強化訓練四川遂寧市第二中學7年級數(shù)學下冊第五章生活中的軸對稱同步練習試卷(含答案詳解)_第1頁
強化訓練四川遂寧市第二中學7年級數(shù)學下冊第五章生活中的軸對稱同步練習試卷(含答案詳解)_第2頁
強化訓練四川遂寧市第二中學7年級數(shù)學下冊第五章生活中的軸對稱同步練習試卷(含答案詳解)_第3頁
強化訓練四川遂寧市第二中學7年級數(shù)學下冊第五章生活中的軸對稱同步練習試卷(含答案詳解)_第4頁
強化訓練四川遂寧市第二中學7年級數(shù)學下冊第五章生活中的軸對稱同步練習試卷(含答案詳解)_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

四川遂寧市第二中學7年級數(shù)學下冊第五章生活中的軸對稱同步練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、下列圖形是軸對稱圖形的是()A. B. C. D.2、如圖,北京2022年冬奧會會徽,是將蒙漢兩種文字的“冬”字融為一體而成.組成會徽的四個圖案中是軸對稱圖形的是()A. B. C. D.3、下列圖案中是軸對稱圖形的是()A. B.C. D.4、下列所述圖形中,不是軸對稱圖形的是()A.矩形 B.平行四邊形 C.正五邊形 D.正三角形5、下列是部分防疫圖標,其中是軸對稱圖形的是()A. B. C. D.6、如圖把一張長方形的紙按如圖那樣折疊后,B、D兩點分別落在了B'、D'點處,若∠AOBA.59°6' B.59°16' C.57°47、在“回收”、“節(jié)水”、“綠色食品”、“低碳”四個標志圖案中.軸對稱圖形是()A. B. C. D.8、下面4個圖形中,不是軸對稱圖形的是()A. B. C. D.9、如圖,在2×2正方形網(wǎng)格中,格線的交點稱為格點,以格點為頂點的三角形稱為格點三角形,圖中的△ABC為格點三角形,在圖中可以畫出與△ABC成軸對稱的格點三角形的個數(shù)為()A.2個 B.3個 C.4個 D.5個10、在一些美術字中,有的漢字是軸對稱圖形.下面?zhèn)€漢字中,可以看作是軸對稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、正方形再任意涂黑一個,則所得黑色圖案是軸對稱圖形的情況有______種.2、如圖所示,在△ABC中,∠BAC=60°,AD平分∠BAC交BC與點D,點P為邊AC上的一動點,連接PB、PD,若AB=AD=,則PB+PD的最小值為___.3、如圖,直角三角形紙片的兩直角邊分別為6和8,現(xiàn)將△ABC折疊,使點A與點B重合,折痕為DE,則△CBE的周長是___.4、在“線段、鈍角、三角形、等腰三角形、圓”這五個圖形中,是軸對稱圖形的有____個.5、如圖,△ABC中,AD、BD、CD分別平分△ABC的外角∠CAE、內(nèi)角∠ABC、外角∠ACF,AD∥BC.以下結(jié)論:①∠ABC=∠ACB;②∠ADC+∠ABD=90°;③BD平分∠ADC;④2∠BDC=∠BAC.其中正確的結(jié)論有____________.(填序號)6、如圖,點關于、的對稱點分別是,,線段分別交、于、,cm,則的周長為________cm.7、如圖,將長方形紙片ABCD沿EF折疊后,點D、C分別落在點D1、C1的位置,ED1的延長線交BC于點G,若∠BGE=126°,則∠EFG的度數(shù)為______.8、如圖①,在長方形ABCD中,E點在AD上,并且∠AEB=60°,分別以BE、CE為折痕進行折疊并壓平,如圖②,若圖②中∠AED=10°,則∠DEC的度數(shù)為___度.9、請你發(fā)現(xiàn)圖中的規(guī)律,在空格_____上畫出簡易圖案10、如圖,在△ABC中,點D,E分別在邊AB,BC上,點A與點E關于直線CD對稱.若AB=8cm,AC=10cm,BC=14cm,則△DBE的周長為___.三、解答題(6小題,每小題10分,共計60分)1、如圖是一個8×10的網(wǎng)格,每個小正方形的頂點叫格點,每個小正方形的邊長均為1,△ABC的頂點均在格點上.(1)畫出△ABC關于直線OM對稱的△A1B1C1.(2)求出△OCC1的面積.2、如圖,已知△ABC各頂點坐標分別為A(﹣3,2)、B(﹣4,﹣3)、C(﹣1,﹣1).(1)畫出△ABC關于x軸對稱的△A1B1C1;(2)寫出△ABC關于y軸對稱的△A2B2C2的各頂點坐標.3、如圖,在△ABC中,AB=AC,D是BC的中點,DE⊥AB,DF⊥AC,E,F(xiàn)為垂足.求證:DE=DF.4、圖1是一張三角形紙片ABC.將BC對折使得點C與點B重合,如圖2,折痕與BC的交點記為D.(1)請在圖2中畫出ΔABC的BC邊上的中線.(2)若AB=11cm、AC=16cm,求ΔACD與ΔABD的周長差.5、如圖,在平面直角坐標系中,各頂點的坐標分別為:,,.