版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
一、解答題1.如圖1,已知,點A(1,a),AH⊥x軸,垂足為H,將線段AO平移至線段BC,點B(b,0),其中點A與點B對應,點O與點C對應,a、b滿足.(1)填空:①直接寫出A、B、C三點的坐標A(________)、B(________)、C(________);②直接寫出三角形AOH的面積________.(2)如圖1,若點D(m,n)在線段OA上,證明:4m=n.(3)如圖2,連OC,動點P從點B開始在x軸上以每秒2個單位的速度向左運動,同時點Q從點O開始在y軸上以每秒1個單位的速度向下運動.若經(jīng)過t秒,三角形AOP與三角形COQ的面積相等,試求t的值及點P的坐標.2.如圖1,已知直線CD∥EF,點A,B分別在直線CD與EF上.P為兩平行線間一點.(1)若∠DAP=40°,∠FBP=70°,則∠APB=(2)猜想∠DAP,∠FBP,∠APB之間有什么關系?并說明理由;(3)利用(2)的結論解答:①如圖2,AP1,BP1分別平分∠DAP,∠FBP,請你寫出∠P與∠P1的數(shù)量關系,并說明理由;②如圖3,AP2,BP2分別平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代數(shù)式表示)3.如圖,,點A、B分別在直線MN、GH上,點O在直線MN、GH之間,若,.(1)=;(2)如圖2,點C、D是、角平分線上的兩點,且,求的度數(shù);(3)如圖3,點F是平面上的一點,連結FA、FB,E是射線FA上的一點,若,,且,求n的值.4.已知AB∥CD,線段EF分別與AB,CD相交于點E,F(xiàn).(1)請在橫線上填上合適的內(nèi)容,完成下面的解答:如圖1,當點P在線段EF上時,已知∠A=35°,∠C=62°,求∠APC的度數(shù);解:過點P作直線PH∥AB,所以∠A=∠APH,依據(jù)是;因為AB∥CD,PH∥AB,所以PH∥CD,依據(jù)是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)當點P,Q在線段EF上移動時(不包括E,F(xiàn)兩點):①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立嗎?請說明理由;②如圖3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,請直接寫出∠M,∠A與∠C的數(shù)量關系.5.已知,AB∥CD.點M在AB上,點N在CD上.(1)如圖1中,∠BME、∠E、∠END的數(shù)量關系為:;(不需要證明)如圖2中,∠BMF、∠F、∠FND的數(shù)量關系為:;(不需要證明)(2)如圖3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度數(shù);(3)如圖4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,則∠FEQ的大小是否發(fā)生變化,若變化,請說明理由,若不變化,求出∠FEQ的度數(shù).6.已知,,.(1)如圖1,求證:;(2)如圖2,作的平分線交于點,點為上一點,連接,若的平分線交線段于點,連接,若,過點作交的延長線于點,且,求的度數(shù).7.閱讀材料:求值:,解答:設,將等式兩邊同時乘2得:,將得:,即.請你類比此方法計算:.其中n為正整數(shù)8.先閱讀下面的材料,再解答后面的各題:現(xiàn)代社會會保密要求越來越高,密碼正在成為人們生活的一部分,有一種密碼的明文(真實文)按計算機鍵盤字母排列分解,其中這26個字母依次對應這26個自然數(shù)(見下表).QWERTYUIOPASD12345678910111213FGHJKLZXCVBNM14151617181920212223242526給出一個變換公式:將明文轉成密文,如,即變?yōu)椋?,即A變?yōu)镾.將密文轉成成明文,如,即變?yōu)椋海碊變?yōu)镕.(1)按上述方法將明文譯為密文.(2)若按上方法將明文譯成的密文為,請找出它的明文.9.a(chǎn)是不為1的有理數(shù),我們把稱為a的差倒數(shù).如:2的差倒數(shù)是,現(xiàn)已知a1=,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…(1)求a2,a3,a4的值;(2)根據(jù)(1)的計算結果,請猜想并寫出a2016?a2017?a2018的值;(3)計算:a33+a66+a99+…+a9999的值.10.