版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
UnderstandingAlTechnology
Aconcise,practical,andreadableoverviewofArtificialIntelligence
andMachineLearningtechnologydesignedfornon-technical
managers,officers,andexecutives
April2020
By:GregAllen,ChiefofStrategyandCommunications
JointArtificialIntelligenceCenter(JAIC)
DepartmentofDefense
ForewordbyJAICDirectorLtGenJackShanahan
Acknowledgments
Theauthorwouldliketothankthefollowingindividualsfortheirassistancereviewingearlierdrafts
ofthisdocument:
?Dr.JeffAlstott(IARPA)
?Dr.NateBastian(Major,U.S.Army,DoDJointAlCenter)
?Dr.StevenL.Brunton(UniversityofWashington)
?Dr.MatthewDaniels(GeorgetownUniversity)
?Dr.EdFelten(PrincetcnUniversity)
?Mr.RobJasper(PacificNorthwestNationalLaboratory)
?Dr.JohnLaunchbury(Galois,andformerlyDARPA)
Disclaimer
Theviewsexpressedinthisdocumentarethoseoftheauthoraloneanddonotnecessarilyreflect
thepositionoftheDepartmentofDefenseortheUnitedStatesGovernment.
J)
Website:/
Twitter:@DoDJAIC
Linkedln:/company/dod-ioint-artificial-intelliqence-center/
□A1CUnderstandingArtificialIntelligenceTechnology2
FOREWORDBYLIEUTENANTGENERALJACKSHANAHAN
ItishardformetodescribethesteepslopeofthelearningcurveIfacedwhenI
startedtheProjectMavenjourneyoverthreeyearsago.WhileinmanywaysIstill
considermyselfanArtificialIntelligenceneophytetoday,whatIknewaboutthe
subjectbackthencouldbarelyfillthefirstfewlinesofasinglepageinmytrusty
notebook.Myjourneyofdiscoverysincethenhasbeenchallenging,tosaythe
least.IonlywishGregAllen'sguideto"UnderstandingAlTechnology11hadbeen
availabletomeinlate2016asweembarkedonourfirstAI/MLpilotprojectforISR
full-motionvideoanalysis.
Greghasperformedaninestimableservicebywritingthisguide.Alischanging
nationalsecurity,andit'sessentialthatDoDleadershaveafirmgraspofthe
technology'sbuildingblocks.AsIlearnedbackin2017andamremindeddailyin
myroleastheDirectoroftheJointAlCenter(JAIC),Alisnotanelixir.Itisan
enabler-onethatiscriticaltoourfuturenationalsecurity.Itisimportantforallof
ustosharethesamefundamentalunderstandingofAltechnology.Greg'sguide
balancesbreadthanddepthinjusttherightway.Itisclear,concise,andcogent.
IamconfidentitwillbeavaluableresourceforeveryoneinDoDandbeyond.
LieutenantGeneralJohnN.T.“Jack”Shanahan
Director,JointArtificialIntelligenceCenter
DepartmentofDefense
April2020
□A1CGregoryC.Allen|DoDJointAlCenter2
□A1CUnderstandingArtificialIntelligenceTechnology3
EXECUTIVESUMMARY
ManyofficialsthroughouttheDepartmentofDefenseareaskedtomake
decisionsaboutAlbeforetheyhaveanappropriateunderstandingofthe
technology'sbasics.Thisguidewillhelp.
TheDoDAlStrategydefinesAlas“theabilityofmachinestoperformtasksthat
normallyrequirehumanintelligence."Thisdefinitionincludesdecades-oldDoD
Al,suchasaircraftautopilots,missileguidance,andsignalprocessingsystems.
ThoughmanyAltechnologiesareold,therehavebeenlegitimatetechnological
breakthroughsoverthepasttenyearsthathavegreatlyincreasedthediversityof
applicationswhereAlispractical,powerful,anduseful.Mostofthebreakthroughs
andexcitementaboutAlinthepastdecadehavefocusedonMachineLearning
(ML),whichisasubfieldofALMachineLearningiscloselyrelatedtostatisticsand
allowsmachinestolearnfromdata.
