版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省臨清市中考數(shù)學(xué)真題分類(勾股定理)匯編定向練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、一個(gè)直角三角形的兩條直角邊邊長分別為6和8,則斜邊上的高為(
)A.4.5 B.4.6 C.4.8 D.52、如圖是一個(gè)三級(jí)臺(tái)階,它的每一級(jí)的長、寬和高分別為9、3和1,A和B是這個(gè)臺(tái)階兩個(gè)相對(duì)的端點(diǎn),A點(diǎn)有一只螞蟻,想到B點(diǎn)去吃可口的食物.則這只螞蟻沿著臺(tái)階面爬行的最短路程是(
)A.6 B.8 C.9 D.153、如圖,正方形的邊長為10,,,連接,則線段的長為(
)A. B. C. D.4、如圖,在7×7的正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,畫一條線段AB=,使點(diǎn)A,B在小正方形的頂點(diǎn)上,設(shè)AB與網(wǎng)格線相交所成的銳角為α,則不同角度的α有(
)A.1種 B.2種 C.3種 D.4種5、觀察“趙爽弦圖”(如圖),若圖中四個(gè)全等的直角三角形的兩直角邊分別為a,b,,根據(jù)圖中圖形面積之間的關(guān)系及勾股定理,可直接得到等式(
)A. B.C. D.6、如圖,在△ABC中,∠BAC=90°,BC=5,以AB,AC為邊作正方形,這兩個(gè)正方形的面積和為(
)A.5 B.9 C.16 D.257、在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于(
)A.10 B.8 C.6或10 D.8或10第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一個(gè)問題:“今有池方一丈,葭(ji?。┥渲?,出水一尺.引葭赴岸(丈、尺是長度單位,1丈10尺)其大意為:有一個(gè)水池,水面是一個(gè)邊長為10尺的正方形,它高出水面1尺(即BC=1尺).如果把這根蘆葦拉向水池一邊的中點(diǎn),它的頂端B恰好到達(dá)池邊的水面D處,問水的深度是多少?則水深DE為_____尺.2、如圖,△ABC中,∠C=90°,AD平分∠BAC,AB=5,AC=3,則BD的長是__.3、如圖,在正方形網(wǎng)格中,點(diǎn)A,B,C,D,E是格點(diǎn),則∠ABD+∠CBE的度數(shù)為_____________.
4、如圖,在一次綜合實(shí)踐活動(dòng)中,小明將一張邊長為10cm的正方形紙片ABCD,沿著BC邊上一點(diǎn)E與點(diǎn)A的連線折疊,點(diǎn)B'是點(diǎn)B的對(duì)應(yīng)點(diǎn),延長EB'交DC于點(diǎn)G,B'G=cm,則△ECG的面積為_____cm2.5、勾股定理最早出現(xiàn)在商高的《周髀算經(jīng)》:“勾廣三,股修四,經(jīng)隅五”.觀察下列勾股數(shù):3,4,5;5,12,13;7,24,25;…,這類勾股數(shù)的特點(diǎn)是:勾為奇數(shù),弦與股相差為1,柏拉圖研究了勾為偶數(shù),弦與股相差為2的一類勾股數(shù),如:6,8,10;8,15,17;…,若此類勾股數(shù)的勾為2m(m≥3,m為正整數(shù)),則其弦是________(結(jié)果用含m的式子表示).6、有一個(gè)水池,水面是一個(gè)邊長為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點(diǎn),它的頂端恰好到達(dá)池邊的水面,這根蘆葦?shù)拈L度為_____尺.7、已知一直角三角形的兩條直角邊分別為6cm、8cm,則此直角三角形斜邊上的高為____.8、如圖,在中,,于點(diǎn)D.E為線段BD上一點(diǎn),連結(jié)CE,將邊BC沿CE折疊,使點(diǎn)B的對(duì)稱點(diǎn)落在CD的延長線上.