版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省冷水江市中考數學真題分類(勾股定理)匯編定向測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點E處,連接DE交AB于點F,當∠DEB是直角時,DF的長為(
).A.5 B.3 C. D.2、《九章算術》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈.問戶高、廣各幾何.”大意是說:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少(1丈=10尺,1尺=10寸)?若設門的寬為x寸,則下列方程中,符合題意的是()A.x2+12=(x+0.68)2 B.x2+(x+0.68)2=12C.x2+1002=(x+68)2 D.x2+(x+68)2=10023、下列各組數據為三角形的三邊,能構成直角三角形的是(
)A.4,8,7 B.2,2,2 C.2,2,4 D.13,12,54、如圖,△ABC中,,以其三邊分別向外側作正方形,然后將整個圖形放置于如圖所示的長方形中,若要求圖中兩個陰影部分面積之和,則只需知道(
)A.以BC為邊的正方形面積 B.以AC為邊的正方形面積C.以AB為邊的正方形面積 D.△ABC的面積5、如圖,中,,一同學利用直尺和圓規(guī)完成如下操作:①以點C為圓心,以CB為半徑畫弧,交AB于點G;分別以點G、B為圓心,以大于的長為半徑畫弧,兩弧交點K,作射線CK;②以點B為圓心,以適當的長為半徑畫弧,交BC于點M,交AB的延長線于N,分別以M、N為圓心,以大于的長為半徑畫弧,兩弧交于點P,作直線BP交AC的延長線于點D,交射線CK于點E.請你觀察圖形,根據操作結果解答下列問題;過點D作交AB的延長線于點F,若,,則CE的長為(
)A.13 B. C. D.6、有一個直角三角形的兩邊長分別為3和4,則第三邊的長為()A.5 B. C. D.5或7、如圖是一個三級臺階,它的每一級的長、寬和高分別為9、3和1,A和B是這個臺階兩個相對的端點,A點有一只螞蟻,想到B點去吃可口的食物.則這只螞蟻沿著臺階面爬行的最短路程是(
)A.6 B.8 C.9 D.15第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,圓柱形無蓋玻璃容器,高18cm,底面周長為60cm,在外側距下底1cm的點C處有一蜘蛛,與蜘蛛相對的圓柱形容器的上口外側距開口1cm的F處有一蒼蠅,則急于捕獲蒼蠅充饑的蜘蛛所走的最短路線的長度為__________cm(容器壁厚度忽略不計).2、如圖,在中,,于點D.E為線段BD上一點,連結CE,將邊BC沿CE折疊,使點B的對稱點落在CD的延長線上.若,,則的面積為__________.3、如圖,滑竿在機械槽內運動,∠ACB為直角,已知滑竿AB長2.5米,頂點A在AC上滑動,量得滑竿下端B距C點的距離為1.5米,當端點B向右移動0.5米時,滑竿頂端A下滑________米.4、如圖,該圖形是由直角三角形和正方形構成,其中最大正方形的邊長為7,則正方形A、B、C、D的面積之和為__________.5、《九章算術》是我國古代數學名著,書中有下列問題:“今有垣高一丈,倚木于垣,上與垣齊.引木卻行一尺,其木至地,問木長幾何?”其意思為:今有墻高1丈,倚木桿于墻,使木之上端與墻平齊,牽引木桿下端退行1尺,則木桿(從墻上)滑落至地上.問木桿是多長?(1丈=10尺)設木桿長為x尺根據題意,可列方程為______.6、若△ABC中,cm,cm,高cm,則BC的長為________cm.7、我國古代九章算術中有數學發(fā)展史上著名的“葭生池中”問題:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問:葭長幾何?(1丈=10尺).意思是:有一個長方體池子,底面是邊長為1丈的正方形,中間有蘆葦,把高出水面1尺的蘆葦拉向池邊(蘆葦沒有折斷),剛好貼在池邊上,問:蘆葦長多少尺?答:蘆葦長____________尺.8、如圖,CD是△ABC的中線,將△ACD沿CD折疊至,連接交CD于點E,交CB于點F,點F是的中點.若的面積為12,,則點F到AC的距離為______.