ThebestwaytounderstandMachineLearningAlistocontrastitwithanolder
approachtoAl,HandcraftedKnowledgeSystems.HandcraftedKnowledge
SystemsareAlthatusetraditional,rules-basedsoftwaretocodifysubjectmatter
knowledgeofhumanexpertsintoalongseriesofprogrammed“ifgivenxinput,
thenprovideyoutput"rules.Forexample,theAlchesssystemDeepBlue,which
defeatedtheworldchesschampionin1997,wasdevelopedincollaboration
betweencomputerprogrammersandhumanchessgrandmasters.The
programmerswrote(literallytypedbyhand)acomputercodealgorithmthat
consideredmanypotentialmovesandcountermovesandreflectedrulesfor
strongchessplaygivenbyhumanexperts.
MachineLearningsystemsaredifferentinthattheir“knowledge“isnot
programmedbyhumans.Rather,theirknowledgeislearnedfromdata:a
MachineLearningalgorithmrunsonatrainingdatasetandproducesanAl
model.Toalargeextent,MachineLearningsystemsprogramthemselves.Even
so,humansarestillcriticalinguidingthislearningprocess.Humanschoose
algorithms,formatdata,setlearningparameters,andtroubleshootproblems.
MachineLearninghasbeenaroundalongtime,butitpreviouslywasalmost
alwaysexpensiveandcomplicatedwithlowperformance,sotherewere
comparativelyfewapplicationsandorganizationsforwhichitwasagoodfit.
Thankstotheever-increasingavailabilityofmassivedatasets,massivecomputing
power(bothfromusingGPUchipsasacceleratorsandfromthecloud),open
sourcecodelibraries,andsoftwaredevelopmentframeworks,theperformance
andpracticalityofusingMachineLearningAlsystemshasincreaseddramatically.
TherearefourdifferentfamiliesofMachineLearningalgorithms,whichdiffer
basedonaspectsofthedatatheytrainon.Itisimportanttounderstandthe
differentfamiliesbecauseknowingwhichfamilyanAlsystemwillusehas
implicationsforeffectivelyenablingandmanagingthesystem'sdevelopment.
□A1CGregoryC.Allen|DoDJointAlCenter3
□A1CUnderstandingArtificialIntelligenceTechnology5
Purpose:Bynow,nearlyallDoDofficialsunderstandthattheriseofAlisan
importanttechnologytrendwithsignificantimplicationsfornationalsecurity,but
manystruggletogivesimpleandaccurateanswerstobasicquestionslike:
?WhatisAl?
?HowdoesAlwork?
?WhyisnowanimportanttimeforAl?
?WhatarethedifferenttypesofMachineLearning?Howdotheydiffer?
?WhatareNeuralNetworksandDeepLearning?
?WhatarethestepsofbuildingandoperatingAlsystems?
?WhatarethelimitationsandrisksofusingofAlsystems?
Contrarytopopularbelief,youdonotneedtounderstandadvanced
mathematicsorknowcomputerprogramminglanguagestobeabletoanswer
theabovequestionsaccuratelyandtodevelopapracticalunderstandingofAl
relevanttoyourorganization'sneeds.Thisguidewillcovereverythingthatthevast
majorityofDoDleadersneedtoknow.
WHATISAl?
TheDoDAlStrategystatesthat"Alreferstotheabilityofmachinestoperform
tasksthatnormallyrequirehumanintelligence."Thisdefinitionissoobviousthat
manyareconfusedbyitssimplicity.Infact,however,thisdefinitionisverysimilar
totheonesusedbymanyleadingAltextbooksandleadingresearchers.Thefirst
thingtonoteaboutthisdefinitionisthatAlisanextremelybroadfield,onethat
coversnotonlythebreakthroughsofthepastfewyears,butalsothe
achievementsofthefirstelectroniccomputersdatingbacktothe1940s.
Thedefinitionof"ArtificialIntelligence,11isabitofamovingtarget.When
somethingisnewandexciting,peoplehavenoqualmsaboutlabelingit**Artificial
Intelligence.nOncethecapabilitiesofaparticularAlapproacharefamiliar,
though,theyareoftencalledmerely“software.”Thispaperwillreturnlatertothe
subjectofhowmodernAlapproachesaredifferentandwhynowisacritical
momentforAltechnology.Fornow,justunderstandthatevenoldtechnology
canstillbeAl.