(閱讀材料)數(shù)學家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:“39”.鄰座的乘客十分驚奇,忙間其中計算的奧妙.你知道怎樣迅速準確的計算出結果嗎?請你按下面的步驟試一試:第一步:∵,,,∴.∴能確定59319的立方根是個兩位數(shù).第二步:∵59319的個位數(shù)是9,∴能確定59319的立方根的個位數(shù)是9.第三步:如果劃去59319后面的三位319得到數(shù)59,而,則,可得,由此能確定59319的立方根的十位數(shù)是3,因此59319的立方根是39.(解答問題)根據(jù)上面材料,解答下面的問題(1)求110592的立方根,寫出步驟.(2)填空:__________.11.閱讀下面的文字,解答問題.對于實數(shù)a,我們規(guī)定:用符號[a]表示不大于a的最大整數(shù);用{a}表示a減去[a]所得的差.例如:[]=1,[2.2]=2,{}=﹣1,{2.2}=2.2﹣2=0.2.(1)仿照以上方法計算:[]={5﹣}=;(2)若[]=1,寫出所有滿足題意的整數(shù)x的值:.(3)已知y0是一個不大于280的非負數(shù),且滿足{}=0.我們規(guī)定:y1=[],y2=[],y3=[],…,以此類推,直到y(tǒng)n第一次等于1時停止計算.當y0是符合條件的所有數(shù)中的最大數(shù)時,此時y0=,n=.12.閱讀下列材料:小明為了計算的值,采用以下方法:設①則②②-①得,請仿照小明的方法解決以下問題:(1)________;(2)_________;(3)求的和(,是正整數(shù),請寫出計算過程).13.如圖,已知點,點,且,滿足關系式.(1)求點、的坐標;(2)如圖1,點是線段上的動點,軸于點,軸于點,軸于點,連接、.試探究,之間的數(shù)量關系;(3)如圖2,線段以每秒2個單位長度的速度向左水平移動到線段.若線段交軸于點,當三角形和三角形的面積相等時,求移動時間和點的坐標.14.如圖1,點在直線、之間,且.(1)求證:;(2)若點是直線上的一點,且,平分交直線于點,若,求的度數(shù);(3)如圖3,點是直線、外一點,且滿足,,與交于點.已知,且,則的度數(shù)為______(請直接寫出答案,用含的式子表示).15.如圖,在平面直角坐標系中,已知△ABC,點A的坐標是(4,0),點B的坐標是(2,3),點C在x軸的負半軸上,且AC=6.(1)直接寫出點C的坐標.(2)在y軸上是否存在點P,使得S△POB=S△ABC若存在,求出點P的坐標;若不存在,請說明理由.(3)把點C往上平移3個單位得到點H,作射線CH,連接BH,點M在射線CH上運動(不與點C、H重合).試探究∠HBM,∠BMA,∠MAC之間的數(shù)量關系,并證明你的結論.16.對于平面直角坐標系xOy中的任意兩點M(x1,y1),N(x2,y2),給出如下定義:將|x1﹣x2|稱為點M,N之間的“橫長”,|y1﹣y2|稱為點M,N之間的縱長”,點M與點N的“橫長”與“縱長”之和稱為“折線距離”,記作d(M,N)=|x1﹣x2|+|y1﹣y2|“.例如:若點M(﹣1,1),點N(2,﹣2),則點M與點N的“折線距離”為:d(M,N)=|﹣1﹣2|+|1﹣(﹣2)|=3+3=6.根據(jù)以上定義,解決下列問題:已知點P(3,2).(1)若點A(a,2),且d(P,A)=5,求a的值;(2)已知點B(b,b),且d(P,B)<3,直接寫出b的取值范圍;(3)若第一象限內(nèi)的點T與點P的“橫長”與“縱長”相等,且d(P,T)>5,簡要分析點T的橫坐標t的取值范圍.17.在平面直角坐標系中,,滿足.(1)直接寫出、的值:;;(2)如圖1,若點滿足的面積等于6,求的值;(3)設線段交軸于C,動點E從點C出發(fā),在軸上以每秒1個單位長度的速度向下運動,動點F從點出發(fā),在軸上以每秒2個單位長度的速度向右運動,若它們同時出發(fā),運動時間為秒,問為何值時,有?請求出的值.18.在平面直角坐標系中,點A(1,2),點B(a,b),且,點E(6,0),將線段AB向下平移m個單位(m>0)得到線段CD,其中A、B的對應點分別為C、D.(1)求點的坐標及三角形ABE的面積;(2)當線段CD與軸有公共點時,求的取值范圍;(3)設三角形CDE的面積為,當時,求的取值范圍.19.