版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
期末復習--第九章(平面直角坐標系)必會知識點提升練
2024-2025學年下期初中數(shù)學人教版七年級下冊(新教材)
一、單選題
1.在平面直角坐標系中,若點P的坐標為(5,-3),則點尸所在的象限是()
A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限
2.點尸(3,-4)到x軸和y軸的距離分別是(
A.-3,4B.3,4C.4,3D.-4,3
3.在平面直角坐標系中,把點A(肛2)先向右平移1個單位,再向上平移3個單位得到點8.若點8的
橫坐標和縱坐標相等,則〃7=()
A.4B.5C.6D.7
4.若點M(x,y)的坐標滿足x+y=0,則點A/位于()
A.第二象限B.第一、三象限的夾角平分線上
C.第四象限D(zhuǎn).第二、四象限的夾角平分線上
5.如圖,在平面直角坐標系中,點40,2),B(1,O),將線段A3平移至的位置,則的值為()
5C.4D.3
6.如圖,在5x5的方格紙中,每個小正方形邊長為1,點O,A,B在方格線的交點(格點)上.在
第四象限內(nèi)的格點上找點C,使三角形A8C的面積為3,則這樣的點。共有()
AB
Ox
A.2個B.3個C.4個D.5個
7.如圖是一片楓葉標本,其形狀呈“掌狀五裂型”,裂片具有少數(shù)突出的齒.將其放在平面直角坐標
系中,若表示葉片“頂部”42兩點的坐標分別為(-2,2),(-3,0),則葉桿“底部”點C的坐標為()
A.(2,-2)B.(2,-3)C.(3,-2)D.(3,-3)
8.為展示我國強大的軍力,面向青少年開展愛國主義教育,某科技館在市廣場上空組織飛機模型公
益活動.如圖所示的是飛機模型試飛過程中的部分飛行隊形,如果A3兩架轟炸機的平面坐標分別是
A(T1)和川-1,-3),那么轟炸機C的平面坐標是()
4
A.(1,-3)B.(3,-1)C.(-3,1)D.(-1,3)
9.北京時間2024年1月11日13時30分,我國太原衛(wèi)星發(fā)射中心在山東海陽附近海域使用引力一
號遙一商業(yè)運載火箭,將搭載的云遙一號18?20星3顆衛(wèi)星順利送入預定軌道,飛行試驗任務獲得
圓滿成功.此次任務是引力一號商業(yè)運載火箭的首次飛行.在這次發(fā)射中,探測人員發(fā)現(xiàn)衛(wèi)星在如圖
所示的陰影區(qū)域內(nèi)運行,則衛(wèi)星的坐標可能是()
A.(-3,300)B.(9,600)C.(7,-500)D.(-2,-800)
10.如圖,在平面直角坐標系中,已知A(2,4),4(4,4),A(6,0),4(8,-4),A(10,-4),4(12,0),…按
這樣的規(guī)律,則點4?!钡淖鴺藶?。
A.(4048,4)B.(4050,4)C.(4050,0)D.(4048,-4)
二、填空題
11.如圖,已知點A(2,2),3(2,5),C(6,2),則三角形ABC的面積為.
12.一艘船在A處遇險后向相距50nmile的B處的救生船報警.用方向和距離描述遇險船相對于救生
船的位置是.
13.如圖,在平面直角坐標系中,將線段A3平移使得一個端點與點C重合,已知點A(3,0),2(0,2),
C(6,4),則線段AB平移后另一個端點的坐標為.
14.如圖,圍棋盤放在某平面直角坐標系內(nèi),已知黑棋(甲)的坐標為(-2,1),黑棋(乙)的坐標為
(-1,-2),則白棋(甲)的坐標是.
15.如圖,在平面內(nèi),兩條直線,1,相交于點。,對于平面內(nèi)任意一點M,若P,4分別是點M到
直線心4的距離,則稱(P,4)為點M的“距離坐標”.根據(jù)上述規(guī)定,“距離坐標”是(2,1)的點共有
個.
16.在平面直角坐標系xOy中,給出如下定義:點A到無軸、y軸距離的較大值,稱為點A的“長距”,
當點尸的“長距”等于點。的“長距”時,稱尸,Q兩點為“等距點”.若尸(T,無+3),。(4,4k-3)兩點
為“等距點”,則人的值為.