(1)在圖中作,使與關于y軸對稱;(2)在(1)的條件下,寫出點A、B、C的對應點、、的坐標.6、如圖,在數(shù)軸上A點表示數(shù)a,B點表示數(shù)b,C點表示數(shù)c,已知數(shù)b是最小的正整數(shù),且a、c滿足.(1)a=_____,b=______,c=______;(2)若將數(shù)軸折疊,使得點A與點C重合,則點B與數(shù)______表示的點重合;(3)在(1)的條件下,數(shù)軸上的A,B,M表示的數(shù)為a,b,y,是否存在點M,使得點M到點A,點B的距離之和為6?若存在,請求出y的值;若不存在,請說明理由.(4)點A、B、C開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,假設t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC,求AB、AC、BC的長(用含t的式子表示).-參考答案-一、單選題1、C【分析】根據(jù)如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸進行分析即可.【詳解】解:選項A、B、D不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是軸對稱圖形,選項C能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是軸對稱圖形,故選:D.【點睛】此題主要考查了軸對稱圖形,關鍵是正確確定對稱軸位置.2、D【分析】根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A不是軸對稱圖形,故本選項不合題意B不是軸對稱圖形,故本選項不合題意C不是軸對稱圖形,故本選項不合題意D是軸對稱圖形,故本選項符合題意故選D【點睛】本題考察了軸對稱圖形的概念,熟練掌握應用軸對稱圖形的定義解決問題是關鍵點.3、B【分析】根據(jù)軸對稱圖形的概念(如果一個圖形沿著某條直線對折后,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形)逐一判斷即可.【詳解】A不是軸對稱圖形,故該選項錯誤;B是軸對稱圖形,故該選項正確;C不是軸對稱圖形,故該選項錯誤;D不是軸對稱圖形,故該選項錯誤.故選:B.【點睛】本題主要考查軸對稱圖形,掌握軸對稱圖形的概念是解題的關鍵.4、B【分析】由軸對稱圖形的定義對選項判斷即可.【詳解】矩形為軸對稱圖形,不符合題意,故錯誤;平行四邊形不是軸對稱圖形,符合題意,故正確;正五邊形為軸對稱圖形,不符合題意,故錯誤;正三角形為軸對稱圖形,不符合題意,故錯誤;故選:B.【點睛】本題考查了軸對稱圖形的概念,如果一個平面圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.識別軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.5、C【分析】直接根據(jù)軸對稱圖形的概念分別解答得出答案.如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:選項A、B、D均不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是軸對稱圖形,選項C能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是軸對稱圖形,故選:C.【點睛】本題考查的是軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,解題關鍵是掌握軸對稱圖形的概念.6、B【分析】根據(jù)翻折的性質(zhì)可得∠B′OG=∠BOG,再表示出∠AOB′,然后根據(jù)平角等于180°列出方程求解即可.【詳解】解:由翻折的性質(zhì)得,∠B′OG=∠BOG,∵∠AOB'=61°28',∠AOB′+∠B′OG∴2∠BOG=180°-61°28'=118°32解得∠BOG=59°16'故選:B.【點睛】本題考查了翻折變換的性質(zhì),熟記翻折的性質(zhì)并根據(jù)平角等于180°列出方程是解題的關鍵.7、C【詳解】解:A、不是軸對稱圖形,故此選項不合題意;B、不是軸對稱圖形,故此選項不合題意;C、是軸對稱圖形,故此選項符合題意;D、不是軸對稱圖形,故此選項不合題意.故選:C【點睛】本題主要考查了軸對稱圖形的定義,熟練掌握若一個圖形沿著一條直線折疊后兩部分能完全重合,這樣的圖形就叫做軸對稱圖形,這條直線叫做對稱軸是解題的關鍵.8、D【分析】根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、矩形是軸對稱圖形,故本選項不符合題意;B、菱形是軸對稱圖形,故本選項不符合題意;C、正方形是軸對稱圖形,故本選項不符合題意;D、平行四邊形不是軸對稱圖形,故本選項符合題意.