版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
吉林省和龍市中考數學測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,矩形ABCD中,AD=2,AB=,對角線AC上有一點G(異于A,C),連接DG,將△AGD繞點A逆時針旋轉60°得到△AEF,則BF的長為(
)A. B.2 C. D.22、已知⊙O的半徑為4,點O到直線m的距離為d,若直線m與⊙O公共點的個數為2個,則d可?。ǎ〢.5 B.4.5 C.4 D.03、關于的方程有兩個不相等的實根、,若,則的最大值是(
)A.1 B. C. D.24、如圖,正五邊形內接于⊙,為上的一點(點不與點重合),則的度數為(
)A. B. C. D.5、若關于x的二次函數y=ax2+bx的圖象經過定點(1,1),且當x<﹣1時y隨x的增大而減小,則a的取值范圍是()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、下列說法正確的是(
)A.“射擊運動員射擊一次,命中靶心”是隨機事件B.某彩票的中獎機會是1%,買100張一定會中獎C.拋擲一枚質地均勻的硬幣兩次,則兩次都是“正面朝上”的概率是D.某校有3200名學生,為了解學生最喜歡的課外體育運動項目,隨機抽取了200名學生,其中有85名學生表示最喜歡的項目是跳繩,估計該校最喜歡的課外體育運動項目為跳繩的有1360人2、下列語句中不正確的有(
)A.等弧對等弦 B.等弦對等弧C.相等的圓心角所對的弧相等 D.長度相等的兩條弧是等弧3、兩個關于的一元二次方程和,其中,,是常數,且.如果是方程的一個根,那么下列各數中,一定是方程的根的是()A. B. C.2 D.-24、如圖,是的直徑,,是上的點,且,分別與,相交于點,,則下列結論一定成立的是(
)A. B. C.平分D. E.5、已知點,下面的說法正確的是(
)A.點與點關于軸對稱,則點的坐標為B.點繞原點按順時針方向旋轉后到點,則點的坐標為C.點與點關于原點中心對稱,則點的坐標為D.點先向上平移個單位,再向右平移個單位到點,則點的坐標為第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、若拋物線的圖像與軸有交點,那么的取值范圍是________.2、如圖,是的內接正三角形,點是圓心,點,分別在邊,上,若,則的度數是____度.3、如圖1所示的圖形是一個軸對稱圖形,且每個角都是直角,長度如圖所示,小明按圖2所示方法玩拼圖游戲,兩兩相扣,相互間不留空隙,那么小明用9個這樣的圖形(圖1)拼出來的圖形的總長度是_______(結果用含、代數式表示).4、若關于x的一元二次方程的根的判別式的值為4,則m的值為_____.5、一個直角三角形的兩條直角邊相差5cm,面積是7cm2,則其斜邊的長是___.四、解答題(6小題,每小題10分,共計60分)1、已知拋物線y=mx2-2mx-3.(1)若拋物線的頂點的縱坐標是-2,求此時m的值;(2)已知當m≠0時,無論m為其他何值,每一條拋物線都經過坐標系中的兩個定點,求出這兩個定點的坐標.2、閱讀下面內容,并答題:我們知道,計算n邊形的對角線條數公式為n(n-3).如果一個n邊形共有20條對角線,那么可以得到方程n(n-3)=20.解得n=8或n=-5(舍去),∴這個n邊形是八邊形.根據以上內容,問:(1)若一個多邊形共有9條對角線,求這個多邊形的邊數;(2)小明說:“我求得一個n邊形共有10條對角線”,你認為小明同學的說法正確嗎?為什么?3、解方程:(1)x2-x-2=0;(2)3x(x-2)=2-x.4、(1)計算:(2)解方程:2(x﹣3)2=505、已知拋物線過點.(1)求拋物線的解析式;(2)點A在直線上且在第一象限內,過A作軸于B,以為斜邊在其左側作等腰直角.①若A與Q重合,求C到拋物線對稱軸的距離;②若C落在拋物線上,求C的坐標.6、如圖,⊙O的半徑弦AB于點C,連結AO并延長交⊙O于點E,連結EC.已知,.(1)求⊙O半徑的長;(2)求EC的長.