兩個兩位數(shù)的和是68,在較大的兩位數(shù)的右邊接著寫較小的兩位數(shù),得到一個四位數(shù);在較大的兩位數(shù)的左邊寫上較小的兩位數(shù),也得到一個四位數(shù).已知前一個四位數(shù)比后一個四位數(shù)大990.若設較大的兩位數(shù)為x,較小的兩位數(shù)為y,回答下列問題:(1)可得到下列哪一個方程組?A.B.C.D.(2)解所確定的方程組,求這兩個兩位數(shù).20.在平面直角坐標系中,點,點,點.(1)的面積為______;(2)已知點,,那么四邊形的面積為______.(3)奧地利數(shù)學家皮克發(fā)現(xiàn)了一類快速求解格點多邊形的方法,被稱為皮克定理:如果用m表示格點多邊形內(nèi)的格點數(shù),n表示格點多邊形邊上的格點數(shù),那么格點多邊形的面積S和m與n之間滿足一種數(shù)量關系.例如剛剛求解的幾個多邊形面積中,我們可以得到如表中信息:形內(nèi)格點數(shù)m邊界格點數(shù)n格點多邊形面積S611四邊形811五邊形208根據(jù)上述的例子,猜測皮克公式為______(用m,n表示),試計算圖②中六邊形的面積為______(本大題無需寫出解題過程,寫出正確答案即可).21.如圖,平面直角坐標系中,已知點A(a,0),B(0,b),其中a,b滿足.將點B向右平移24個單位長度得到點C.點D,E分別為線段BC,OA上一動點,點D從點C以2個單位長度/秒的速度向點B運動,同時點E從點O以3個單位長度/秒的速度向點A運動,在D,E運動的過程中,DE交四邊形BOAC的對角線OC于點F.設運動的時間為t秒(0<t<10),四邊形BOED的面積記為S四邊形BOED(以下面積的表示方式相同).(1)求點A和點C的坐標;(2)若S四邊形BOED≥S四邊形ACDE,求t的取值范圍;(3)求證:在D,E運動的過程中,S△OEF>S△DCF總成立.22.閱讀感悟:有些關于方程組的問題,要求的結果不是每一個未知數(shù)的值,而是關于未知數(shù)的代數(shù)式的值,如以下問題:已知實數(shù)、滿足①,②,求和的值.本題常規(guī)思路是將①②兩式聯(lián)立組成方程組,解得、的值再代入欲求值的代數(shù)式得到答案,常規(guī)思路運算量比較大.其實,仔細觀察兩個方程未知數(shù)的系數(shù)之間的關系,本題還可以通過適當變形整體求得代數(shù)式的值,如由①-②可得,由①+②×2可得.這樣的解題思想就是通常所說的“整體思想”.解決問題:(1)已知二元一次方程組,則_______,_______;(2)某班級組織活動購買小獎品,買20支水筆、3塊橡皮、2本記事本共需35元,買39支水筆、5塊橡皮、3本記事本工序62元,則購買6支水筆、6塊橡皮、6本記事本共需多少元?(3)對于實數(shù)、,定義新運算:,其中、、是常數(shù),等式右邊是通常的加法和乘法運算.已知,,那么_______.23.對a,b定義一種新運算T,規(guī)定:T(a,b)=(a+2b)(ax+by)(其中x,y均為非零實數(shù)).例如:T(1,1)=3x+3y.(1)已知T(1,﹣1)=0,T(0,2)=8,求x,y的值;(2)已知關于x,y的方程組,若a≥﹣2,求x+y的取值范圍;(3)在(2)的條件下,已知平面直角坐標系上的點A(x,y)落在坐標軸上,將線段OA沿x軸向右平移2個單位,得線段O′A′,坐標軸上有一點B滿足三角形BOA′的面積為9,請直接寫出點B的坐標.24.如圖,在平面直角坐標系中,已知兩點,且a、b滿足點在射線AO上(不與原點重合).將線段AB平移到DC,點D與點A對應,點C與點B對應,連接BC,直線AD交y軸于點E.請回答下列問題:(1)求A、B兩點的坐標;(2)設三角形ABC面積為,若4<≤7,求m的取值范圍;(3)設,請給出,滿足的數(shù)量關系式,并說明理由.25.在平面直角坐標系xOy中.點A,B,P不在同一條直線上.對于點P和線段AB給出如下定義:過點P向線段AB所在直線作垂線,若垂足Q落在線段AB上,則稱點P為線段AB的內(nèi)垂點.若垂足Q滿足|AQ-BQ|最小,則稱點P為線段AB的最佳內(nèi)垂點.已知點A(﹣2,1),B(1,1),C(﹣4,3).(1)在點P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,線段AB的內(nèi)垂點為;(2)點M是線段AB的最佳內(nèi)垂點且到線段AB的距離是2,則點M的坐標為;(3)點N在y軸上且為線段AC的內(nèi)垂點,則點N的縱坐標n的取值范圍是;(4)已知點D(m,0),E(m+4,0),F(xiàn)(2m,3).