若,,則的面積為__________.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖②,它可以看作是由邊長為a、b、c的兩個(gè)直角三角形(如圖①C為斜邊)拼成的,其中A、C、D三點(diǎn)在同一條直線上,(1)請(qǐng)從面積出發(fā)寫出一個(gè)表示a、b、c的關(guān)系的等式;(要求寫出過程)(2)如圖③④⑤,以直角三角形的三邊為邊或直徑,分別向外部作正方形、半圓、等邊三角形,這三個(gè)圖形中面積關(guān)系滿足的有_______個(gè).(3)如圖⑥,直角三角形的兩直角邊長分別為3,5,分別以直角三角形的三邊為直徑作半圓,則圖中陰影部分的面積為_______.2、《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,作者是我國明代數(shù)學(xué)家程大位.在《算法統(tǒng)宗》中有一道“蕩秋千”的問題:“平地秋千未起,踏板一尺離地.送行二步與人齊,五尺人高曾記.仕女佳人爭(zhēng)蹴,終朝笑語歡嬉.良工高士素好奇,算出索長有幾.”(注:1步=5尺)譯文:“有一架秋千,當(dāng)它靜止時(shí),踏板離地1尺,將它往前推送10尺(水平距離)時(shí),秋千的踏板就和人一樣高,這個(gè)人的身高為5尺,秋千的繩索始終拉得很直,問繩索有多長.”3、(1)圖1是由有20個(gè)邊長為1的正方形組成的,把它按圖1的分割方法分割成5部分后可拼接成一個(gè)大正方形(內(nèi)部的粗實(shí)線表示分割線),請(qǐng)你在圖2的網(wǎng)格中畫出拼接成的大正方形.(2)如果(1)中分割成的直角三角形兩直角邊分別為a,b斜邊為c.請(qǐng)你利用圖2中拼成的大正方形證明勾股定理.(3)應(yīng)用:測(cè)量旗桿的高度:校園內(nèi)有一旗桿,小希想知道旗桿的高度,經(jīng)觀察發(fā)現(xiàn)從頂端垂下一根拉繩,于是他測(cè)出了下列數(shù)據(jù):①測(cè)得拉繩垂到地面后,多出的長度為0.5米;②他在距離旗桿4米的地方拉直繩子,拉繩的下端恰好距離地面0.5米.請(qǐng)你根據(jù)所測(cè)得的數(shù)據(jù)設(shè)計(jì)可行性方案,解決這一問題.(畫出示意圖并計(jì)算出這根旗桿的高度).4、如圖,有一個(gè)水池,水面是一個(gè)邊長為16尺的正方形,在水池正中央有一根蘆葦,它高出水面2尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達(dá)池邊的水面,則水池里水的深度是多少尺?請(qǐng)你用所學(xué)知識(shí)解答這個(gè)問題.5、如圖,在△ABC和△DEB中,AC∥BE,∠C=90°,AB=DE,點(diǎn)D為BC的中點(diǎn),.(1)求證:△ABC≌△DEB.(2)連結(jié)AE,若BC=4,直接寫出AE的長.6、我們知道,到線段兩端距離相等的點(diǎn)在線段的垂直平分線上.由此,我們可以引入如下新定義:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.(1)如圖1,點(diǎn)P在線段BC上,∠ABP=∠APD=∠PCD=90°,BP=CD.