-參考答案-一、單選題1、A【解析】【分析】過點F作FH⊥BA交BA的延長線于點H,則∠FHA=90°,△AGD繞點A逆時針旋轉60°得到△AEF,得∠FAD=60°,AF=AD=2,又由四邊形ABCD是矩形,∠BAD=90°,得到∠FAH=30°,在Rt△AFH中,FH=AF=1,由勾股定理得AH=,得到BH=AH+AB=2,再由勾股定理得BF=.【詳解】解:如圖,過點F作FH⊥BA交BA的延長線于點H,則∠FHA=90°,∵△AGD繞點A逆時針旋轉60°得到△AEF∴∠FAD=60°,AF=AD=2,∵四邊形ABCD是矩形∴∠BAD=90°∴∠BAF=∠FAD+∠BAD=150°∴∠FAH=180°-∠BAF=30°在Rt△AFH中,FH=AF=1由勾股定理得AH=在Rt△BFH中,FH=1,BH=AH+AB=2由勾股定理得BF=故BF的長.故選:A【考點】本題考查了圖形的旋轉,矩形的性質,含30度角的直角三角形的性質,勾股定理等知識,解決此題的關鍵在于作出正確的輔助線.2、D【解析】【分析】根據直線和圓的位置關系判斷方法,可得結論.【詳解】∵直線m與⊙O公共點的個數為2個∴直線與圓相交∴d<半徑=4故選D.【考點】本題考查了直線與圓的位置關系,掌握直線和圓的位置關系判斷方法:設⊙O的半徑為r,圓心O到直線l的距離為d.①直線l和⊙O相交?d<r②直線l和⊙O相切?d=r,③直線l和⊙O相離?d>r.3、D【解析】【分析】根據一元二次方程根與系數的關系,求得兩根之和和兩根之積,再根據兩根關系,求得系數的關系,代入代數式,配方法化簡求值即可.【詳解】解:由方程有兩個不相等的實根、可得,,,∵,可得,,即化簡得則故最大值為故選D【考點】此題考查了一元二次方程根與系數的關系,涉及了配方法求解代數式的最大值,根據一元二次方程根與系數的關系得到系數的關系是解題的關鍵.4、B【解析】【分析】根據圓周角的性質即可求解.【詳解】連接CO、DO,正五邊形內心與相鄰兩點的夾角為72°,即∠COD=72°,同一圓中,同弧或同弦所對應的圓周角為圓心角的一半,故∠CPD=,故選B.【考點】此題主要考查圓內接多邊形的性質,解題的關鍵是熟知圓周角定理的應用.5、D【解析】【分析】根據題意開口向上,且對稱軸?≥?1,a+b=1,即可得到?≥?1,從而求解.【詳解】由二次函數y=ax2+bx可知拋物線過原點,∵拋物線定點(1,1),且當x<-1時,y隨x的增大而減小,∴拋物線開口向上,且對稱軸?≥?1,a+b=1,∴a>0,b=1﹣a,∴﹣≥﹣1,∴,故選:D.【考點】本題考查了二次函數圖象與系數的關系,二次函數圖象上點的坐標特征,根據題意得關于a的不等式組是解題的關鍵.二、多選題1、ACD【解析】【分析】根據隨機事件的定義(隨機事件是指在一定條件下可能發(fā)生也可能不發(fā)生的事件)可判斷A;由于中獎的概率是等可能的,則買100張可能會中獎,可能不會中獎可判斷B;利用列舉法將所有可能列舉出來,求滿足條件的概率即可判斷C;根據計算公式列出算式,即可判斷D.【詳解】解:A、“射擊運動員射擊一次,命中靶心”是隨機事件,選項正確;B、由于中獎的概率是等可能的,則買100張可能會中獎,可能不會中獎,選項說法錯誤,不符合題意;C、拋擲一枚質地均勻的硬幣兩次,所有可能出現的結果有:(正,正),(正,反),(反,正),(反,反),則兩次都是“正面朝上”的概率是,選項正確;D、根據計算公式該項人數等于該項所占百分比乘以總人數,,選項正確,符合題意.故選:ACD.【考點】本題主要考查隨機事件的定義,概率發(fā)生的可能性、求隨機事件的概率與求某項的人數,根據等可能事件的概率公式求解是解題關鍵.2、BCD【解析】【分析】在同圓或是等圓中,相等的圓心角所對的弧相等,所對的弦相等;在同圓或等圓中,能夠互相重合的兩條弧是等弧,據此判斷就可以得到正確答案.【詳解】解:A、等弧對等弦,正確;B、缺少前提在同圓或等圓中,故選項錯誤;C、缺少前提在同圓或等圓中,故選項錯誤;D、缺少前提在同圓或等圓中,故選項錯誤;故選:BCD【考點】本題考查等弧的概念和圓心角、弦、弧之間的關系,根據相關知識點解題是關鍵.3、AD【解析】【分析】利用方程根的定義去驗證判斷即可.