三、解答題
17.在如圖所示的平面直角坐標系中,標明了小剛家附近的一些地點,其中小剛家的坐標為(2,-1).
娛樂中心,公園
文具店:
o;X
I
三屆豪…而
II
學校前函一
II
(1)寫出學校和文具店的坐標分別是,;
(2)某星期日早晨,小剛從家里出發(fā),沿(-1,0),(-2,-1),(-2,2),(1,2),(0,1)的路線散步,
又回到家里,寫出他散步經(jīng)過的地點;
(3)連接小剛在(2)中走過的地點,并寫出這個封閉圖形的形狀.
18.如圖,我們把杜甫的《絕句》整齊排列放在平面直角坐標系中.
y
4-兩只黃鵬鳴翠柳
3-一行白鷺上青天
2-窗含西嶺千秋雪
1-門泊東吳萬里船
01234567x
(1)“嶺,,和”船,,的坐標依次是
(2)將第2行與第3行對調(diào),再將第3列與第7列對調(diào),“雪”由開始的坐標依次變換為
和________
(3)“泊”開始的坐標是(2,1),使它的坐標變換到(5,3),應該哪兩行對調(diào),同時哪兩列對調(diào)?
19.如圖,三角形AOB中,A,8兩點的坐標分別為(2,4),(6,2).
(1)把VAOB先向下平移3個單位長度,再向左平移2個單位長度后得到VA'O'3',請直接寫出VA'O'?
的3個頂點的坐標;
(2)求VA05'的面積.
20.如圖所示的是某臺階的一部分,各級臺階的高度與寬度相等.如果點A的坐標為(0,0),點B的
坐標為(1,1).
吟
E—
Dr—
C.—
B—
A
(1)請建立適當?shù)钠矫嬷苯亲鴺讼?,并寫出點CD,E,尸的坐標;
⑵說明點用C3E,尸的坐標與點A的坐標相比較有什么變化?
(3)如果臺階有10級,要在臺階上鋪設地毯,地毯的長度至少多長?
21.已知點A(3a+2,2a-4)是直角坐標系內(nèi)一點.
(1)若點A在y軸上,求出點A的坐標;
(2)經(jīng)過點4(3。+2,2。-4),3(3,4)的直線,與無軸平行,求出點A的坐標;
⑶點A到兩坐標軸的距離相等,直度寫四點A的坐標.
22.如圖,在平面直角坐標系雙少中,A(4,0),C(0,6),點2在第一象限內(nèi),點尸從原點。
出發(fā),以每秒2個單位長度的速度沿著長方形ORC的邊逆時針移動一周(即:沿著O-A-BTC-O
的路線移動).
(2)當點P移動4s時,求出點P的坐標;
(3)在移動過程中,當點尸到x軸的距離為5個單位長度時,求點尸移動的時間九
23.如圖,在平面直角坐標系中,己知A(a,0),3。,0)其中",b滿足卜+1|+3-3了=0.
(2)如果在第三象限內(nèi)有一點加(-2,根),請用含加的式子表示三角形的面積;
3
⑶在(2)的條件下,當租=-5時,在〉軸上有一點P,使得三角形3Ao的面積與三角形的面
積相等,請求出點P的坐標.
24.如圖是學校的平面示意圖,已知旗桿的位置是(-2,3),實驗室的位置是(1,4).
旗桿
宿詒摟…;
天仃
(1)根據(jù)所給條件建立適當?shù)钠矫嬷苯亲鴺讼?,則食堂的位置是,圖書館的位置是
(2)已知教學樓的位置是(2,2),若1個單位長度代表30m,則宿舍樓到教學樓的實際距離是
參考答案
題號12345678910
答案DCADBBBBCC
1.D
【分析】根據(jù)象限的符號特征判斷即可.
【詳解】因為點尸的坐標為(5,-3),
所以符號特征為(+,—),
故點尸位于第四象限,
故選D.
【點睛】本題考查了點與象限的關系,熟練掌握點的坐標與象限的符號特征是解題的關鍵.