求證:點(diǎn)P是△APD的準(zhǔn)外心;(2)如圖2,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,△ABC的準(zhǔn)外心P在△ABC的直角邊上,試求AP的長.7、有一只喜鵲在一棵高3米的小樹的樹梢上覓食,它的巢筑在距離該樹24米,高為14米的一棵大樹上,且巢離大樹頂部為1米,這時(shí),它聽到巢中幼鳥求助的叫聲,立刻趕過去,如果它的飛行速度為每秒5米,那么它至少幾秒能趕回巢中?-參考答案-一、單選題1、C【解析】【分析】根據(jù)勾股定理求出斜邊的長,再根據(jù)面積法求出斜邊的高.【詳解】解:設(shè)斜邊長為c,高為h.由勾股定理可得:c2=62+82,則c=10,直角三角形面積S=×6×8=×c×h,可得h=4.8,故選:C.【考點(diǎn)】本題考查了勾股定理,利用勾股定理求直角三角形的邊長和利用面積法求直角三角形的高是解決此類題的關(guān)鍵.2、D【解析】【分析】此類題目只需要將其展開便可直觀的得出解題思路.將臺(tái)階展開得到的是一個(gè)矩形,螞蟻要從B點(diǎn)到A點(diǎn)的最短距離,便是矩形的對(duì)角線,利用勾股定理即可解出答案.【詳解】解:如圖,將臺(tái)階展開,因?yàn)锳C=3×3+1×3=12,BC=9,所以AB2=AC2+BC2=225,所以AB=15,所以螞蟻爬行的最短線路為15.故選:D.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,掌握勾股定理的應(yīng)用并能得出平面展開圖是解題的關(guān)鍵.3、B【解析】【分析】延長DH交AG于點(diǎn)E,利用SSS證出△AGB≌△CHD,然后利用ASA證出△ADE≌△DCH,根據(jù)全等三角形的性質(zhì)求出EG、HE和∠HEG,最后利用勾股定理即可求出HG.【詳解】解:延長DH交AG于點(diǎn)E∵四邊形ABCD為正方形∴AD=DC=BA=10,∠ADC=∠BAD=90°在△AGB和△CHD中∴△AGB≌△CHD∴∠BAG=∠DCH∵∠BAG+∠DAE=90°∴∠DCH+∠DAE=90°∴CH2+DH2=82+62=100=DC2∴△CHD為直角三角形,∠CHD=90°∴∠DCH+∠CDH=90°∴∠DAE=∠CDH,∵∠CDH+∠ADE=90°∴∠ADE=∠DCH在△ADE和△DCH中∴△ADE≌△DCH∴AE=DH=6,DE=CH=8,∠AED=∠DHC=90°∴EG=AG-AE=2,HE=DE-DH=2,∠GEH=180°-∠AED=90°在Rt△GEH中,GH=故選B.【考點(diǎn)】此題考查是正方形的性質(zhì)、全等三角形的判定及性質(zhì)和勾股定理,掌握正方形的性質(zhì)、全等三角形的判定及性質(zhì)和利用勾股定理解直角三角形是解決此題的關(guān)鍵.4、C【解析】【詳解】如圖,(1)當(dāng)AB=時(shí),AB與網(wǎng)格線相交所成的兩個(gè)銳角:∠=45°;(2)當(dāng)AB=時(shí),AB與網(wǎng)格線相交所成的銳角∠有2個(gè)不同的角度;綜上所述,AB與網(wǎng)格線相交所成的銳角的不同角度有3個(gè).故選C.5、C【解析】【分析】根據(jù)小正方形的面積等于大正方形的面積減去4個(gè)直角三角形的面積可得問題的答案.【詳解】標(biāo)記如下:∵,∴(a﹣b)2=a2+b2﹣4=a2﹣2ab+b2.故選:C.【考點(diǎn)】此題考查的是利用勾股定理的證明,可以完全平方公式進(jìn)行證明,掌握面積差得算式是解決此題關(guān)鍵.6、D【解析】【分析】設(shè),根據(jù)勾股定理可得,即可求解.【詳解】解:設(shè),根據(jù)勾股定理可得,即兩個(gè)正方形的面積和為25故選:D【考點(diǎn)】本題考查了勾股定理,掌握勾股定理是解題的關(guān)鍵.7、C【解析】【詳解】分兩種情況:在圖①中,由勾股定理,得;;∴BC=BD+CD=8+2=10.