若線段CF上存在線段DE的最佳內(nèi)垂點,求m的取值范圍.26.定義:如果一個兩位數(shù)a的十位數(shù)字為m,個位數(shù)字為n,且、、,那么這個兩位數(shù)叫做“互異數(shù)”.將一個“互異數(shù)”的十位數(shù)字與個位數(shù)字對調后得到一個新的兩位數(shù),把這個新兩位數(shù)與原兩位數(shù)的和與11的商記為.例如:,對調個位數(shù)字與十位數(shù)字得到新兩位數(shù)41,新兩位數(shù)與原兩位數(shù)的和為,和與11的商為,所以.根據(jù)以上定義,解答下列問題:(1)填空:①下列兩位數(shù):20,21,22中,“互異數(shù)”為________;②計算:________;________;(m、n分別為一個兩位數(shù)的十位數(shù)字與個位數(shù)字)(2)如果一個“互異數(shù)”b的十位數(shù)字是x,個位數(shù)字是y,且;另一個“互異數(shù)”c的十位數(shù)字是,個位數(shù)字是,且,請求出“互異數(shù)”b和c;(3)如果一個“互異數(shù)”d的十位數(shù)字是x,個位數(shù)字是,另一個“互異數(shù)”e的十位數(shù)字是,個位數(shù)字是3,且滿足,請直接寫出滿足條件的所有x的值________;(4)如果一個“互異數(shù)”f的十位數(shù)字是,個位數(shù)字是x,且滿足的互異數(shù)有且僅有3個,則t的取值范圍________.27.如圖所示,在平面直角坐標系中,點A,,的坐標為,,,其中,,滿足,.(1)求,,的值;(2)若在軸上,且,求點坐標;(3)如果在第二象限內(nèi)有一點,在什么取值范圍時,的面積不大于的面積?求出在符合條件下,面積最大值時點的坐標.28.某地葡萄豐收,準備將已經(jīng)采摘下來的11400公斤葡萄運送杭州,現(xiàn)有甲、乙、丙三種車型共選擇,每輛車運載能力和運費如表表示(假設每輛車均滿載)車型甲乙丙汽車運載量(公斤/輛)600800900汽車運費(元/輛)500600700(1)若全部葡萄都用甲、乙兩種車型來運,需運費8700元,則需甲、乙兩種車型各幾輛?(2)為了節(jié)省運費,現(xiàn)打算用甲、乙、丙三種車型都參與運送,已知它們的總輛數(shù)為15輛,你能分別求出這三種車型的輛數(shù)嗎?怎樣安排運費最?。?9.如圖,在平面直角坐標系中,點O為坐標原點,三角形OAB的邊OA、OB分別在x軸正半軸上和y軸正半軸上,A(a,0),a是方程的解,且△OAB的面積為6.(1)求點A、B的坐標;(2)將線段OA沿軸向上平移后得到PQ,點O、A的對應點分別為點P和點Q(點P與點B不重合),設點P的縱坐標為t,△BPQ的面積為S,請用含t的式子表示S;(3)在(2)的條件下,設PQ交線段AB于點K,若PK=,求t的值及△BPQ的面積.30.學校美術組要去商店購買鉛筆和橡皮,若購買60支鉛筆和30塊橡皮,則需按零售價購買,共支付30元;若購買90支鉛筆和60塊橡皮,則可按批發(fā)價購買,共支付40.5元.已知每支鉛筆的批發(fā)價比零售價低0.05元,每塊橡皮的批發(fā)價比零售價低0.10元.(1)求每支鉛筆和每塊橡皮的批發(fā)價各是多少元?(2)小亮同學用4元錢在這家商店按零售價買同樣的鉛筆和橡皮(兩樣都要買,4元錢恰好用完),共有哪幾種購買方案?【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1)①1,4;3,0;2,﹣4;②2;(2)見解析;(3)t=1.2時,P(0.6,0),t=2時,P(﹣1,0).【分析】(1)①利用非負數(shù)的性質求出a,b的值,可得結論.②利用三角形面積公式求解即可.(2)連接DH,根據(jù)△ODH的面積+△ADH的面積=△OAH的面積,構建關系式,可得結論.(3)分兩種情形:①當點P在線段OB上,②當點P在BO的延長線上時,分別利用面積關系,構建方程,可得結論.【詳解】(1)解:①∵,又∵≥0,(b﹣3)2≥0,∴a=4,b=3,∴A(1,4),B(3,0),∵B是由A平移得到的,∴A向右平移2個單位,向下平移4個單位得到B,∴點C是由點O向右平移2個單位,向下平移4個單位得到的,∴C(2,﹣4),故答案為:1,4;3,0;2,﹣4.②△AOH的面積=×1×4=2,故答案為:2.(2)證明:如圖,連接DH.∵△ODH的面積+△ADH的面積=△OAH的面積,∴×1×n+×4×(1﹣m)=2,∴4m=n.