HOWDOESAlWORK?
Alisdefinedbyasetofcapabilities,ratherthanaspecifictechnicalapproachto
achievingthosecapabilities.Therearemanydifferentapproachestodeveloping
Alsystems,andvariousapproachesworkdifferentlywithdifferentstrengthsand
weaknesses.DARPA,alongtimepioneerinAlresearch,hashelpfullygrouped
manyoftheseapproachesintotwobroadcategories:(1)Handcrafted
Knowledgeand(2)MachineLearning.MachineLearningsystemsarethenewer
ofthetwoapproaches(thoughstilldecadesold)andareresponsibleforthe
dramaticimprovementsinAlcapabilitiesoverthepasttenyears.Ifyou'veheard
□A1CGregoryC.Allen|DoDJointAlCenter5
□A1CUnderstandingArtificialIntelligenceTechnology6
somepersonorcompanyclaimthattheirsystemMusesAI,Mmostlikelytheymean
thattheirsystemisusingMachineLearning,whichisafarcryfromtheirsystem
beinganautonomousintelligenceequaltoorgreaterthanhumanintellectinall
categories.Still,recentprogressinMachineLearningisabigdeal,with
implicationsfornearlyeveryindustry,includingdefenseandintelligence.The
easiestwaytounderstandMachineLearningsystems,however,isbycontrasting
themwithHandcraftedKnowledgesystems,sothispaperwillbeginthere.
HandcraftedKnowledgeAl
HandcraftedKnowledgeSystemsaretheolderofthetwoAlapproaches,nearly
asoldaselectroniccomputers.Attheircore,theyaremerelysoftwaredeveloped
incooperationbetweencomputerprogrammersandhumandomainsubject
matterexperts.HandcraftedKnowledgeSystemsattempttorepresenthuman
knowledgeintoprogrammedsetsofrulesthatcomputerscanusetoprocess
information.Inotherwords,the"intelligence"oftheHandcraftedKnowledge
Systemismerelyaverylonglistofrulesintheformof“ifgivenxinput,thenprovide
youtput/1Whenhundredsorthousandsormillionsofthesedomain-specificrules
arecombinedsuccessfully-into“theprogram”-theresultisamachinethatcan
seemquitesmartandcanalsobeveryuseful.
Awell-knownexampleofaHandcraftedKnowledgeAlSysteminwidespreaduse
istaxpreparationsoftware.Byrequiringuserstoinputtheirtaxinformation
accordingtopre-specifieddataformatsandthenprocessingthatdata
accordingtotheformallyprogrammedrulesofthetaxcode(developedin
cooperationbetweenhumansoftwareengineersandaccountants),theoutput
canbegoodenoughtopassanIRSaudit.Whenfirstintroducedinthe1980s,tax
preparationsoftwarewasverysuccessfullymarketedasArtificialIntelligence.
Nowthatithasbeeninwidespreadusefordecades,however,callingit“Art而cial
Intelligence“hasfallenoutoffashion.Nevertheless,itstillfallswithinboththeDoD
definitionofAlandtheformaldefinitionusedbymostresearchersinthefield.
AnotherfamousexampleofaHandcraftedKnowledgeSystemis“DeepBlue/*
theIBM-developed,chess-playingAlthatdefeatedthehumanworldchess
championin1997.DeepBluewasdevelopedincooperationbetweenIBM's
softwareengineersandseveralchessgrandmasters,whohelpedtranslatetheir
humanchessexpertiseintotensofthousandsofcomputercoderulesforplaying
grandmaster-levelchess.