【詳解】∵,,∴,∴,,∴,,∵是方程的一個根,∴是方程的一個根,∴是方程的一個根,即時方程的一個根.∵是方程的一個根,∴,當x=時,,∴是方程的根.故選:A,D.【考點】本題考查了一元二次方程根的定義即使得方程兩邊相等的未知數的值,正確理解定義是解題的關鍵.4、ACDE【解析】【分析】根據直徑的性質,垂徑定理等知識一一判斷即可;【詳解】∵AB是直徑,∴∠ADB=90°,∴AD⊥BD,故A正確;∵C,D是⊙O上的點,∴與不一定相等,∴∠A與∠CBA不一定相等,∵OB=OC,∴∠C=∠CBA,∴∠A與∠C不一定相等,∵∠AOC=∠C+∠CBA∠AEC=∠A+∠CBA∴∠AOC與∠AEC不一定相等,故B選項錯誤;∵OC∥BD,BD⊥AD,∴OC⊥AD,∴,AF=DF,故D正確∴∠ABC=∠CBD,即CB平分∠ABD,故C正確,∵AF=DF,AO=OB,∴BD=2OF,故E正確,故選:ACDE.【考點】本題考查直徑的性質、垂徑定理、平行線的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.5、BD【解析】【分析】A、根據軸對稱的性質判斷即可;B、根據旋轉變換的性質判斷即可;C、根據中心對稱的性質判斷即可;D、根據平移變換的性質判斷即可;【詳解】A、點A與點B關于軸對稱,則點B的坐標為B(-2,-3),A選項錯誤,不符合題意;B、點繞原點按順時針方向旋轉后到點,則點的坐標為,B選項正確,符合題意;C、點與點關于原點中心對稱,則點的坐標為B(2,-3),C選項錯誤,不符合題意;D、點先向上平移個單位,再向右平移個單位到點,則點的坐標為,D選項正確,符合題意;故選:BD【考點】本題考查平移變換,軸對稱變換,中心對稱,旋轉變換等知識,解題的關鍵是熟練掌握平移變換,旋轉變換,軸對稱變換,中心對稱的性質,屬于??碱}型.三、填空題1、【解析】【分析】由拋物線的圖像與軸有交點可知,從而可求得的取值范圍.【詳解】解:∵拋物線的圖像與軸有交點∴令,有,即該方程有實數根∴∴.故答案是:【考點】本題考查了二次函數與軸的交點情況與一元二次方程分的情況的關系、解一元一次不等式,能由已知條件列出關于的不等式是解題的關鍵.2、120【解析】【分析】本題可通過構造輔助線,利用垂徑定理證明角等,繼而利用SAS定理證明三角形全等,最后根據角的互換結合同弧所對的圓周角等于圓心角的一半求解本題.【詳解】連接OA,OB,作OH⊥AC,OM⊥AB,如下圖所示:因為等邊三角形ABC,OH⊥AC,OM⊥AB,由垂徑定理得:AH=AM,又因為OA=OA,故△OAH△OAM(HL).∴∠OAH=∠OAM.又∵OA=OB,AD=EB,∴∠OAB=∠OBA=∠OAD,∴△ODA△OEB(SAS),∴∠DOA=∠EOB,∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB.又∵∠C=60°以及同弧,∴∠AOB=∠DOE=120°.故本題答案為:120.【考點】本題考查圓與等邊三角形的綜合,本題目需要根據等角的互換將所求問題進行轉化,構造輔助線是本題難點,全等以及垂徑定理的應用在圓綜合題目極為常見,圓心角、弧、圓周角的關系需熟練掌握.3、a+8b【解析】【分析】觀察可知兩個拼接時,總長度為2a-(a-b),三個拼接時,總長度為3a-2(a-b),由此可得用9個拼接時的總長度為9a-8(a-b),由此即可得.【詳解】觀察圖形可知兩個拼接時,總長度為2a-(a-b),三個拼接時,總長度為3a-2(a-b),四個拼接時,總長度為4a-3(a-b),…,所以9個拼接時,總長度為9a-8(a-b)=a+8b,故答案為a+8b.【考點】本題考查了規(guī)律題——圖形的變化類,通過推導得出總長度與個數間的規(guī)律是解題的關鍵.4、【解析】【分析】利用根的判別式,建立關于m的方程求得m的值.【詳解】關于x的一元二次方程的根的判別式的值為4,∵,,,,解得.故答案為:.【考點】本題考查了一元二次方程(a≠0)的根的判別式.5、cm【解析】【分析】設較短的直角邊長是xcm,較長的就是(x+5)cm,根據面積是7cm,求出直角邊長,根據勾股定理求出斜邊長.