杭州市初中數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題題分類匯編_第1頁
杭州市初中數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題題分類匯編_第2頁
杭州市初中數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題題分類匯編_第3頁
杭州市初中數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題題分類匯編_第4頁
杭州市初中數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題題分類匯編_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

杭州市初中數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題題分類匯編一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.如圖,已知中,,,在BC邊上取一點(diǎn)P(點(diǎn)P不與點(diǎn)B、C重合),使得成為等腰三角形,則這樣的點(diǎn)P共有().A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)2.圓柱形杯子的高為18cm,底面周長(zhǎng)為24cm,已知螞蟻在外壁A處(距杯子上沿2cm)發(fā)現(xiàn)一滴蜂蜜在杯子內(nèi)(距杯子下沿4cm),則螞蟻從A處爬到B處的最短距離為()A. B.28 C.20 D.3.如圖,小紅想用一條彩帶纏繞易拉罐,正好從A點(diǎn)繞到正上方B點(diǎn)共四圈,已知易拉罐底面周長(zhǎng)是12cm,高是20cm,那么所需彩帶最短的是()A.13cm B.4cm C.4cm D.52cm4.如圖,已知圓柱的底面直徑,高,小蟲在圓柱側(cè)面爬行,從點(diǎn)爬到點(diǎn),然后再沿另一面爬回點(diǎn),則小蟲爬行的最短路程的平方為()A.18 B.48 C.120 D.725.如圖所示,用四個(gè)全等的直角三角形和一個(gè)小正方形拼成一個(gè)大正方形已知大正方形的面積為49,小正方形的面積為4.用,表示直角三角形的兩直角邊(),請(qǐng)仔細(xì)觀察圖案.下列關(guān)系式中不正確的是()A. B.C. D.6.如果正整數(shù)a、b、c滿足等式,那么正整數(shù)a、b、c叫做勾股數(shù).某同學(xué)將自己探究勾股數(shù)的過程列成下表,觀察表中每列數(shù)的規(guī)律,可知的值為()A.47 B.62 C.79 D.987.如圖,在長(zhǎng)方形紙片中,,.把長(zhǎng)方形紙片沿直線折疊,點(diǎn)落在點(diǎn)處,交于點(diǎn),則的長(zhǎng)為()A. B. C. D.8.如圖,等邊的邊長(zhǎng)為,,分別是,上的兩點(diǎn),將沿直線折疊,點(diǎn)落在點(diǎn)處,且點(diǎn)在外部,則陰影部分圖形的周長(zhǎng)為()A. B. C. D.9.如圖,小巷左右兩側(cè)是豎直的墻壁,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離為米,頂端距離地面米.若梯子底端位置保持不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面米,則小巷的寬度為()A. B. C. D.10.如圖,在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D在BC上,BD=6,DC=2,點(diǎn)P是AB上的動(dòng)點(diǎn),則PC+PD的最小值為()A.8 B.10 C.12 D.1411.