BothtaxpreparationAlsystemsandDeepBlueareaspecifictypeofHandcrafted
KnowledgeAlknownasanExpertSystem.AnothertypeofHandcrafted
KnowledgeAlisaFeedbackControlSystem,whichuseshuman-authoredrulesto
computesystemoutputbasedonsensormeasurementinputs.FeedbackControl
SystemshavebeeninwidespreadusebytheDepartmentofDefensefor
decades.Aircraftautopilots,missileguidancesystems,andelectromagnetic
□A1CGregoryC.Allen|DoDJointAlCenter6
□A1CUnderstandingArtificialIntelligenceTechnology7
signalprocessingsystemsarejustafewofthethousandsofhigh-performing,
extremelyreliableFeedbackControlAlSystemsthattheDepartmentofDefense
anditspartnershavedevelopedandoperatedoverthepasteightdecades.In
thissense,HandcraftedKnowledgeSystemsarevictimsoftheirownsuccess.They
aresocommonthattheyaregenerallynolongerreferredtoas“Al”incommon
discourse.Nevertheless,HandcraftedKnowledgeSystemsremainimportantand
useful.Insomeareas,suchastaxpreparation,theystillhavefarhigher
performancethanMachineLearningsystems.Inotherareas,suchaschess
playing,languagetranslation,andimageclassification,HandcraftedKnowledge
AlsystemshavebeengreatlysurpassedinperformancebyMachineLearningAl
systems.Regardless,HandcraftedKnowledgesystemswillcontinuetoimprove
andseewideusefordecadestocome.
MachineLearningAl
ThekeydifferencebetweenaHandcraftedKnowledgeSystemandaMachine
Learningsystemisinwhereitreceivesitsknowledge.Ratherthanhavingtheir
knowledgebeprovidedbyhumansintheformofhand-programmedrules,
MachineLearningsystemsgeneratetheirownrules.ForMachineLearning
systems,humansprovidethesystemtrainingdata.Byrunningahuman-
generatedalgorithmonthetrainingdataset,theMachineLearningsystem
generatestherulessuchthatitcanreceiveinputxandprovidecorrectoutputy.
Inotherwords,thesystemlearnsfromexamples(trainingdata),ratherthanbeing
explicitlyprogrammed.ThisiswhydataissovitalinthecontextofALDataisthe
mainrawmaterialoutofwhichhigh-performingMachineLearningAlsystemsare
built.Forthisreason,thequality,quantity,representativenessanddiversityofdata
willdirectlyimpacttheoperationalperformanceoftheMLsystem.Algorithmsand
computinghardwarearealsoimportant,butnearlyallMLsystemsrunon
commoditycomputinghardware,andnearlyallofthebestalgorithmsarefreely
availableworldwide.Hence,havingenoughoftherightdatatendstobethekey.
Whileitistruethat-toalargeextent-MachineLearningsystemsprogram
themselves,humansarestillcriticalinguidingthislearningprocess:humans
choosealgorithmsanddatasets,formatdata,setlearningparameters,and
troubleshootproblems.
Atthisstage,manyreadersmayaskthemselves,Msowhat?WhyisMachine
Learningimportant?"
Thereasonisthattherearemanyapplicationsv/heretaskautomationwouldbe
useful,butwherehumanprogrammingofallofthesoftwarerulestoimplement
automationiseitherimpracticalorgenuinelyimpossible.Sometimeshuman
expertsareunabletofullytranslatetheirintuitiondecision-makingintofixedrules.
Further,forasurprisinglylargesubsetoftheseapplications,theperformanceof
□A1CGregoryC.Allen|DoDJointAlCenter7
□A1CUnderstandingArtificialIntelligenceTechnology8
MachineLearningsystemsisveryhigh,muchhigherthanwaseverachievedwith
HandcraftedKnowledgeSystemsorindeedbyhumanexperts.Thisdoesnot
meanthatHandcraftedKnowledgesystemsareobsolete.Formanyapplications
theyremainthecheapestand/orhighestperformingapproach.
Figure1:SimplifiedDiagramofAlApproaches
HandcraftedKnowtedgeAl
Operaftonai
InputData
MachineLearningAl
OperoAonai
InputOak)
MOCfWW
Loaming
Patternrecognition,imageanalysis,languagetranslation,contentgeneration,
andspeechtranscriptionarejustafewnoteworthyexampleswherethepast
performanceofHandcraftedKnowledgeAlwasverylow,buttheperformance
ofMachineLearningAlisextremelyhigh,oftenbetterthanhumanperformance.
BecauseoftheincreasedperformanceandenhancedproductivityMachine
Learningenables,therearemanypracticalapplicationsthroughoutthe
economyandindustry.WearenotafterusingAlforitsownsake.Weareafter
increasedperformanceandenhancedproductivity.Ifsthatsimple.
WHYISNOWANIMPORTANTTIMEFORAl?