三、解答題(7小題,每小題10分,共計70分)1、臺風是一種自然災害,它以臺風中心為圓心在周圍上百千米的范圍內形成極端氣候,有極強的破壞力,如圖,有一臺風中心沿東西方向由行駛向,已知點為海港,并且點與直線上的兩點,的距離分別為,,又,以臺風中心為圓心周圍250km以內為受影響區(qū)域.(1)求的度數;(2)海港受臺風影響嗎?為什么?2、做4個全等的直角三角形,設它們的兩條直角邊分別為a,b,斜邊為c,再做一個邊長為c的正方形,把它們按如圖的方式拼成正方形,請用這個圖證明勾股定理.3、(1)如圖1是一個重要公式的幾何解釋,請你寫出這個公式;(2)伽菲爾德(1881年任美國第20屆總統)利用(1)中的公式和圖2證明了勾股定理(1876年4月1日發(fā)表在《新英格蘭教育日志》上),現請你嘗試證明過程.說明:.4、如圖,某港口位于東西方向的海岸線上.“遠航”號、“海天”號輪船同時離開港口,各自沿一固定方向航行,“遠航”號每小時航行16海里,“海天”號每小時航行12海里.它們離開港口一個半小時后分別位于點Q,R處,且相距30海里.如果知道“遠航”號沿東北方向航行,能知道“海天”號沿哪個方向航行嗎?5、如圖,在4×4的正方形網格中,每個小正方形的邊長均為1.(1)請在所給網格中畫一個邊長分別為,,的三角形;(2)此三角形的面積是.6、如圖,中,,,是邊上一點,且,若.求的長.7、如圖所示的一塊地,,,,,,求這塊地的面積.-參考答案-一、單選題1、C【解析】【分析】如圖,由題意知,,,,可知三點共線,與重合,在中,由勾股定理得,求的值,設,,在中,由勾股定理得,計算求解即可.【詳解】解:如圖,∵是直角∴由題意知,,∴∴三點共線∴與重合在中,由勾股定理得設,在中,由勾股定理得即解得∴的長為故選C.【考點】本題考查了折疊的性質,勾股定理等知識.解題的關鍵在于明確三點共線,與重合.2、D【解析】【分析】1丈=100寸,6尺8寸=68寸,設門的寬為x寸,則門的高度為(x+68)寸,利用勾股定理及門的對角線長1丈(100寸),即可得出關于x的一元二次方程,此題得解.【詳解】解:1丈=100寸,6尺8寸=68寸.設門的寬為x寸,則門的高度為(x+68)寸,依題意得:x2+(x+68)2=1002.故選:D.【考點】本題主要考查了勾股定理的應用、由實際問題抽象出一元二次方程,準確計算是解題的關鍵.3、D【解析】【分析】根據勾股定理的逆定理,看較小的兩邊的平方和是否等于最大的邊的平方即可進行判斷.【詳解】A、42+72≠82,故不能構成直角三角形;B、22+22≠22,故不能構成直角三角形;C、2+2=4,故不能構成三角形,不能構成直角三角形;D、52+122=132,故能構成直角三角形,故選D.【考點】本題考查的是用勾股定理的逆定理判斷三角形的形狀,即若三角形的三邊符合a2+b2=c2,則此三角形是直角三角形.4、D【解析】【分析】如圖所示,過點C作CN⊥AB于N,延長AB、BA分別交正方形兩邊于H、E,證明△ADE≌△CAN得到,AE=CN同理可證△BGH≌△CBN,得到,BH=CN,則,即可推出由此即可得到答案.【詳解】解:如圖所示,過點C作CN⊥AB于N,延長AB、BA分別交正方形兩邊于H、E,∴∠CNA=∠DEA=∠DAC=90°,∴∠DAE+∠EDA=∠DAE+∠CAN=90°,∴∠ADE=∠CAN,又∵AD=CA,∴△ADE≌△CAN(AAS),∴,AE=CN同理可證△BGH≌△CBN,∴,BH=CN∴,∴,∴只需要知道△ABC的面積的面積即可求出陰影部分的面積,故選D【考點】本題主要考查了全等三角形的性質與判定,解題的關鍵在于能夠正確作出輔助線,構造全等三角形.5、D【解析】【分析】先證明CE=CD=DF,BC=BF=5,利用勾股定理求出AB,設CE=CD=DF=x,在Rt△ADF中,利用勾股定理構建方程求解即可.【詳解】解:由作圖知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,在△DBC和△DBF中,,∴△BDC≌△BDF(AAS),∴CD=DF,BC=BF=5,∵∠ACB=90°,AC=12,BC=5,∴AB=,設EC=CD=DF=x,在Rt△ADF中,則有(12+x)2=x2+182,∴x=,∴CE=,故選D.【考點】本題考查作圖-復雜作圖,全等三角形的判定和性質,等腰三角形的判定,以及勾股定理等知識,解題的關鍵是學會構建方程解決問題,屬于中考??