2.C
【分析】根據(jù)點到x軸的距離等于縱坐標的絕對值,點到y(tǒng)軸的距離等于橫坐標的絕對值,即可解答.
【詳解】解:點P(3,-4)至IJx軸和y軸的距離分另IJ是4,3,
故選:C.
【點睛】本題考查了點的坐標,熟練掌握點到坐標軸的距離是解題的關鍵.
3.A
【分析】本題考查平面直角坐標系內(nèi)點的平移,一元一次方程的應用等,解題的關鍵是掌握平面直角
坐標系內(nèi)點平移時坐標的變化規(guī)律:橫坐標右加左減,縱坐標上加下減.
先根據(jù)平移方式確定點B的坐標,再根據(jù)點的橫坐標和縱坐標相等列方程,解方程即可.
【詳解】解:把點4(機,2)先向右平移1個單位坐標變?yōu)椋?1,2),再向上平移3個單位得到點B(〃Z+1,5),
當點8的橫坐標和縱坐標相等時,即〃?+1=5,
即加=4,
故選A.
4.D
【詳解】Vx+y=O,
?*.y=-x,
???點M(x,y)位于第二、四象限的夾角平分線上.
故選:D.
5.B
【分析】本題考查了平面直角坐標系中點的平移,掌握點平移坐標的規(guī)律是解題的關鍵.
根據(jù)5(1,0)到夕(。,1),可知向上平移了1個單位,由A(0,2)到A(1,Q),可知向右平移了一個單位,由
止匕可得b=1+1=2,a=2+1=3,即可得角電
【詳解】解:,?,將線段AB平移至AR的位置后,點4。,2)再(1,0)對應為4(1,4),mi),
即線段A3平移向右平移了1個單位,向上1平移一個單位得到AE,
a=2+l=3,6=1+1=2,
a+b=5,
故選:B.
6.B
【分析】本題考查了坐標與圖形,三角形的面積,確定點C所在的直線是解題關鍵.
求得A3的長,根據(jù)三角形的面積公式即可確定點C所在直線,從而確定點C的位置.
【詳解】解:由AB=3,使三角形ABC的面積為3,
則AB邊上的高為2,
即此點到AB所在直線的距離是2,
位置要在第四象限,且在格點上,這樣的點可以是(1,-1),(2,-1),(3,-1),共有3個.
AiB
--t---------------!——
故選:B.
7.B
【分析】本題考查了點的坐標,根據(jù)A,8兩點的坐標建立平面直角坐標系,再由圖形即可得解,正
確建立平面直角坐標系是解此題的關鍵.
【詳解】解:;表示葉片“頂部”4,B兩點的坐標分別為(-2,2),(-3,0),
.??由圖形可得,葉桿“底部”點C的坐標為(2,-3),
故選:B.
8.B
【分析】此題考查坐標問題,關鍵是根據(jù)和3(-1,-3)的坐標以及與C的關系解答.根據(jù)
A(-U)和5(-1,-3)的坐標以及與C的關系進行解答即可.
【詳解】解:因為A(Tl)和3(-1,一3),
所以可得點C的坐標為(3,-1),
故選:B.
9.C
【分析】本題考查了點的坐標,根據(jù)陰影區(qū)域在第四象限,第四象限的點的坐標特征為(+,-),即可
得出答案.
【詳解】解:由題意得,陰影區(qū)域在第四象限,則衛(wèi)星的坐標可能是(7,-500),
故選:C.
10.C
【分析】本題考查的是點的坐標的規(guī)律,找出規(guī)律是解題的關鍵.先得出點4(〃為正整數(shù))的橫坐標
為2”,縱坐標每6個一循環(huán),再求解即可.
【詳解】解:點4(〃為正整數(shù))的橫坐標為2〃,縱坐標每6個一循環(huán)
點4。25的橫坐標為2x2025=4050,
?.■2025-6=337...3,
???點4025的縱坐標與4的縱坐標相同,為0,
???點人。25的坐標為(4050,0),
故選:C.
11.6
【分析】本題考查了坐標與圖形性質(zhì);
根據(jù)點A、B、C的坐標,利用三角形的面積公式計算即可.
【詳解】解::A(2,2),5(2,5),C(6,2),
三角形ABC的面積為:-AC-AB=-x4x3=6,
22
故答案為:6.