如圖,在平行四邊形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF與AD的延長(zhǎng)線相交于點(diǎn)G,下面給出四個(gè)結(jié)論:①;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正確的結(jié)論是()A.①②③ B.①②④ C.②③④ D.①②③④12.如圖,等腰直角△ABC中,∠C=90°,點(diǎn)F是AB邊的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動(dòng),且∠DFE=90°,連接DE、DF、EF,在此運(yùn)動(dòng)變化過程中,下列結(jié)論:①圖中全等的三角形只有兩對(duì);②△ABC的面積是四邊形CDFE面積的2倍;③CD+CE=2FA;④AD2+BE2=DE2.其中錯(cuò)誤結(jié)論的個(gè)數(shù)有(??)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)13.若直角三角形的三邊長(zhǎng)分別為、a、,且a、b都是正整數(shù),則三角形其中一邊的長(zhǎng)可能為()A.22 B.32 C.62 D.8214.如圖,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E在同一條直線上,連接B,D和B,E.下列四個(gè)結(jié)論:①BD=CE,②BD⊥CE,③∠ACE+∠DBC=30°,④.其中,正確的個(gè)數(shù)是()A.1 B.2 C.3 D.415.以下列各組數(shù)為邊長(zhǎng),能構(gòu)成直角三角形的是A. B.、、C.、、 D.、、16.如圖是我國數(shù)學(xué)家趙爽的股弦圖,它由四個(gè)全等的直角三角形和小正方形拼成的一個(gè)大正方形.已知大正方形的面積是l3,小正方形的面積是1,直角三角形的較短直角邊長(zhǎng)為a,較長(zhǎng)直角邊長(zhǎng)為b,那么值為()A.25 B.9 C.13 D.16917.如圖,△ABC中,AB=10,BC=12,AC=,則△ABC的面積是().A.36 B. C.60 D.18.下列結(jié)論中,矩形具有而菱形不一定具有的性質(zhì)是()A.內(nèi)角和為360° B.對(duì)角線互相平分 C.對(duì)角線相等 D.對(duì)角線互相垂直19.已知△ABC的三邊分別是6,8,10,則△ABC的面積是()A.24 B.30 C.40 D.4820.如圖,在等腰Rt△ABC中,∠C=90°,AC=7,∠BAC的角平分線AD交BC于點(diǎn)D,則點(diǎn)D到AB的距離是(??)A.3 B.4 C. D.21.如圖,在RtΔABC中,∠ACB=90°,AC=9,BC=12,AD是∠BAC的平分線,若點(diǎn)P,Q分別是AD和AC上的動(dòng)點(diǎn),則PC+PQ的最小值是()A. B. C.12 D.1522.如圖,已知,則數(shù)軸上點(diǎn)所表示的數(shù)為()A. B. C. D.23.如圖,有一張直角三角形紙片,兩直角邊AC=6cm,BC=8cm,D為BC邊上的一點(diǎn),現(xiàn)將直角邊AC沿直線AD折疊,使AC落在斜邊AB上,且與AE重合,則CD的長(zhǎng)為()A.2cm B.2.5cm C.3cm D.4cm24.已知一個(gè)三角形的兩邊長(zhǎng)分別是5和13,要使這個(gè)三角形是直角三角形,則這個(gè)三角形的第三條邊可以是()A.6 B.8 C.10 D.1225.如圖,在中,平分,平分的外角,且交于,若,則的值為()A.8 B.16 C.32 D.6426.如圖,在四邊形ABCD中,,,,.分別以點(diǎn)A,C為圓心,大于長(zhǎng)為半徑作弧,兩弧交于點(diǎn)E,作射線BE交AD于點(diǎn)F,交AC于點(diǎn)O.若點(diǎn)O是AC的中點(diǎn),則CD的長(zhǎng)為()A. B.4 C.3 D.27.下列四組線段中,可以構(gòu)成直角三角形的是()A.1、、 B.2、3、4 C.1、2、3 D.4、5、628.