故選:D.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.9、D【分析】在網(wǎng)格中畫出軸對稱圖形即可.【詳解】解:如圖所示,共有5個格點三角形與△ABC成軸對稱,故選:D【點睛】本題考查了軸對稱,解題關鍵是熟練掌握軸對稱的定義,準確畫出圖形.10、A【分析】如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.利用軸對稱圖形的定義進行判斷即可.【詳解】解:A、是軸對稱圖形,故此選項符合題意;B、不是軸對稱圖形,故此選項不符合題意;C、不是軸對稱圖形,故此選項不符合題意;D、不是軸對稱圖形,故此選項不符合題意;故選:A【點睛】此題主要考查了軸對稱圖形的定義,關鍵是掌握如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸.二、填空題1、4【分析】利用軸對稱圖形定義進行補圖即可.【詳解】解:如圖所示:,共4種,故答案為:4.【點睛】此題主要考查了軸對稱圖形,關鍵是掌握如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸.2、【分析】作D關于AC的對稱點E,連接AE,BE,PE,由軸對稱的性質(zhì)得,,PE=PD,∠DAP=∠EAP,則要想使PD+PB的值最小,則PB+PE的值最小,故當B、P、E三點共線時,PB+PE的值最小,即為PE,然后證明∠BAE=90°,即可利用勾股定理求解.【詳解】解:如圖所示,作D關于AC的對稱點E,連接AE,BE,PE,由軸對稱的性質(zhì)得,,PE=PD,∠DAP=∠EAP,∴PB+PD=PB+PE,∴要想使PD+PB的值最小,則PB+PE的值最小,∴當B、P、E三點共線時,PB+PE的值最小,即為PE,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=∠DAP=∠EAP=30°,∴∠BAE=90°,∴,故答案為:.【點睛】本題主要考查了軸對稱最短路徑問題,角平分線的定義,勾股定理,解題的關鍵在于能夠根據(jù)題意作出輔助線求解.3、14【分析】根據(jù)圖形翻折變換的性質(zhì)得出AE=BE,進而可得出△CBE的周長=AC+BC.【詳解】解:∵△BDE是△ADE翻折而成,∴AE=BE,∴△CBE的周長=BC+BE+CE=BC+AE+CE=BC+AC,∵角三角形紙片的兩直角邊長分別為6和8,∴△CBE的周長是14.故答案為:14.【點睛】本題考查的是圖形翻折變換的性質(zhì),熟知“折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等”的知識是解答此題的關鍵.4、【分析】軸對稱圖形的概念:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,根據(jù)軸對稱圖形的概念求解即可.【詳解】解:根據(jù)軸對稱圖形的定義可知:線段、鈍角、等腰三角形和圓都是軸對稱圖形.而三角形不一定是軸對稱圖形.故答案為:4.【點睛】本題考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.5、①②④【分析】根據(jù)角平分線的定義得到∠EAD=∠CAD,根據(jù)平行線的性質(zhì)得到∠EAD=∠ABC,∠CAD=∠ACB,求得∠ABC=∠ACB,故①正確;根據(jù)角平分線的定義得到∠ADC=90°∠ABC,求得∠ADC+∠ABD=90°故②正確;根據(jù)全等三角形的性質(zhì)得到AB=CB,與題目條件矛盾,故③錯誤,根據(jù)角平分線的定義和三角形外角的性質(zhì)即可得到2∠BDC=∠BAC,故④正確.【詳解】解:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠EAD=∠ABC,∠CAD=∠ACB,∴∠ABC=∠ACB,故①正確;∵AD,CD分別平分∠EAC,∠ACF,∴可得∠ADC=90°∠ABC,∴∠ADC+∠ABC=90°,∴∠ADC+∠ABD=90°,故②正確;∵∠ABD=∠DBC,BD=BD,∠ADB=∠BDC,∴△ABD≌△BCD(ASA),∴AB=CB,與題目條件矛盾,故③錯誤,∵∠DCF=∠DBC+∠BDC,∠ACF=∠ABC+∠BAC,∴2∠DCF=2∠DBC+2∠BDC,2∠DCF=2∠DBC+∠BAC,∴2∠BDC=∠BAC,故④正確,故答案為:①②④.【點睛】本題考查了三角形的外角的性質(zhì),平行線的性質(zhì),角平分線的定義,正確的識別圖形是解題的關鍵.6、8【分析】首先根據(jù)點P關于OA、OB的對稱點分別是P1,P2,可得PD=P1D,PC=P2C;然后根據(jù)P1P2=8cm,可得P1D+DC+P2C=8cm,所以PD+DC+PC=8cm,即△PCD的周長為8cm,據(jù)此解答即可.