12.(南偏西15。,50海里)
【分析】直接根據(jù)題意得出A8的長以及NA8C的度數(shù),進而得出答案.
【詳解】解:如圖,
B
由題意可得:ZABC=15°,A8=50海里,
故遇險船相對于救生船的位置是:(南偏西15。,50海里),
故答案為:(南偏西15。,50海里).
【點睛】此題主要考查了坐標確定位置,正確理解方向角的定義是解題關鍵.
13.。(3,6)或E(9,2)
【分析】分兩種情況討論:如圖,當平移到CD,當A3平移到EC,再確定平移方式,從而可得
答案.
【詳解】解:如圖,當A3平移到C。,
?.?A(3,0),C(6,4),
.?.£>(0+3,2+4),即。(3,6),
當平移到召C,
VB(0,2),C(6,4),
AE(3+6,0+2),即E(9,2);
???平移后另外一個端點坐標為:。(3,6)或E(9,2).
故答案為:。(3,6)或£(9,2)
【點睛】本題考查的是平移的性質(zhì),熟記根據(jù)坐標的變化確定平移方式,再根據(jù)平移方式確定坐標變
化是解本題的關鍵.
14.(3,-1)
【分析】根據(jù)已知點黑棋(甲)的坐標為(-2,1),黑棋(乙)的坐標為GL-2),確定坐標原點即坐
標系,再找出未知點坐標即可.
【詳解】已知黑棋(甲)的坐標為G2,1),黑棋(乙)的坐標為(-1,-2),
建立坐標系如圖:
-1
I
-4
I
I?
I%
一1白棋(甲)
鼬
則白棋(甲)的坐標是(3,-1),
故填:(3,-1).
【點睛】此題考查坐標位置的表示,根據(jù)已知點找出坐標原點建立直角坐標系是關鍵,難度一般.
15.4
【分析】至此的距離是2的點,在與《平行且與4的距離是2的兩條直線上;同理,點〃在與4的距
離是1的點,在與4平行,且到4的距離是1的兩直線上,四條直線的距離有四個交點.因而滿足條
件的點有四個.
【詳解】解:至此的距離是2的點,在與(平行且與乙的距離是2的兩條直線上;
到4的距離是1的點,在與6平行且與4的距離是1的兩條直線上;
以上四條直線有四個交點,故“距離坐標"是(21)的點共有4個.
故答案為:4.
【點睛】本題主要考查了到直線的距離等于定長的點的集合.
16.1或2/2或1
【分析】根據(jù)點到x軸的距離為縱坐標的絕對值,點到y(tǒng)軸的距離為橫坐標的絕對值分兩種情況:
%+31T軟一3上4或|左+3|=4且|4左一3設4,據(jù)止匕討論求解即可.
【詳解】解:???P(-1,左+3),。(4,必一3)兩點為“等距點”,
歸+3|=|44_3|24或恢+3]=4且附一3歸4,
當%+3]=|4左一3|24時,
左+3=4及一3或左+3=T^+3,
解得左=2或左=。(舍去);
當"+3|=4且般一3歸4,
%+3=4或左+3=—4,
解得太=1或后=-7(舍去);
綜上所述,上=1或左=2,
故答案為:1或2.
【點睛】本題主要考查了點到坐標軸的距離,解絕對值方程,正確理解題意利用分類討論的思想求解
是解題的關鍵.
17.(1)(-2,-2),(0,1)
(2)他路上經(jīng)過的地方有:副食店,汽車站,二姨家,娛樂中心,公園,文具店
(3)見詳解,箭頭
【分析】本題考查了點的坐標,實際問題中用坐標表示位置,正確掌握相關性質(zhì)內(nèi)容是解題的關鍵.
(1)直接讀取平面直角坐標系中的學校和文具店的坐標,即可作答.
(2)根據(jù)(1廠2),(-1,0),(-2,-1),(-2,2),(1,2),(0,1)分別找出對應的地點,即可作答.
(3)先連接小剛在(2)中走過的地點,觀察這個封閉圖形的形狀,即可作答.
【詳解】(1)解:學校和文具店的坐標分別是(-2,-2),(0,1),
故答案為:(-2,-2),(0,1).