在圖②中,由勾股定理,得;;∴BC=BD―CD=8―2=6.故選C.二、填空題1、12【解析】【分析】設(shè)水深為h尺,則蘆葦長為(h+1)尺,根據(jù)勾股定理列方程,解出h即可.【詳解】設(shè)水深為h尺,則蘆葦長為(h+1)尺,根據(jù)勾股定理,得(h+1)2-h2=52解得h=12,∴水深為12尺,故答案是:12.【考點(diǎn)】本題主要考查勾股定理的應(yīng)用,熟練根據(jù)勾股定理列出方程是解題的關(guān)鍵.2、2.5【解析】【分析】首先先過點(diǎn)D作AB的垂直線段DE,根據(jù)勾股定理把BC求出,然后根據(jù)角平分線的性質(zhì)定理得出DE=DC,再根據(jù)ABC的面積等于ACD的面積加上ABD的面積,把CD求出,最后BD的長度即可求出.【詳解】過點(diǎn)D作DEAB于E,在ABC中,C=,AB=5,AC=3,∴,∵AD平分BAC,∴DE=DC,∵,即,解得CD=1.5,∴BD=4-CD=4-1.5=2.5,故答案為:2.5.【考點(diǎn)】本題考查了勾股定理和角平分線的性質(zhì)定理,正確作出輔助線,根據(jù)面積相等把CD求出是解題的關(guān)鍵.3、45°【解析】【分析】取網(wǎng)格點(diǎn)M、N、F,連接AM、AN、BM、MF、BN,根據(jù)網(wǎng)格線可得到∠ABD+∠CBE=∠MAB,再根據(jù)勾股定理的逆定理證明△ABM是直角三角形,且AM=BM,即可得解.【詳解】取網(wǎng)格點(diǎn)M、N、F,連接AM、AN、BM、MF、BN,如圖,根據(jù)網(wǎng)格線可知NB=1=MF,AN=3,AF=2,由網(wǎng)格圖可知∠CBE=∠FAM,∠ABD=∠NAB,則∠ABD+∠CBE=∠MAB,在Rt△ANB中,有,同理可求得:,∵,∴△ABM是直角三角形,且AM=BM,∴∠MAB=45°,即:∠ABD+∠CBE=45°,故答案為:45°.【考點(diǎn)】本題考查了勾股定理即勾股定理的逆定理、等腰直角三角形等知識(shí),求得∠ABD+∠CBE=∠MAB是解答本題的關(guān)鍵.4、【解析】【分析】根據(jù)翻折的性質(zhì)可知△ABE和△AB′E全等,則BE=B′E,連接AG,可證△AB′G≌△ADG,則DG=B′G=cm,CG=10-DG=cm,在Rt△ECG中,設(shè)BE=xcm,根據(jù)勾股定理列出方程,可求出BE的值,從而求出CE,最后由三角形面積公式求出△ECG的面積.【詳解】根據(jù)翻折的性質(zhì)可知△ABE和△AB′E全等,BE=B′E,連接AG,如圖,∵AB′=AD,AG=AG,∴Rt△AB′G≌Rt△ADG,∴DG=B′G=cm,∴CG=10-DG=cm,在Rt△ECG中,設(shè)BE=xcm,則CE=(10-x)cm,EG=B′E+B′G=(x+)cm,根據(jù)勾股定理列出方程,CE2+CG2=EG2,即,解得:x=2,所以BE=2cm,CE=10-2=8(cm),△ECG的面積=(cm2)故答案為:.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,結(jié)合全等的知識(shí)找出題中的線段之間的關(guān)系是本題的解題關(guān)鍵.5、m2+1【解析】【分析】2m為偶數(shù),設(shè)其股是a,則弦為a+2,根據(jù)勾股定理列方程即可得到結(jié)論.【詳解】∵2m為偶數(shù),∴設(shè)其股是a,則弦為a+2,根據(jù)勾股定理得,(2m)2+a2=(a+2)2,解得a=m2-1,∴弦長為m2+1,故答案為:m2+1.【考點(diǎn)】本題考查了勾股數(shù),勾股定理,熟練掌握勾股定理是解題的關(guān)鍵.6、13【解析】【分析】找到題中的直角三角形,設(shè)水深為x尺,根據(jù)勾股定理解答.