為了慶祝國慶,八年級(jí)(1)班的同學(xué)做了許多拉花裝飾教室,小玲抬來一架2.5米長(zhǎng)的梯子,準(zhǔn)備將梯子架到2.4米高的墻上,則梯腳與墻角的距離是()A.0.6米 B.0.7米 C.0.8米 D.0.9米29.棱長(zhǎng)分別為的兩個(gè)正方體如圖放置,點(diǎn)A,B,E在同一直線上,頂點(diǎn)G在棱BC上,點(diǎn)P是棱的中點(diǎn).一只螞蟻要沿著正方體的表面從點(diǎn)A爬到點(diǎn)P,它爬行的最短距離是()A. B. C. D.30.一個(gè)直角三角形的兩條邊的長(zhǎng)度分別為3和4,則它的斜邊長(zhǎng)為()A.5 B.4 C. D.4或5【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.B解析:B【分析】在BC邊上取一點(diǎn)P(點(diǎn)P不與點(diǎn)B、C重合),使得成為等腰三角形,分三種情況分析:、、;根據(jù)等腰三角形的性質(zhì)分別對(duì)三種情況逐個(gè)分析,即可得到答案.【詳解】根據(jù)題意,使得成為等腰三角形,分、、三種情況分析:當(dāng)時(shí),點(diǎn)P位置再分兩種情況分析:第1種:點(diǎn)P在點(diǎn)O右側(cè),于點(diǎn)O∴設(shè)∴∵∴∴∴∴,不符合題意;第2種:點(diǎn)P在點(diǎn)O左側(cè),于點(diǎn)O設(shè)∴∴∴∴,點(diǎn)P存在,即;當(dāng)時(shí),,點(diǎn)P存在;當(dāng)時(shí),,即點(diǎn)P和點(diǎn)C重合,不符合題意;∴符合題意的點(diǎn)P共有:2個(gè)故選:B.【點(diǎn)睛】本題考查了等腰三角形、勾股定理、一元一次方程的知識(shí);解題的關(guān)鍵是熟練掌握等腰三角形、勾股定理、一元一次方程的性質(zhì),從而完成求解.2.C解析:C【解析】分析:將杯子側(cè)面展開,建立A關(guān)于EF的對(duì)稱點(diǎn)A′,根據(jù)兩點(diǎn)之間線段最短可知A′B的長(zhǎng)度即為所求.詳解:如圖所示,將杯子側(cè)面展開,作A關(guān)于EF的對(duì)稱點(diǎn)A′,連接A′B,則A′B即為最短距離,A′B=(cm)故選C.點(diǎn)睛:本題考查了勾股定理、最短路徑等知識(shí).將圓柱側(cè)面展開,化曲面為平面并作出A關(guān)于EF的對(duì)稱點(diǎn)A′是解題的關(guān)鍵.3.D解析:D【解析】【分析】本題就是把圓柱的側(cè)面展開成矩形,“化曲面為平面”,用勾股定理解決..要求彩帶的長(zhǎng),需將圓柱的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果,在求線段長(zhǎng)時(shí),借助于勾股定理.【詳解】如圖,由圖可知,彩帶從易拉罐底端的A處繞易拉罐4圈后到達(dá)頂端的B處,將易拉罐表面切開展開呈長(zhǎng)方形,則螺旋線長(zhǎng)為四個(gè)長(zhǎng)方形并排后的長(zhǎng)方形的對(duì)角線長(zhǎng),設(shè)彩帶最短長(zhǎng)度為xcm,∵∵易拉罐底面周長(zhǎng)是12cm,高是20cm,∴x2=(12×4)2+202∴x2=(12×4)2+202,所以彩帶最短是52cm.故選D.【點(diǎn)睛】本題考查了平面展開??最短路徑問題,圓柱的側(cè)面展開圖是一個(gè)矩形,此矩形的長(zhǎng)等于圓柱底面周長(zhǎng),高等于圓柱的高,4.D解析:D【分析】要求最短路徑,首先要把圓柱的側(cè)面展開,利用兩點(diǎn)之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開,展開圖如圖所示,點(diǎn),的最短距離為線段的長(zhǎng).∵已知圓柱的底面直徑,∴,在中,,,∴,∴從點(diǎn)爬到點(diǎn),然后再沿另一面爬回點(diǎn),則小蟲爬行的最短路程的平方為.故選D.