(2)解::?小剛從家里出發(fā),沿(1,-2),(—1,0),(-2,-1),(-2,2),(1,2),(0,1)的路線散步,又回
到家里,
他散步經(jīng)過的地點:副食店,汽車站,二姨家,娛樂中心,公園,文具店.
(3)解:依題意,
18.(1)(4,2);(7,1).
(2)(7,2);(7,3);(3,3).
(3)第1行與第3行對調(diào),同時第2列與第5列對調(diào).
【分析】(1)根據(jù)平面直角坐標系內(nèi)點的坐標是:前橫后縱,中間逗號隔開,可得答案;
(2)根據(jù)行對調(diào),縱坐標變化,列對調(diào),橫坐標變化,可得答案;
(3)根據(jù)行對調(diào),縱坐標變化,列對調(diào),橫坐標變化,可得答案.
【詳解】(1)“嶺”的坐標是(4,2),“船”的坐標是(7,1),
故答案為:(4,2);(7,1)
(2)將第2行與第3行對調(diào),再將第3列與第7列對調(diào),“雪”由開始的坐標(7,2)依次變換為(7,3)和
(3,3).
故答案為:(7,2);(7,3).(3,3)
(3)“泊”開始的坐標是(2,1),使它的坐標變換到(5,3),第1行與第3行對調(diào),同時第2列與第5列
對調(diào).
【點睛】本題考查了坐標確定位置,點的坐標是前橫后縱,中間逗號隔開,注意行對調(diào),縱坐標變化,
列對調(diào),橫坐標變化.
19.⑴左(0,1),。(―2,—3),夕(4,一1)
⑵10
【分析】(1)根據(jù)平移的方式,將橫坐標減2,縱坐標減3,即可求解;
(2)根據(jù)長方形的面積減去三個三角形的面積即可求解.
【詳解】(1)解:???A,0,2坐標分別為(2,4),(0,0),(6,2),將橫坐標減2,縱坐標減3,
得到A(O,l),0(—2,-3),笈(4,-1);
(2),;VAO'B'是由NAOB經(jīng)過平移得到的,
.??,.6x24x24x2
,,=^AAOB=6x4--~.
【點睛】本題考查了已知平移方式求平移后的坐標,坐標與圖形,掌握點的平移規(guī)律是解題的關鍵.
20.(1)見解析,C(2,2),D(3,3),£(4,4),F(5,5)
(2)橫縱坐標分別加1,2,3,4,5
(3)20
【分析】此題主要考查了坐標與圖形的性質(zhì),根據(jù)題意得出對應點坐標是解題關鍵.
(1)利用48點坐標進而得出對應點坐標即可;
(2)利用(1)中所求得出各點坐標變化規(guī)律;
(3)利用(1)中所求得出對應點坐標進而得出地毯的長度.
(2)解:點氏C,£>,E,尸的坐標與點A的坐標相比,橫縱坐標分別加1,2,3,4,5.
(3)解:由題意可得,第10級臺階的高度為10,相應對應點坐標為(10,10),
則要在臺階上鋪設地毯,地毯的長度至少為10+10=20.
⑵(14,4)
(3)(-16,-16)或,-g]
【分析】⑴由點A在y軸上,可得3a+2=0,解得。=-(,則2°-4=-號,進而可得點A的坐
標;
(2)由過點A(3a+2,2a—4),3(3,4)的直線,與x軸平行,可得2a—4=4,解得a=4,則3。+2=14,
進而可得點A的坐標;
(3)由點A到兩坐標軸的距離相等,可得|3a+2|=|2a-4|,解方程即可.
【詳解】(1)解::點A在y軸上,
2
3a+2=0,角畢得。=一§,
?c〃16
..2a—4=-----
3
點A的坐標為(。,-1
(2)解:?.?過點A(3a+2,2a—4),8(3,4)的直線,與x軸平行,
.二2a—4=4,解得〃=4,
3〃+2=14,
???A(14,4),
???點A的坐標為(14,4);
(3)解:??,點A到兩坐標軸的距離相等,
;.13〃+-4|,
當3I+2=2Q—4時,解得a=—6.