碱}型.6、D【解析】【分析】分4是直角邊、4是斜邊兩種情況考慮,再根據勾股定理計算即可.【詳解】解:當4是直角邊時,斜邊==5;當4是斜邊時,另一條直角邊=;故選:D.【考點】本題考查的是勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.7、D【解析】【分析】此類題目只需要將其展開便可直觀的得出解題思路.將臺階展開得到的是一個矩形,螞蟻要從B點到A點的最短距離,便是矩形的對角線,利用勾股定理即可解出答案.【詳解】解:如圖,將臺階展開,因為AC=3×3+1×3=12,BC=9,所以AB2=AC2+BC2=225,所以AB=15,所以螞蟻爬行的最短線路為15.故選:D.【考點】本題考查了勾股定理的應用,掌握勾股定理的應用并能得出平面展開圖是解題的關鍵.二、填空題1、34【解析】【分析】首先展開圓柱的側面,即是矩形,接下來根據兩點之間線段最短,可知CF的長即為所求;然后結合已知條件求出DF與CD的長,再利用勾股定理進行計算即可.【詳解】如圖為圓柱形玻璃容器的側面展開圖,線段CF是蜘蛛由C到F的最短路程.根據題意,可知DF=18-1-1=16(cm),CD(cm),∴(cm),即蜘蛛所走的最短路線的長度是34cm.故答案為34.【考點】此題是有關最短路徑的問題,關鍵在于把立體圖形展開成平面圖形,找出最短路徑;2、【解析】【分析】在△ABC中由等面積求出,進而得到,設BE=x,進而DE=DB-BE=,最后在中使用勾股定理求出x即可求解.【詳解】解:在中由勾股定理可知:,∵,∴,∴,在中由勾股定理可知:,∴,設BE=x,由折疊可知:BE=B’E,且DE=DB-BE=,在中由勾股定理可知:,代入數據:∴,解得,∴,∴,故答案為:.【考點】本題考查了勾股定理求線段長、折疊的性質等,解題的關鍵是掌握折疊的性質,熟練使用勾股定理求線段長.3、0.5【解析】【詳解】結合題意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC===2(米).∵BD=0.5米,∴CD=2米,∴CE===1.5(米),∴AE=AC-EC=0.5(米).故答案為0.5.點睛:本題考查正確運用勾股定理.善于觀察題目的信息是解題以及學好數學的關鍵.4、49【解析】【分析】根據正方形A,B,C,D的面積和等于最大的正方形的面積,求解即可求出答案.【詳解】如圖對所給圖形進行標注:因為所有的三角形都是直角三角形,所有的四邊形都是正方形,所以正方形A的面積,正方形B的面積,正方形C的面積,正方形D的面積.因為,,所以正方形A,B,C,D的面積和.故答案為:49.【考點】本題主要考查了勾股定理、正方形的性質,面積的計算,掌握勾股定理是解本題的關鍵.5、102+(x-1)2=x2【解析】【分析】當木桿的上端與墻頭平齊時,木桿與墻、地面構成直角三角形,設木桿長為x尺,則木桿底端離墻有(x-1)尺,根據勾股定理可列出方程.【詳解】解:如圖,設木桿AB長為x尺,則木桿底端B離墻的距離即BC的長有(x-1)尺,在Rt△ABC中,∵AC2+BC2=AB2,∴102+(x-1)2=x2,故答案為:102+(x-1)2=x2.【考點】此題考查了勾股定理的應用,解題的關鍵是由實際問題抽象出直角三角形,從而運用勾股定理解題.6、28或8##8或28【解析】【分析】高的位置不確定,應分情況進行討論:(1)高在內部;(2)高在外部,依此即可求解.【詳解】解:如圖(1)cm,cm,,則,,則;如圖(2),由(1)得,,則.則的長為或.故答案為或.【考點】此題考查了勾股定理,本題需注意高的位置不確定,應根據三角形的形狀分兩種情況討論.7、13【解析】【分析】設水深OB=x尺,則蘆葦長OA'=(x+1)尺,根據勾股定理列方程求解即可.【詳解】解:根據題意,設水深OB=x尺,則蘆葦長OA'=(x+1)尺,根據題意列方程得:x2+52=(x+1)2,解得:x=12∴OA'=13尺.故答案為:13.【考點】此題考查了勾股定理的實際應用,解題的關鍵是根據題意設出未知數,根據勾股定理列方程求解.8、【解析】【分析】過點F作FH⊥AC于點H,由翻折的性質可知S△AA'D=24,由D為AB的中點,則S△AA'B=2S△AA'D=48,得AA'=12,再通過AAS證明△A'BF≌△ECF,得CE=A'B=8,在Rt△CAE中,由勾股定理求出AC的長,最后通過面積法即可求出FH的長.