Alhasbeenaroundfordecades.So,whyhaseveryonebeentalkingaboutit
constantlyinrecentyears?Itboilsdowntothis-forMachineLearningAlsystems
-therehasbeenamassiveincreaseinthenumberofreal-worldapplications
whereAlisnowpracticalandpowerful.Therearefourmainreasonswhythisis
truenowbutwasnottruetenyearsago:
□A1CGregoryC.Allen|DoDJointAlCenter8
□A1CUnderstandingArtificialIntelligenceTechnology9
1)MoreMassiveDatasets:MachineLearningalgorithmstendtorequirelarge
quantitiesoftrainingdatainordertoproducehighperformanceAlmodels.
Forexample,somefacialrecognitionAlsystemscannowroutinelyoutperform
humans,buttodosorequirestensofthousandsormillionsoflabeledimages
offacesfortrainingdata.WhenMachineLearningwasfirstdeveloped
decadesago,therewereveryfewapplicationswheresufficientlylarge
trainingdatawasavailabletobuildhighperformancesystems.Today,an
enormousnumberofcomputersanddigitaldevicesandsensorsare
connectedtotheinternet,wheretheyareconstantlyproducingandstoring
largevolumesofdata,whetherintheformoftext,numbers,images,audio,or
othersensordatafiles.
Ofcourse,moredataonlyhelpsifthedataisrelevanttoyourdesired
application.Ifyou'retryingtodevelopabetteraircraftautopilot,thena
bunchofconsumerloanapplicationdataisn'tgoingtohelp,nomatterhow
muchyouhave.Ingeneral,trainingdataneedstomatchthereal-world
operationaldatavery,verycloselytotrainahigh-performingAlmodel.
2)IncreasedComputingPower:ToafargreaterextentthanHandcrafted
KnowledgeSystems,MachineLearningAlsystemsrequirealotofcomputing
powertoprocessandstorealltheabove-mentioneddata.Aroundtenyears
ago,computinghardwarestartedgettingpowerfulenoughandcheap
enoughthatitwaspossibletorunMachineLearningalgorithmsonmassive
datasetsusingcommodityhardware.Oneespeciallyimportantturningpoint
around2010wasdevelopingeffectivemethodsforrunningMachineLearning
algorithmsonGraphicsProcessingUnits(GPUs)ratherthanontheCentral
ProcessingUnits(CPUs)thathandlemostcomputingworkloads.Originally
designedforvideogamesandcomputergraphics,GPUsarehighly
parallelized,whichmeanstheycanperformlargenumbersofsimilar
calculationsatthesametime.Itturnsoutthatmassiveparallelismisextremely
usefulinspeedingupthetrainingofMachineLearningAlmodelsandin
runningthosemodelsoperationally.FormanytypesofMachineLearning,
usingGPUscanspeedupthetrainingprocessby10-20xwhilereducing
computerhardwarecosts.Accesstothecloudisalsoveryhelpful,since
organizationscanrapidlyaccessmassivecomputingresourcesondemand
(fortherelativelyshortamountsoftimeneededfortraining)andlimit
purchasesofcomputingpowertoonlywhattheyneed,whentheyneedit.
3)ImprovedMachineLearningAlgorithms:ThefirstMachineLearningalgorithms
aredecadesold,andsomedecades-oldalgorithmsremainincrediblyuseful.
Inrecentyears,however,researchershavediscoveredmanynewalgorithms
thathavegreatlysharpenedthefield'scutting-edge.Thesenewalgorithms
havemadeMachineLearningmodelsmoreflexible,morerobust,andmore
capableofsolvingdifferenttypesofproblems.
□A1CGregoryC.Allen|DoDJointAlCenter9
□A1CUnderstandingArtificialIntelligenceTechnology10
4)OpenSourceCodeLibrariesandFrameworks:Thecutting-edgeofMachine
Learningisnotonlybetterthanever,butalsomoreeasilyavailable.Foralong
time,MachineLearningwasaspecializednichewithincomputerscience.