【點(diǎn)睛】本題考查了平面展開-最短路徑問題,解題的關(guān)鍵是會(huì)將圓柱的側(cè)面展開,并利用勾股定理解答.5.D解析:D【解析】【分析】利用勾股定理和正方形的面積公式,對(duì)公式進(jìn)行合適的變形即可判斷各個(gè)選項(xiàng)是否爭(zhēng)取.【詳解】A中,根據(jù)勾股定理等于大正方形邊長(zhǎng)的平方,它就是正方形的面積,故正確;B中,根據(jù)小正方形的邊長(zhǎng)是2它等于三角形較長(zhǎng)的直角邊減較短的直角邊即可得到,正確;C中,根據(jù)四個(gè)直角三角形的面積和加上小正方形的面積即可得到,正確;D中,根據(jù)A可得,C可得,結(jié)合完全平方公式可以求得,錯(cuò)誤.故選D.【點(diǎn)睛】本題考查勾股定理.在A、B、C選項(xiàng)的等式中需理解等式的各個(gè)部分表示的幾何意義,對(duì)于D選項(xiàng)是由A、C選項(xiàng)聯(lián)立得出的.6.C解析:C【分析】依據(jù)每列數(shù)的規(guī)律,即可得到,進(jìn)而得出的值.【詳解】解:由題可得:……當(dāng)故選C【點(diǎn)睛】本題為勾股數(shù)與數(shù)列規(guī)律綜合題;觀察數(shù)列,找出規(guī)律是解答本題的關(guān)鍵.7.A解析:A【分析】由已知條件可證△CFE≌△AFD,得到DF=EF,利用折疊知AE=AB=8cm,設(shè)AF=xcm,則DF=(8-x)cm,在Rt△AFD中,利用勾股定理即可求得x的值.【詳解】∵四邊形ABCD是長(zhǎng)方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=DF設(shè)AF=xcm,則DF=(8-x)cm在Rt△AFD中,AF2=DF2+AD2,AD=6cm,故選擇A.【點(diǎn)睛】此題是翻折問題,利用勾股定理求線段的長(zhǎng)度.8.D解析:D【分析】根據(jù)折疊的性質(zhì)可得AD=A'D,AE=A'E,易得陰影部分圖形的周長(zhǎng)為=AB+BC+AC,則可求得答案.【詳解】解:因?yàn)榈冗吶切蜛BC的邊長(zhǎng)為1cm,所以AB=BC=AC=1cm,因?yàn)椤鰽DE沿直線DE折疊,點(diǎn)A落在點(diǎn)A'處,所以AD=A'D,AE=A'E,所以陰影部分圖形的周長(zhǎng)=BD+A'D+BC+A'E+EC=BD+AD+BC+AE+EC=AB+BC+AC=1+1+1=3(cm).故選:D.【點(diǎn)睛】此題考查了折疊的性質(zhì)與等邊三角形的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想與轉(zhuǎn)化思想的應(yīng)用以及折疊前后圖形的對(duì)應(yīng)關(guān)系.9.D解析:D【分析】先根據(jù)勾股定理求出梯子的長(zhǎng),進(jìn)而根據(jù)勾股定理可得出小巷的寬度.【詳解】解:如圖,由題意可得:AD2=0.72+2.42=6.25,在Rt△ABC中,∵∠ABC=90°,BC=1.5米,BC2+AB2=AC2,AD=AC,∴AB2+1.52=6.25,∴AB=±2,∵AB>0,∴AB=2米,∴小巷的寬度為:0.7+2=2.7(米).故選:D.【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問題時(shí)勾股定理與方程的結(jié)合是解決實(shí)際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.10.B解析:B【分析】過點(diǎn)C作CO⊥AB于O,延長(zhǎng)CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP,此時(shí)DP+CP=DP+PC′=DC′的值最?。蒁C=2,BD=6,得到BC=8,連接BC′,由對(duì)稱性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根據(jù)勾股定理即可得到結(jié)論.