(3)解:①當點P在線段OB上,由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,∴×(3﹣2t)×4=×2t,解得t=1.2.此時P(0.6,0).②當點P在BO的延長線上時,由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,×(2t﹣3)×4=×2×t,解得t=2,此時P(﹣1,0),綜上所述,t=1.2時,P(0.6,0),t=2時,P(﹣1,0).【點睛】本題考查坐標與圖形變化-平移,非負數(shù)的性質,三角形的面積等知識,解題的關鍵是學會利用參數(shù)構建方程解決問題.2.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過P作PM∥CD,根據(jù)兩直線平行,內(nèi)錯角相等可得∠APM=∠DAP,再根據(jù)平行公理求出CD∥EF然后根據(jù)兩直線平行,內(nèi)錯角相等可得∠MPB=∠FBP,最后根據(jù)∠APM+∠MPB=∠DAP+∠FBP等量代換即可得證;(2)結論:∠APB=∠DAP+∠FBP.(3)①根據(jù)(2)的規(guī)律和角平分線定義解答;②根據(jù)①的規(guī)律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根據(jù)角平分線的定義和平角等于180°列式整理即可得解.【詳解】(1)證明:過P作PM∥CD,∴∠APM=∠DAP.(兩直線平行,內(nèi)錯角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一條直線的兩條直線互相平行),∴∠MPB=∠FBP.(兩直線平行,內(nèi)錯角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性質)即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)結論:∠APB=∠DAP+∠FBP.理由:見(1)中證明.(3)①結論:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分別平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【點睛】本題考查了平行線的性質,角平分線的定義,熟記性質與概念是解題的關鍵,此類題目,難點在于過拐點作平行線.3.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長AC、CD交GH于點E、F,先根據(jù)角平分線求得,再根據(jù)平行線的性質得到;進一步求得,,然后根據(jù)三角形外角的性質解答即可;(3)設BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長AC、CD交GH于點E、F,∵AC平分且,∴,又∵MN//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經(jīng)檢驗:是原方程的根,且符合題意.【點睛】本題主要考查平行線的性質及應用,正確作出輔助線、構造平行線、再利用平行線性質進行求解是解答本題的關鍵.4.(1)兩直線平行,內(nèi)錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由見解答過程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根據(jù)平行線的判定與性質即可完成填空;(2)結合(1)的輔助線方法即可完成證明;(3)結合(1)(2)的方法,根據(jù)∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可證明∠PMQ,∠A與∠C的數(shù)量關系.【詳解】解:過點P作直線PH∥AB,所以∠A=∠APH,依據(jù)是兩直線平行,內(nèi)錯角相等;因為AB∥CD,PH∥AB,所以PH∥CD,依據(jù)是平行于同一條直線的兩條直線平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案為:兩直線平行,內(nèi)錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:過點P作直線PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如圖3,過點P作直線PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【點睛】考核知識點:平行線的判定和性質.