;②如圖3,AP2,BP2分別平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代數(shù)式表示)解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過P作PM∥CD,根據(jù)兩直線平行,內(nèi)錯角相等可得∠APM=∠DAP,再根據(jù)平行公理求出CD∥EF然后根據(jù)兩直線平行,內(nèi)錯角相等可得∠MPB=∠FBP,最后根據(jù)∠APM+∠MPB=∠DAP+∠FBP等量代換即可得證;(2)結(jié)論:∠APB=∠DAP+∠FBP.(3)①根據(jù)(2)的規(guī)律和角平分線定義解答;②根據(jù)①的規(guī)律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根據(jù)角平分線的定義和平角等于180°列式整理即可得解.【詳解】(1)證明:過P作PM∥CD,∴∠APM=∠DAP.(兩直線平行,內(nèi)錯角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一條直線的兩條直線互相平行),∴∠MPB=∠FBP.(兩直線平行,內(nèi)錯角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性質(zhì))即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)結(jié)論:∠APB=∠DAP+∠FBP.理由:見(1)中證明.(3)①結(jié)論:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分別平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【點睛】本題考查了平行線的性質(zhì),角平分線的定義,熟記性質(zhì)與概念是解題的關(guān)鍵,此類題目,難點在于過拐點作平行線.13.如圖1,//,點、分別在、上,點在直線、之間,且.(1)求的值;(2)如圖2,直線分別交、的角平分線于點、,直接寫出的值;(3)如圖3,在內(nèi),;在內(nèi),,直線分別交、分別于點、,且,直接寫出的值.解析:(1);(2)的值為40°;(3).【分析】(1)過點O作OG∥AB,可得AB∥OG∥CD,利用平行線的性質(zhì)可求解;(2)過點M作MK∥AB,過點N作NH∥CD,由角平分線的定義可設(shè)∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,進(jìn)而求解;(3)設(shè)直線FK與EG交于點H,F(xiàn)K與AB交于點K,根據(jù)平行線的性質(zhì)即三角形外角的性質(zhì)及,可得,結(jié)合,可得即可得關(guān)于n的方程,計算可求解n值.【詳解】證明:過點O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∴即∵∠EOF=100°,∴∠;(2)解:過點M作MK∥AB,過點N作NH∥CD,∵EM平分∠BEO,F(xiàn)N平分∠CFO,設(shè)∵∴∴x-y=40°,∵M(jìn)K∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∴=x-y=40°,的值為40°;(3)如圖,設(shè)直線FK與EG交于點H,F(xiàn)K與AB交于點K,∵AB∥CD,∴∵∴∵∴即∵FK在∠DFO內(nèi),∴,∵∴∴即∴解得.經(jīng)檢驗,符合題意,故答案為:.【點睛】本題主要考查平行線的性質(zhì),角平分線的定義,靈活運用平行線的性質(zhì)是解題的關(guān)鍵.14.已知,點在與之間.(1)圖1中,試說明:;(2)圖2中,的平分線與的平分線相交于點,請利用(1)的結(jié)論說明:.(3)圖3中,的平分線與的平分線相交于點,請直接寫出與之間的數(shù)量關(guān)系.解析:(1)說明過程請看解答;(2)說明過程請看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過點E作EG∥AB,則∠BEG=∠ABE,根據(jù)AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,進(jìn)而可得∠BED=∠ABE+∠CDE;(2)圖2中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點F,結(jié)合(1)的結(jié)論即可說明:∠BED=2∠BFD;(3)圖3中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點F,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合(1)的結(jié)論即可說明∠BED與∠BFD之間的數(shù)量關(guān)系.【詳解】解:(1)如圖1中,過點E作EG∥AB,則∠BEG=∠ABE,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)圖2中,因為BF平分∠ABE,所以∠ABE=2∠ABF,因為DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因為AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.圖3中,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因為BF平分∠ABE,所以∠ABE=2∠ABF,因為DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因為AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【點睛】本題考查了平行線的性質(zhì),解決本題的關(guān)鍵是掌握平行線的性質(zhì).15.如圖1,在平面直角坐標(biāo)系中,A(a,0)是x軸正半軸上一點,C是第四象限內(nèi)一點,CB⊥y軸交y軸負(fù)半軸于B(0,b),且|a﹣3|+(b+4)2=0,S四邊形AOBC=16.(1)求點C的坐標(biāo).(2)如圖2,設(shè)D為線段OB上一動點,當(dāng)AD⊥AC時,∠ODA的角平分線與∠CAE的角平分線的反向延長線交于點P,求∠APD的度數(shù);(點E在x軸的正半軸).
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年竹溪縣民政局關(guān)于公辦養(yǎng)老機構(gòu)招聘消防設(shè)施操作員的備考題庫及參考答案詳解1套
- 湖北中考?xì)v史三年(2023-2025)真題分類匯編專題06 綜合題(解析版)
- 2026年泰和縣人民法院公開招聘聘任制司法輔助人員備考題庫完整參考答案詳解
- 2025-2030中國膳食纖維行業(yè)運行現(xiàn)狀及發(fā)展趨勢分析研究報告
- 2025至2030中國職業(yè)教育培訓(xùn)市場需求變化與商業(yè)模式分析報告
- 機關(guān)培訓(xùn)教學(xué)
- 2025至2030中國智能電網(wǎng)行業(yè)市場現(xiàn)狀供需分析及投資政策支持研究報告
- 智慧農(nóng)業(yè)技術(shù)推廣障礙及解決方案與投資可行性分析
- 2025-2030中醫(yī)藥產(chǎn)業(yè)發(fā)展特點分析與現(xiàn)代技術(shù)融合路徑探索及中藥材標(biāo)準(zhǔn)化體系建設(shè)研究
- 2026年昭通市永善縣緊密型醫(yī)共體溪洛渡街道衛(wèi)生院分院招聘9人備考題庫有答案詳解
- 環(huán)保數(shù)據(jù)監(jiān)測協(xié)議2026
- 餅房(西點)廚師長年度工作總結(jié)課件
- 2025年貴陽市烏當(dāng)區(qū)留置輔警筆試真題附答案解析
- 主動脈瓣置換術(shù)指南
- 2025年計算機四級網(wǎng)絡(luò)工程師考試筆試試題(附答案)
- 病種成本核算與臨床路徑精細(xì)化管理
- 華為員工合同協(xié)議書
- 企業(yè)資產(chǎn)購置決策分析與決策表格
- 項目管理專員年底工作總結(jié)及2026年項目管理計劃
- 2025年陜西公務(wù)員《申論(C卷)》試題含答案
- 管理體系不符合項整改培訓(xùn)試題及答案
評論
0/150
提交評論