【詳解】解:∵點P關于OA、OB的對稱點分別是P1,P2,∴PD=P1D,PC=P2C;∵P1P2=8(cm),∴P1D+DC+P2C=8(cm),∴PD+DC+PC=8(cm),即△PCD的周長為8cm.故答案為:8.【點睛】本題考查了軸對稱的性質(zhì)的應用,要熟練掌握,解題的關鍵是判斷出:PD=P1D,PC=P2C.此題還考查了三角形的周長的含義以及求法的應用,要熟練掌握.7、63°【分析】由平行線的性質(zhì)可得∠DEG=∠BGE=126°,再由折疊的性質(zhì)可得∠DEF=63°,再由平行線的性質(zhì)可得∠EFG=DEF=63°【詳解】解:∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEG=∠BGE=126°,∠DEF=∠EFG,由折疊的性質(zhì)可得:∠DEF=∠DEG=63°,∴∠EFG=63°.故答案為:63°.【點睛】本題考查了平行線的性質(zhì)以及折疊的性質(zhì),注意掌握折疊前后圖形的對應關系是解此題的關鍵.8、35【分析】由折疊可得BE平分,CE平分,再利用角的和差得到=180°-120°+10°=70°,進而可得答案.【詳解】解:由折疊可得BE平分,CE平分,∵∠AEB=60°,∴=2∠AEB=120°,∵,∴∴∠CED=.故答案為:35.【點睛】本題考查角的和差關系,軸對稱的性質(zhì),根據(jù)折疊的性質(zhì)得到BE平分,CE平分是解本題關鍵.9、【分析】由圖知,該圖案是1,2,3,4,5的軸對稱構成的圖象,據(jù)此可得答案.【詳解】解:為1的軸對稱構成的圖象,為2的軸對稱構成的圖象,為4的軸對稱構成的圖象,為5的軸對稱構成的圖象,故橫線上為3的軸對稱構成的圖象.故答案為.【點睛】本題考查了圖形的變化規(guī)律.解題的關鍵是根據(jù)題意得到圖案是1,2,3,4,5的軸對稱構成的圖象.10、【分析】根據(jù)對稱的性質(zhì)可得,,進而可得的長,根據(jù)三角形的周長公式計算即可求得△DBE的周長【詳解】解:∵點A與點E關于直線CD對稱,∴,BC=14△DBE的周長為故答案為:【點睛】本題考查了軸對稱的性質(zhì),理解對稱的性質(zhì)是解題的關鍵.三、解答題1、(1)見解析;(2)6.【分析】(1)利用軸對稱的性質(zhì)畫出A、B、C關于直線OM的對稱點A1、B1、C1即可;(2)利用三角形的面積公式計算即可.【詳解】解:(1)如圖,△A1B1C1為所作;(2)△OCC1的面積4×3=6.【點睛】本題考查了作圖?軸對稱變換:幾何圖形都可看作是由點組成,我們在畫一個圖形的軸對稱圖形時,也是先從確定一些特殊的對稱點開始.2、(1)見解析;(2)A2(3,2),B2(4,﹣3),C2(1,﹣1)【分析】(1)分別作出三個頂點關于x軸的對稱點,再首尾順次連接即可;(2)根據(jù)關于y軸對稱的點的坐標特征:橫坐標互為相反數(shù),縱坐標相等,可得答案.【詳解】解:(1)如圖,即為所求;(2)根據(jù)題圖可知,的各點坐標是:A(-3,2),B(-4,﹣3),C(-1,﹣1),則關于y軸對稱的的各點坐標分別是:A2(3,2),B2(4,﹣3),C2(1,﹣1).【點睛】本題主要考查作圖軸對稱變換,掌握軸對稱變換的定義和性質(zhì),并據(jù)此得出變換后的對應點是解題的關鍵.3、見解析.【分析】根據(jù)等腰三角形的性質(zhì)得到∠B=∠C,運用AAS證明△DEB≌△DFC即可.【詳解】∵AB=AC,D是BC的中點,∴∠B=∠C,DB=DC,∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∴△DEB≌△DFC(AAS),∴DE=DF.【點睛】本題考查了等腰三角形的性質(zhì),三角形的全等判定和性質(zhì),熟練掌握全等三角形的判定定理和性質(zhì)是解題的關鍵.4、(1)見解析;(2)5厘米【分析】(1)由翻折的性質(zhì)可知BD=DC,然后連接AD即可;(2)由BD=DC可知△ABD與△ACD的周長差等于AB與AC的差.【詳解】解:(1)連接AD,∵由翻折的性質(zhì)可知:BD=DC,∴AD是△ABC的中線.如圖所示:(2)∵BD=DC,∴△ADC的周長-△ADB的周長=AC+DC+AD-(AD+AB+DC)=AC-AB=16-11=5cm.【點睛】本題主要考查的是翻折的性質(zhì),由翻折的性質(zhì)得到BD=DC是解題的關鍵.5、(1)見詳解;(2)(3,2)、(4,-3)、(1,-1)【分析】(1)根據(jù)關于y軸對稱的點的坐標特點:縱坐標不變,橫坐標為相反數(shù),畫出即可;(2)根據(jù)關于y軸對稱的點的坐標特點:縱坐標不變,橫坐標為相反數(shù),寫出各頂點坐標即可.【詳解】解:(1)如圖所示:(2)(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論