【詳解】解:如圖,過點F作FH⊥AC于點H,根據翻折的性質得:AD=A'D,AA'⊥CD,AE=A'E,∵CD是△ABC的中線,∴CD=BD,∴AD=BD=A'D,∴∠AA'B=90°,又∵S△A'DE=12,∴S△ADE=12,∴S△ADA'=24,又∵D為AB的中點,∴S△AA'B=2S△AA'D=48,即×AA′×A′B=48,∴AA'=12,又∵F為A'E的中點,∴A'F=EF,在△A'BF與△ECF中,,∴△A'BF≌△ECF(AAS),∴CE=A'B=8,∵AA'=2A'E,A'E=2EF=6,∴EF=3,AF=9,在Rt△CAE中,由勾股定理得:CA==10,在△CAF中,CA?HF=AF?CE,∴HF==,即點F到AC的距離為,故答案為:.【考點】本題主要考查了翻折的性質,全等三角形的判定與性質,勾股定理等知識,運用等積法求垂線段的長是解題的關鍵.三、解答題1、(1)90°;(2)受臺風影響,理由見解析【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,進而得出∠ACB的度數;(2)利用三角形面積得出CD的長,進而得出海港C是否受臺風影響.【詳解】解:(1)∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)海港C受臺風影響,理由:過點C作CD⊥AB,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以臺風中心為圓心周圍250km以內為受影響區(qū)域,∴海港C受臺風影響.【考點】本題考查的是勾股定理在實際生活中的運用,解答此類題目的關鍵是構造出直角三角形,再利用勾股定理解答.2、見詳解.【解析】【分析】利用4個直角三角形全等,根據列式,整理即可.【詳解】證明:如圖,,,,∵,即∴,∴.【考點】本題考查了勾股定理的驗證,運用拼圖的方式,即利用兩種不同的方法計算同一個圖形的面積來驗證勾股定理是解決本題的關鍵.3、(1);(2)證明見解析.【解析】【分析】(1)根據正方形面積計算公式解答;(2)利用面積法證明即可得到結論.【詳解】(1);(2)如圖,∵Rt△DEC≌Rt△EAB,∴∠DEC=∠EAB,DE=AE,∵,∴,∴△AED為等腰直角三角形,∵,∴,即,∵,∴,∴.【考點】此題考查勾股定理的證明,完全平方公式在幾何圖形中的應用,正確理解各部分圖形之間的關系,正確分析它們之間的面積等量關系是解題的關鍵.4、北偏西45°(或西北)【解析】【分析】直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角即可得到“海
天”號航行方向.【詳解】解:由題意可得:RP=18海里,PQ=24海里
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 開發(fā)項目獎勵金制度
- 建立重要急需教學專題立項招標制度
- 工程結算審核風險控制制度
- 工廠安全生產風險分級管控制度
- 山西建投質量驗收制度
- 湖南中醫(yī)藥大學《專業(yè)論文寫作與專業(yè)英語》2023-2024學年第二學期期末試卷
- 江西信息應用職業(yè)技術學院《診斷學2醫(yī)技》2023-2024學年第二學期期末試卷
- 天津石油職業(yè)技術學院《機械制造基礎(二)》2023-2024學年第二學期期末試卷
- 岳陽職業(yè)技術學院《醫(yī)學檢驗有機化學》2023-2024學年第二學期期末試卷
- 農村公廁長效管護制度
- 2026 年初中英語《狀語從句》專項練習與答案 (100 題)
- 2026年遼寧省盤錦市高職單招語文真題及參考答案
- 農投集團安全生產制度
- 近五年貴州中考物理真題及答案2025
- 2025年黑龍江省大慶市中考數學試卷
- 山東煙草2026年招聘(197人)考試備考試題及答案解析
- 手工藝品加工合同
- 研學旅行概論第六章
- GB/T 22176-2023二甲戊靈乳油
- 根據信用證制作商業(yè)發(fā)票、裝箱單、裝船通知
- GB/T 28046.4-2011道路車輛電氣及電子設備的環(huán)境條件和試驗第4部分:氣候負荷
評論
0/150
提交評論