【詳解】解:設(shè)水深為尺,則蘆葦長為尺,根據(jù)勾股定理得:,解得:,蘆葦?shù)拈L度(尺,答:蘆葦長13尺.故答案為:13.【考點(diǎn)】本題考查正確運(yùn)用勾股定理.善于觀察題目的信息是解題以及學(xué)好數(shù)學(xué)的關(guān)鍵.7、4.8cm.【解析】【分析】根據(jù)勾股定理可求出斜邊.然后由于同一三角形面積一定,可列方程直接解答.【詳解】∵直角三角形的兩條直角邊分別為6cm,8cm,∴斜邊為=10(cm),設(shè)斜邊上的高為h,則直角三角形的面積為×6×8=×10h,解得:h=4.8cm,這個(gè)直角三角形斜邊上的高為4.8cm.故答案為4.8cm.【考點(diǎn)】此題考查勾股定理,解題關(guān)鍵在于列出方程.8、【解析】【分析】在△ABC中由等面積求出,進(jìn)而得到,設(shè)BE=x,進(jìn)而DE=DB-BE=,最后在中使用勾股定理求出x即可求解.【詳解】解:在中由勾股定理可知:,∵,∴,∴,在中由勾股定理可知:,∴,設(shè)BE=x,由折疊可知:BE=B’E,且DE=DB-BE=,在中由勾股定理可知:,代入數(shù)據(jù):∴,解得,∴,∴,故答案為:.【考點(diǎn)】本題考查了勾股定理求線段長、折疊的性質(zhì)等,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練使用勾股定理求線段長.三、解答題1、(1)(2)3(3)7.5【解析】【分析】(1)梯形的面積等于三個(gè)直角三角形的面積的和.即可得:;(2)根據(jù)勾股定理可得三個(gè)圖形中面積關(guān)系滿足的有3個(gè);(3)根據(jù)半圓面積和勾股定理即可得結(jié)論:,進(jìn)而求解.(1)解:四邊形ABED的面積可以表示為:,也可以表示為,所以,整理得;(2)設(shè)直角三角形的三條邊按照從小到大分別為a,b,c,則,圖③,∵,∴,圖④,∵∴,圖⑤,∵∴,故答案為:3.(3)∵,∴,∵,∴.【考點(diǎn)】本題考查了勾股定理的證明,解決本題的關(guān)鍵是掌握勾股定理.2、尺【解析】【分析】設(shè)秋千的繩索長為x尺,根據(jù)題意可得AB=(x-4)尺,利用勾股定理可得x2=102+(x-4)2,解之即可.【詳解】解:設(shè)秋千的繩索長為x尺,根據(jù)題意可列方程為:x2=102+(x-4)2,解得:x=,∴秋千的繩索長為尺.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用,關(guān)鍵是正確理解題意,表示出AB、AC的長,掌握直角三角形中兩直角邊的平方和等于斜邊的平方.3、(1)見解析;(2)見解析;(3)在四邊形ABCD中,AB⊥BC,DC⊥BC,AD比AB長0.5米,BC=4米,CD=0.5米,求AB的長;8米【解析】【分析】(1)將圖1分割成五塊:四個(gè)直角邊分別為1、2的直角三角形,一個(gè)邊長為2的正方形,再在圖2中,拼成邊長為的正方形即可.(2)根據(jù)20個(gè)小正方形的面積的和等于拼成的正方形的面積,根據(jù)勾股定理確定截線的長度即可;(3)根據(jù)題意,畫出圖形,可將該問題抽象為解直角三角形問題,該直角三角形的斜邊比其中一條直角邊多1m,而另一條直角邊長為5m,可以根據(jù)勾股定理求出斜邊的長即可.【詳解】解:(1)如圖(2)==∴(3)如圖,在四邊形ABCD中,AB⊥BC,DC⊥BC,AD比AB長0.5米,BC=4米,CD=0.5米,求AB的長.解:過點(diǎn)D作DE⊥AB,垂足為E∵AB⊥BC,DC⊥BC∴∠B=∠C=∠DEB=90o∴四邊形BCDE是矩形∴ED=BC=4,BE=DC=0.5設(shè)AB=,則AD=+0.5,AE=-0.5