【詳解】解:過點(diǎn)C作CO⊥AB于O,延長(zhǎng)CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP.此時(shí)DP+CP=DP+PC′=DC′的值最?。逥C=2,BD=6,∴BC=8,連接BC′,由對(duì)稱性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=8,根據(jù)勾股定理可得DC′=.故選:B.【點(diǎn)睛】此題考查了軸對(duì)稱﹣線路最短的問題,確定動(dòng)點(diǎn)P為何位置時(shí)PC+PD的值最小是解題的關(guān)鍵.11.A解析:A【分析】先判斷△DBE是等腰直角三角形,根據(jù)勾股定理可推導(dǎo)得出BD=BE,故①正確;根據(jù)∠BHE和∠C都是∠HBE的余角,可得∠BHE=∠C,再由∠A=∠C,可得②正確;證明△BEH≌△DEC,從而可得BH=CD,再由AB=CD,可得③正確;利用已知條件不能得到④,據(jù)此即可得到選項(xiàng).【詳解】解:∵∠DBC=45°,DE⊥BC于E,∴在Rt△DBE中,BE2+DE2=BD2,BE=DE,∴BD=BE,故①正確;∵DE⊥BC,BF⊥DC,∴∠BHE和∠C都是∠HBE的余角,∴∠BHE=∠C,又∵在?ABCD中,∠A=∠C,∴∠A=∠BHE,故②正確;在△BEH和△DEC中,,∴△BEH≌△DEC,∴BH=CD,∵四邊形ABCD為平行四邊形,∴AB=CD,∴AB=BH,故③正確;利用已知條件不能得到△BCF≌△DCE,故④錯(cuò)誤,故選A.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)、等腰直角三角形的判定與性質(zhì)、勾股定理、全等三角形的判定與性質(zhì)等,熟練掌握相關(guān)性質(zhì)與定理是解題的關(guān)鍵.12.B解析:B【分析】結(jié)論①錯(cuò)誤,因?yàn)閳D中全等的三角形有3對(duì);結(jié)論②正確,由全等三角形的性質(zhì)可以判斷;結(jié)論③錯(cuò)誤,利用全等三角形和等腰直角三角形的性質(zhì)可以判斷;結(jié)論④正確,利用全等三角形的性質(zhì)以及直角三角形的勾股定理進(jìn)行判斷.【詳解】連接CF,交DE于點(diǎn)P,如下圖所示結(jié)論①錯(cuò)誤,理由如下:圖中全等的三角形有3對(duì),分別為△AFC≌△BFC,△AFD≌△CFE,△CFD≌△BFE.由等腰直角三角形的性質(zhì),可知FA=FC=FB,易得△AFC≌△BFC.∵FC⊥AB,F(xiàn)D⊥FE,∴∠AFD=∠CFE.∴△AFD≌△CFE(ASA).同理可證:△CFD≌△BFE.結(jié)論②正確,理由如下:∵△AFD≌△CFE,∴S△AFD=S△CFE,∴S四邊形CDFE=S△CFD+S△CFE=S△CFD+S△AFD=S△AFC=S△ABC,即△ABC的面積等于四邊形CDFE的面積的2倍.結(jié)論③錯(cuò)誤,理由如下:∵△AFD≌△CFE,∴CE=AD,∴CD+CE=CD+AD=AC=FA.結(jié)論④正確,理由如下:∵△AFD≌△CFE,∴AD=CE;∵△CFD≌△BFE,∴BE=CD.在Rt△CDE中,由勾股定理得:,∴.故選B.【點(diǎn)睛】本題是幾何綜合題,考查了等腰直角三角形、全等三角形和勾股定理等重要幾何知識(shí)點(diǎn),綜合性比較強(qiáng).解決這個(gè)問題的關(guān)鍵在于利用全等三角形的性質(zhì).13.B解析:B【解析】由題可知(a-b)2+a2=(a+b)2,解得a=4b,所以直角三角形三邊分別為3b,4b,5b,當(dāng)b=8時(shí),4b=32,故選B.14.B解析:B【分析】①由AB=AC,AD=AE,利用等式的性質(zhì)得到夾角相等,利用SAS得出三角形ABD與三角形ACE全等,由全等三角形的對(duì)應(yīng)邊相等得到BD=CE;②由三角形ABD與三角形ACE全等,得到一對(duì)角相等,再利用等腰直角三角形的性質(zhì)及等量代換得到BD垂直于CE;③由等腰直角三角形的性質(zhì)得到∠ABD+∠DBC=45°,等量代換得到∠ACE+∠DBC=45°;④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出關(guān)系式,等量代換即可作出判斷.