DevelopingMachineLearningsystemsrequiredalotofspecificexpertiseand
customsoftwaredevelopmentthatmadeitoutofreachformost
organizations.Now,however,therearemanyopensourcecodelibrariesand
developertoolsthatalloworganizationstouseandbuildupontheworkof
externalcommunities.Asaresult,noteamororganizationhastostartfrom
scratch,andmanypartsthatusedtorequirehighlyspecializedexpertisehave
beenlargelyautomated.ThedifficultyofdevelopinganAlmodelhasfallen
tothepointwhere-forsomeapplications-evennon-expertsandbeginners
cancreateusefulAltools.Insomecases,opensourceMLmodelscanbe
entirelyreused.
Figure2.KeyFactorsDrivingRecentImprovementsinMLPerformance
Inshort,usingMachineLearninggenerallyusedtobeexpensiveand
complicated,sotherewerecomparativelyfewapplicationsandorganizations
forwhichitwasagoodfit.Now,however,usingMachineLearningispractical
andpowerfulforafarmorediversesetofapplications.Thankstotheever-
increasingavailabilityofmoremassivedatasets,increasedcomputingpower,
improvedMachineLearningalgorithms,andimprovedopensourcecode
librariesandsoftwaredevelopmentframeworks,thingsthatusedtobenearly
impossible,suchasautomatedfacialrecognition,arenowpossible.Programs
thatusedtohaveterribleperformance,suchasautomatictranslation,nowhave
significantlybetterperformance.Finally,Alsystemsthatusedtobeextremely
□A1CGregoryC.Allen|DoDJointAlCenter10
□A1CUnderstandingArtificialIntelligenceTechnology11
expensivetodevelop,suchasimageryclassification,areoftennowaffordable
andsometimesevencheap.
Despitetheirhugepotential,Alsolutionsarenotagreatfitforalltypesof
problems.IfyouhaveanapplicationwhereyouthinkusingAlcouldbebeneficial,
knowingwhetherornotanyparticularsystemthatisclaimingtouse“Al”isusing
MachineLearningisimportantforseveralreasons.Foronething,Machine
Learningworksdifferentlyfromtraditionalsoftware,andithasdifferentstrengths
andweaknessestoo.Moreover,MachineLearningtendstobreakandfailin
differentways.Abasicunderstandingofthesestrengths,weaknesses,andfailure
modescanhelpyouunderstandwhetherornotyourparticularproblemsarea
goodfitforaMachineLearningAlsolution.
WHATARETHEDIFFERENTTYPESOFMACHINELEARNING?HOWDOTHEYDIFFER?
LikeArtificialIntelligence,MachineLearningisalsoanumbrellaterm,andthere
arefourdifferentbroadfamiliesofMachineLearningalgorithms.Therearealso
manydifferentsubcategoriesandcombinationsunderthesefourmajorfamilies,
butagoodunderstandingofthesefourbroadfamilieswillbesufficientforthe
vastmajorityofDoDemployees,includingseniorleadersinnon-technicalroles.
Thefourcategories-Figure3.LabeledandUnlabeledTrainingData
explainedmoreon
thefollowingLabeledDataUnlabeledData
differbasedonwhat
typesofdatatheir
algorithmscanwork
with.However,the
importantdistinction
isnotwhetherthe
dataisaudio,images,
text,ornumbers.
Rather,theimportant
distinction
iswhetherornotthetrainingdataislabeledorunlabeledandhowthesystem
receivesitsdatainputs.Figure3providesasimpleillustrationoflabeledand
unlabeledtrainingdataforaclassifierofimagesofcatsanddogs.
Dependinguponwhetherornotdataislabeled,adifferentfamilyofalgorithms
applies.ThefourmajorfamiliesofalgorithmsareSupervisedLearning,
UnsupervisedLearning,Semi-SupervisedLearning,andReinforcementLearning.
SupervisedLearning:"Supervised”meansthat;beforethealgorithmprocesses
thetrainingdata,some,supervisor),(whichmaybeahuman,groupofhumans,
oradifferentsoftwaresystem)hasaccuratelylabeledeachofthedatainputs
□A1CGregoryC.Allen|DoDJointAlCenter11
□A1CUnderstandingArtificialIntelligenceTechnology12
withitscorrectassociatedoutput.Forexample,ifthegoaloftheAlsystemisto
correctlyclassifytheobjectsindifferentimagesaseither“cat”or“dog,"the
labeledtrainingdatawouldhaveimageexamplespairedwiththecorrect
classificationlabel.SupervisedLearningsystemscanalsobeusedforidentifying
thecorrectlabelsofcontinuousnumericaloutputs.Forexample,"giventhiswing
shapeinput,predicttheoutputairdragcoefficient.”