在RtΔAED中AD2=AE2+ED2(+0.5)2=(-0.5)2+42解得:=8答:旗桿的高為8米.【考點(diǎn)】本題考查作圖的運(yùn)用及設(shè)計(jì)作圖和勾股定理的應(yīng)用,解題的關(guān)鍵是學(xué)會(huì)利用數(shù)形結(jié)合的思想解決問題,屬于中考??碱}型.4、水池里水的深度是15尺【解析】【分析】根據(jù)勾股定理列出方程,解方程即可.【詳解】解:設(shè)水池里水的深度是x尺,由題意得,,解得:x=l5,答:水池里水的深度是15尺.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,掌握勾股定理、根據(jù)勾股定理正確列出方程是解題的關(guān)鍵.5、(1)見解析;(2)【解析】【分析】(1)根據(jù)平行可得∠DBE=90°,再由HL定理證明直角三角形全等即可;(2)構(gòu)造,利用矩形性質(zhì)和勾股定理即可求出AE長.【詳解】(1)∵AC∥BE,∴∠C+∠DBE=180°.∴∠DBE=180°-∠C=180°-90°=90°.∴△ABC和△DEB都是直角三角形.∵點(diǎn)D為BC的中點(diǎn),,∴AC=DB.
∵AB=DE,∴Rt△ABC≌Rt△DEB(HL).(2).過程如下:連接AE、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職第一學(xué)年(機(jī)電一體化技術(shù))工業(yè)機(jī)器人應(yīng)用基礎(chǔ)試題及答案
- 2025年高職(物業(yè)管理)客戶服務(wù)實(shí)務(wù)階段測(cè)試題及答案
- 2025年大學(xué)機(jī)械基礎(chǔ)應(yīng)用技術(shù)(機(jī)械基礎(chǔ)應(yīng)用技術(shù)案例)試題及答案
- 2025年中職(基礎(chǔ)會(huì)計(jì))賬務(wù)處理階段測(cè)試試題及答案
- 2026年兒科護(hù)理(兒童咳嗽案例)試題及答案
- 2025年中職(早期教育)親子教育專業(yè)技能測(cè)試試題及答案
- 2025年高職模具設(shè)計(jì)與制造(模具設(shè)計(jì)制造)試題及答案
- 2025年高職水產(chǎn)養(yǎng)殖技術(shù)(技術(shù)實(shí)操訓(xùn)練)試題及答案
- 2025年大學(xué)學(xué)前教育(幼兒創(chuàng)造力培養(yǎng))試題及答案
- 2025年中職(建筑施工組織與管理)施工管理階段測(cè)試題及答案
- 地坪漆施工方案范本
- 【《自適應(yīng)巡航系統(tǒng)ACC的SOTIF風(fēng)險(xiǎn)的識(shí)別與評(píng)估分析案例》4100字】
- 阿壩州消防救援支隊(duì)2026年面向社會(huì)公開招聘政府專職消防員(69人)筆試備考試題及答案解析
- 2025寧波市甬北糧食收儲(chǔ)有限公司公開招聘工作人員2人筆試參考題庫及答案解析
- 供應(yīng)鏈年底總結(jié)與計(jì)劃
- 2026年國有企業(yè)金華市軌道交通控股集團(tuán)招聘?jìng)淇碱}庫有答案詳解
- 2025年電子工程師年度工作總結(jié)
- 2026年吉林司法警官職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能筆試備考題庫帶答案解析
- 2025年低壓電工理論考試1000題(附答案)
- 商業(yè)倫理與會(huì)計(jì)職業(yè)道德(第四版)第五章企業(yè)對(duì)外經(jīng)營道德規(guī)范
- DB13 5161-2020 鍋爐大氣污染物排放標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論