【詳解】解:如圖,①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴BD=CE,故①正確;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=45°+45°=90°,∴∠BDC=90°,∴BD⊥CE,故②正確;③∵△ABC為等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,故③錯(cuò)誤;④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得BE2=BD2+DE2,∵△ADE為等腰直角三角形,∴AE=AD,∴DE2=2AD2,∴BE2=BD2+DE2=BD2+2AD2,在Rt△BDC中,,而BC2=2AB2,∴BD2<2AB2,∴故④錯(cuò)誤,綜上,正確的個(gè)數(shù)為2個(gè).故選:B.【點(diǎn)睛】此題考查了全等三角形的判定與性質(zhì),勾股定理,以及等腰直角三角形的性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.15.C解析:C【分析】利用勾股定理的逆定理依次計(jì)算各項(xiàng)后即可解答.【詳解】選項(xiàng)A,,不能構(gòu)成直角三角形;選項(xiàng)B,,不能構(gòu)成直角三角形;選項(xiàng)C,,能構(gòu)成直角三角形;選項(xiàng)D,,不能構(gòu)成直角三角形.故選C.【點(diǎn)睛】本題考查勾股定理的逆定理的應(yīng)用判斷三角形是否為直角三角形,已知三角形三邊的長(zhǎng),只要利用勾股定理的逆定理加以判斷即可.16.A解析:A【分析】根據(jù)勾股定理可以求得等于大正方形的面積,然后求四個(gè)直角三角形的面積,即可得到的值,然后根據(jù)即可求解.【詳解】根據(jù)勾股定理可得,四個(gè)直角三角形的面積是:,即,則.故選:A.【點(diǎn)睛】本題考查了勾股定理以及完全平方式,正確根據(jù)圖形的關(guān)系求得和的值是關(guān)鍵.17.A解析:A【分析】作于點(diǎn)D,設(shè),得,,結(jié)合題意,經(jīng)解方程計(jì)算得BD,再通過勾股定理計(jì)算得AD,即可完成求解.【詳解】如圖,作于點(diǎn)D設(shè),則∴,∴∵AB=10,AC=∴∴∴∴△ABC的面積故選:A.【點(diǎn)睛】本題考察了直角三角形、勾股定理、一元一次方程的知識(shí),解題的關(guān)鍵是熟練掌握勾股定理的性質(zhì),從而完成求解.18.C解析:C【分析】矩形與菱形相比,菱形的四條邊相等、對(duì)角線互相垂直;矩形四個(gè)角是直角,對(duì)角線相等,由此結(jié)合選項(xiàng)即可得出答案.【詳解】A、菱形、矩形的內(nèi)角和都為360°,故本選項(xiàng)錯(cuò)誤;B、對(duì)角互相平分,菱形、矩形都具有,故本選項(xiàng)錯(cuò)誤;C、對(duì)角線相等菱形不具有,而矩形具有,故本選項(xiàng)正確D、對(duì)角線互相垂直,菱形具有而矩形不具有,故本選項(xiàng)錯(cuò)誤,故選C.【點(diǎn)睛】本題考查了菱形的性質(zhì)及矩形的性質(zhì),熟練掌握矩形的性質(zhì)與菱形的性質(zhì)是解題的關(guān)鍵.19.A解析:A【解析】已知△ABC的三邊分別為6,10,8,由62+82=102,即可判定△ABC是直角三角形,兩直角邊是6,8,所以△ABC的面積為×6×8=24,故選A.20.C解析:C【分析】過點(diǎn)D作DE⊥AB于點(diǎn)E,根據(jù)角平分線的性質(zhì)定理,可得:DE=DC=x,則BE=-x,進(jìn)而可得到AE=AC=7,在Rt△BDE中,應(yīng)用勾股定理即可求解.