【詳解】解:設這個直角三角形的較短直角邊長為xcm,則較長直角邊長為(x+5)cm,根據題意,得,所以,解得,,因為直角三角形的邊長為正數,所以不符合題意,舍去,所以x=2,當x=2時,x+5=7,由勾股定理,得直角三角形的斜邊長為==cm.故答案為:cm.【考點】本題考查了勾股定理,一元二次方程的應用,關鍵是知道三角形面積公式以及直角三角形中勾股定理的應用.四、解答題1、(1)-1;(2)(0,-3)與(2,-3).【解析】【分析】(1)根據拋物線的頂點的縱坐標是?2,可以求得m的值;(2)根據當m≠0時,無論m為其他何值,每一條拋物線都經過坐標系中的兩個定點,可以求得這兩個定點的坐標.【詳解】解:(1)∵y=mx2-2mx-3=m(x-1)2-m-3,拋物線的頂點的縱坐標是-2,∴-m-3=-2,解得m=-1,即m的值是-1;(2)∵當m≠0時,無論m為其他何值,每一條拋物線都經過坐標系中的兩個定點,當m=1時,y=x2-2x-3;當m=2時,y=2x2-4x-3,∴x2-2x-3=2x2-4x-3.∴x2-2x=0.∴x1=0,x2=2.∴這兩個定點為(0,-3)與(2,-3).【考點】本題考查二次函數的性質、二次函數圖象上點的坐標特征,解答本題的關鍵是明確題意,利用數形結合的思想和二次函數的性質解答.2、(1)6(2)錯誤,理由見解析【解析】【分析】(1)利用題中給出的對角線條數公式即可求解;(2)利用題中給出的對角線條數公式列出一元二次方程,求解方程的根,根據方程是否有正整數解來判斷即可.(1)設這個多邊形的邊數是n,則n(n-3)=9,解得n=6或n=-3(舍去).∴這個多邊形的邊數是6;(2)小明同學的說法是不正確的,理由如下:由題可得n(n-3)=10,解得n=,∴符合方程的正整數n不存在,∴n邊形不可能有10條對角線,故小明的說法不正確.【考點】本題主要考查了一元二次方程的應用,通過方程是否有正整數解來判斷是否存在有10條對角線的多邊形是解答本題的關鍵.3、(1)x1=2,x2=-1(2)x1=-,x2=2【解析】【分析】(1)利用因式分解法解方程;(2)利用因式分解法解方程;(1)解:x2-x-2=0,(x-2)(x+1)=0,x-2=0或x+1=0,x1=2,x2=-1.(2)解:3x(x-2)=2-x,3x(x-2)+(x-2)=0,(3x+1)(x-2)=0,3x+1=0或x-2=0,x1=-,x2=2.【考點】本題考查了因式分解法解一元二次方程:將方程的右邊化為零,把方程的左邊分解為兩個一次因式的積,令每個因式分別為零,解這兩個一元一次方程,它們的解就是原方程的解.4、(1)﹣;(2)x=8或﹣2.【解析】【分析】(1)直接利用立方根以及算術平方根的性質化簡得出答案;(2)直接利用平方根的定義計算得出答案.【詳解】(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職老年服務與管理(養(yǎng)老服務)試題及答案
- 2025年高職水產養(yǎng)殖學(水產動物養(yǎng)殖)試題及答案
- 2025年高職(新能源汽車檢測與維修)維修技術試題及答案
- 2025年高職助產學(產科護理技術)試題及答案
- 禁毒安全教育內容課件
- 口腔醫(yī)學考研就業(yè)前景
- 2026年幼兒春節(jié)故事歡歡喜喜過大年
- 光伏技術交底全套
- 光伏培訓教學課件
- 2024黑龍江省各級機關考試錄用公務員備考題庫及參考答案詳解
- TOC基本課程講義學員版-王仕斌
- T-GDWCA 0035-2018 HDMI 連接線標準規(guī)范
- 面板堆石壩面板滑模結構設計
- 初中語文新課程標準與解讀課件
- 無人機裝調檢修工培訓計劃及大綱
- 中建通風與空調施工方案
- 高考語言運用題型之長短句變換 學案(含答案)
- 春よ、來い(春天來了)高木綾子演奏長笛曲譜鋼琴伴奏
- ARJ21機型理論知識考試題庫(匯總版)
- 2023年婁底市建設系統(tǒng)事業(yè)單位招聘考試筆試模擬試題及答案解析
- GB/T 4623-2014環(huán)形混凝土電桿
評論
0/150
提交評論