ManySupervisedLearningsystemscanachieveextremelyhighperformance,but
theyrequireverylargelabeleddatasetstodoso.Usingimageclassificationasan
example,acommonruleofthumbisthatthealgorithmneedsatleast5,000
labeledexamplesofeachcategoryinordertoproduceanAlmodelwithdecent
performance.Acquiringallofthislabeleddatacanbeeasyorverydifficult,
dependingupontheapplication.Inthecaseoffacialrecognitionalgorithms,
mostcompaniesusepaidhumanstomanuallylabelimages.Inthecaseofonline
shoppingrecommendationengines,thecustomersareactuallyprovidingthe
datalabelsthroughthenormalcourseoftheirshopping.Thedatainputsarethe
recommendeditemsdisplayedtothecustomersandthecustomer'sprofile
information,whiletheoutputsaretheactualpurchasesmadeornotmade.This
isoneofthemajorreasonswhyinternetcompanieswereattheforefrontofthe
adoptionofMachineLearningAl:theiruserswereconstantlyproducingvaluable
datasets-bothlabeledandunlabeled-andtheonlineenvironmentallowedfor
rapidexperimentationwithMachineLearning-enabledanalysisandautomation.
Notethatpre-labeleddataisonlyrequiredforthetrainingdatathatthealgorithm
usestotraintheAlmodel.TheAlmodelinoperationalusewithnewdatawillbe
generatingitsownlabels,theaccuracyofwhichwilldependontheAl'straining.
Ifthetrainingdatasetwassufficientlylarge,highquality,andrepresentativeof
thediversitypresentintheoperationalenvironment,thentheperformanceofthe
Almodelingeneratingtheselabelscanbeatorabovehumanperformance.
UnsupervisedLearning:Unsupervisedalgorithmsarethosethatcanextract
featuresfromthedatawithouttheneedforaground-truthlabelfortheresults.
Usingtheaforementionedexampleofanimageclassifier,theAlmodelproduced
byanunsupervisedalgorithmwouldnotreturnthataspecificinputimagewasof
a“cat”ora"dog."Rather,themodelwouldsortthetrainingdatasetintovarious
groupsbasedontheirsimilarity.Onesortedgroupmightbethedesiredgroupsof
catsanddogs,butimagesmightinsteadbesortedbasedonundesired
categoriessuchaswhetherornottheyhaveablueskyinthebackgroun
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 妊娠期代謝組學(xué)與母嬰健康管理
- 妊娠合并地貧指南中的并發(fā)癥防治策略
- 妊娠合并前置胎盤的胎兒鏡手術(shù)策略
- 大數(shù)據(jù)支持下社區(qū)慢病干預(yù)的個(gè)性化方案
- 科目一考試規(guī)律及答案
- 多組學(xué)整合優(yōu)化腫瘤個(gè)體化治療策略
- 多組學(xué)標(biāo)志物驅(qū)動(dòng)耳科疾病精準(zhǔn)分型新策略
- 2025年大學(xué)風(fēng)景園林(園林工程技術(shù))試題及答案
- 2025年高職口腔修復(fù)工藝(固定義齒制作)試題及答案
- 2026年機(jī)械設(shè)計(jì)綜合(多零件設(shè)計(jì))試題及答案
- 股東代為出資協(xié)議書
- 財(cái)務(wù)部門的年度目標(biāo)與計(jì)劃
- 消防管道拆除合同協(xié)議
- 四川省森林資源規(guī)劃設(shè)計(jì)調(diào)查技術(shù)細(xì)則
- 銀行外包服務(wù)管理應(yīng)急預(yù)案
- DB13T 5885-2024地表基質(zhì)調(diào)查規(guī)范(1∶50 000)
- 2025年度演出合同知識(shí)產(chǎn)權(quán)保護(hù)范本
- 青少年交通安全法規(guī)
- 區(qū)塊鏈智能合約開發(fā)實(shí)戰(zhàn)教程
- 2025年校長(zhǎng)考試題庫及答案
- 口腔進(jìn)修申請(qǐng)書
評(píng)論
0/150
提交評(píng)論