【詳解】過點(diǎn)D作DE⊥AB于點(diǎn)E,則∠AED=90°,AE=AC=7,∵△ABC是等腰直角三角形,∴BC=AC=7,AB=,在Rt△AED和Rt△ACD中,AE=AC,DE=DC,∴Rt△AED≌Rt△ACD,∴AE=AC=7,設(shè)DE=DC=x,則BD=7-x,在Rt△BDE中,,即:,解得:,故選:C.【點(diǎn)睛】本題考查角平分線的性質(zhì)定理,全等三角形的判定與性質(zhì),勾股定理等,運(yùn)用方程思想是解題的關(guān)鍵.21.B解析:B【分析】過點(diǎn)D作DE⊥AB于點(diǎn)E,過點(diǎn)E作EQ⊥AC于點(diǎn)Q,EQ交AD于點(diǎn)P,連接CP,此時(shí)PC+PQ=EQ是最小值,根據(jù)勾股定理可求出AB的長(zhǎng)度,再根據(jù)EQ⊥AC、∠ACB=90°即可得出EQ∥BC,進(jìn)而可得出,代入數(shù)據(jù)即可得出EQ的長(zhǎng)度,此題得解.【詳解】解:如圖所示,過點(diǎn)D作DE⊥AB于點(diǎn)E,過點(diǎn)E作EQ⊥AC于點(diǎn)Q,EQ交AD于點(diǎn)P,連接CP,此時(shí)PC+PQ=EQ是最小值,在Rt△ABC中,∠ACB=90°,AC=9,BC=12,∴,∵AD是∠BAC的平分線,∴∠CAD=∠EAD,在△ACD和△AED中,,∴△ACD≌△AED(AAS),∴AE=AC=9.∵EQ⊥AC,∠ACB=90°,∴EQ∥BC,,∴,.故選B.【點(diǎn)睛】本題考查了勾股定理、軸對(duì)稱中的最短路線問題以及平行線的性質(zhì),找出點(diǎn)C的對(duì)稱點(diǎn)E,及通過點(diǎn)E找到點(diǎn)P、Q的位置是解題的關(guān)鍵.22.D解析:D【分析】根據(jù)勾股定理求出AB的長(zhǎng),即為AC的長(zhǎng),再根據(jù)數(shù)軸上的點(diǎn)的表示解答.【詳解】由勾股定理得,∴∵點(diǎn)A表示的數(shù)是1∴點(diǎn)C表示的數(shù)是故選D.【點(diǎn)睛】本題考查了勾股定理、實(shí)數(shù)與數(shù)軸,熟記定理并求出AB的長(zhǎng)是解題的關(guān)鍵.23.C解析:C【分析】首先由勾股定理求得AB=10,然后由翻折的性質(zhì)求得BE=4,設(shè)DC=,則BD=,在△BDE中,利用勾股定理列方程求解即可.【詳解】在Rt△ABC中,由勾股定理可知:AB=,由折疊的性質(zhì)可知:DC=DE,AC=AE=6,∠DEA=∠C=90°,∴BE=AB-AE=10-6=4,∠DEB=90°,設(shè)DC=x,則BD=8-x,DE=x,在Rt△BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8-x)2,解得:x=3,∴CD=3.故選:C.【點(diǎn)睛】本題主要考查了勾股定理與折疊問題,熟練掌握翻折的性質(zhì)和勾股定理是解決問題的關(guān)鍵.24.D解析:D【分析】此題要分兩種情況:當(dāng)5和13都是直角邊時(shí);當(dāng)13是斜邊長(zhǎng)時(shí);分別利用勾股定理計(jì)算出第三邊長(zhǎng)即可求解.【詳解】當(dāng)5和13都是直角邊時(shí),第三邊長(zhǎng)為:;當(dāng)13是斜邊長(zhǎng)時(shí),第三邊長(zhǎng)為:;故這個(gè)三角形的第三條邊可以是12.故選:D.【點(diǎn)睛】本題主要考查了勾股定理,當(dāng)已知條件中沒有明確哪是斜邊時(shí),要注意討論,一些學(xué)生往往忽略這一點(diǎn),造成丟解.25.D解析:D【分析】根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理求得CE2+CF2=EF2.【詳解】∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論