A(-16,-16),
當3〃+2=_(2〃_4)時,解得〃二
???點A到兩坐標軸的距離相等,點A的坐標(-16,-16)或[二,-]
【點睛】本題考查了坐標軸上點坐標的特征,平行于坐標軸的點坐標的特征,點坐標到坐標軸的距離,
解一元一次方程等知識.解題的關鍵在于對知識的熟練掌握與靈活運用.
22.(1)(4,6);(2)點尸的坐標為(4,4);(3)當r=;9s或丁15s時,點P到x軸的距離為
5個單位長度.
【分析】(1)根據(jù)44,0),C(0,6),且四邊形Q45C為長方形即可推出點B坐標;
(2)當點P移動4s時,求出點P移動的路程即可根據(jù)點尸移動的速度找到點尸的坐標;
(3)分兩種情況討論點P所在位置,即AP=5或OP=5時,分別找到移動的距離即可求出時間"
【詳解】解:(1)???A(4,0),C(0,6),且四邊形Q4BC為長方形,
:.OA=BC=4,AB=CO=6,
???點8的坐標(4,6),
故答案為:(4,6);
(2)當點P移動4s時,點P移動的路程為:2x4=8,
即OA+AP=8,
OA=4,
:.AP=4,
故此時點尸坐標為(4,4);
(3)①當點片第一次距x軸5個單位長度時,A[=5,
此時點P移動的距離:OA+M=4+5=9,
?.?點P每秒移動2個單位長度,
2%=9,
故L9
②當點2第二次距X軸5個單位長度時,=5,
此時點尸移動的距離:OA+AB+BC+OC-O^=4+6+4+6-5=15,
,??點P每秒移動2個單位長度,
/.2t2=15,
415
故芍二5;
綜上所述,在移動過程中,當點尸到無軸的距離為5個單位長度時,尸移動的時間f為9:s或弓15s.
22
【點睛】本題屬于四邊形綜合題,考查矩形的相關性質(zhì)以及平面直角坐標系中坐標的變換,熟練掌握
矩形的基本性質(zhì),數(shù)形結(jié)合,分類討論是解題的關鍵.
23.(1)-1,3;
⑵一27";
(3)(0,03)或(0,—2.1).
【分析】(1)利用絕對值、偶次方的非負性即可求解;
(2)過點M作收軸于點N,根據(jù)。=—1,6=3,則A(-LO),B(3,0),故AB=3—(-1)=4,
然后利用s三角陷5M=JAB?初N即可求解;
(3)分當點尸在y軸正半軸上時和當點尸在y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年高一政治上冊期末考試卷及答案(一)
- 2026年碳租賃業(yè)務模式題庫含答案
- 2026年江西財經(jīng)大學MBA教育學院面試題庫含答案
- 2026年四川急需緊缺專業(yè)選調(diào)筆試模塊分類強化練習題含答案
- 安全生產(chǎn)工作培訓課件
- 北京中關村科技融資擔保有限公司2026年校園招聘備考題庫及1套參考答案詳解
- 伊金霍洛旗公立醫(yī)院2026年公開招聘90名專業(yè)技術人員備考題庫及完整答案詳解1套
- 信息安全防護技術與應用指南(標準版)
- 2026年鄭州市管城回族區(qū)紫東路社區(qū)衛(wèi)生服務中心招聘康復技士備考題庫及1套參考答案詳解
- 小學英語智能輔導個性化學習資源動態(tài)更新策略分析教學研究課題報告
- 2025年遼鐵單招考試題目及答案
- 醫(yī)療行業(yè)數(shù)據(jù)安全事件典型案例分析
- 2026年生物醫(yī)藥創(chuàng)新金融項目商業(yè)計劃書
- 湖南名校聯(lián)考聯(lián)合體2026屆高三年級1月聯(lián)考化學試卷+答案
- 井下爆破安全培訓課件
- 2026年安全員證考試試題及答案
- 山東省濰坊市2024-2025學年二年級上學期期末數(shù)學試題
- 空氣源熱泵供熱工程施工方案
- 合伙車輛分車協(xié)議書
- 2026屆濰坊市重點中學高一化學第一學期期末教學質(zhì)量檢測試題含解析
- 中國馬克思主義與當代2024版教材課后思考題答案
評論
0/150
提交評論