熟練運用平行線性質和判定,添加適當輔助線是關鍵.5.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不變,30°【分析】(1)過E作EH∥AB,易得EH∥AB∥CD,根據(jù)平行線的性質可求解;過F作FH∥AB,易得FH∥AB∥CD,根據(jù)平行線的性質可求解;(2)根據(jù)(1)的結論及角平分線的定義可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,進而可求解;(3)根據(jù)平行線的性質及角平分線的定義可推知∠FEQ=∠BME,進而可求解.【詳解】解:(1)過E作EH∥AB,如圖1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如圖2,過F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點睛】本題主要考查平行線的性質及角平分線的定義,作平行線的輔助線是解題的關鍵.6.(1)見解析;(2)【分析】(1)根據(jù)平行線的性質得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過點E作,延長DC至Q,過點M作,根據(jù)平行線的性質及等量代換可得出,再根據(jù)平角的含義得出,然后根據(jù)平行線的性質及角平分線的定義可推出;設,根據(jù)角的和差可得出,結合已知條件可求得,最后根據(jù)垂線的含義及平行線的性質,即可得出答案.【詳解】(1)證明:;(2)過點E作,延長DC至Q,過點M作,,,AF平分FH平分設,.【點睛】本題考查了平行線的判定及性質,角平分線的定義,能靈活根據(jù)平行線的性質和判定進行推理是解此題的關鍵.7.(1);(2).【解析】【分析】設,兩邊乘以2后得到關系式,與已知等式相減,變形即可求出所求式子的值;同理即可得到所求式子的值.【詳解】解:設,將等式兩邊同時乘2得:,將下式減去上式得:,即,則;設,兩邊同時乘3得:,得:,即,則.【點睛】本題考查了規(guī)律型:數(shù)字的變化類,有理數(shù)的混合運算,解題的關鍵是明確題意,運用題目中的解題方法,運用類比的數(shù)學思想解答問題.8.(1)N,E,T密文為M,Q,P;(2)密文D,W,N的明文為F,Y,C.【分析】(1)
由圖表找出N,E,T對應的自然數(shù),再根據(jù)變換公式變成密文.(2)由圖表找出N=M,Q,P對應的自然數(shù),再根據(jù)變換.公式變成明文.【詳解】解:(1)將明文NET轉換成密文:即N,E,T密文為M,Q,P;(2)將密文D,W,N轉換成明文:即密文D,W,N的明文為F,Y,C.【點睛】本題考查有理數(shù)的混合運算,此題較復雜,解答本題的關鍵是由圖表中找到對應的數(shù)或字母,正確運用轉換公式進行轉換.9.(1)a2=2,a3=-1,a4=(2)a2016?a2017?a2018=-1(3)a33+a66+a99+…+a9999=-1【分析】(1)將a1=代入中即可求出a2,再將a2代入求出a3,同樣求出a4即可.(2)從(1)的計算結果可以看出,從a1開始,每三個數(shù)一循環(huán),而2016÷3=672,則a2016=-1,a2017=,a2018=2然后計算a2016?a2017?a2018的值;(3)觀察可得a3、a6、a9、…a99,都等于-1,將-1代入,即可求出結果.【詳解】(1)將a1=,代入,得;將a2=2,代入,得;將a3=-1,代入,得.(2)根據(jù)(1)的計算結果,從a1開始,每三個數(shù)一循環(huán),而2016÷3=672,則a2016=-1,a2017=,a2018=2所以,a2016?a2017?a2018=(-1)××2=-1(3)觀察可得a3、a6、a9、…a99,都等于-1,將-1代入,a33+a66+a99+…+a9999=(-1)3+(-1)6+(-1)9+…+(-1)99=(-1)+1+(-1)+…(-1)=-1【點睛】此類問題考查了數(shù)字類的變化規(guī)律,解題的關鍵是要嚴格根據(jù)定義進行解答,同時注意分析循環(huán)的規(guī)律.10.(1)48;(2)28【分析】(1)根據(jù)題中所給的分析方法先求出這幾個數(shù)的立方根都是兩位數(shù),然后根據(jù)第二和第三步求出個位數(shù)和十位數(shù)即可.(2)根據(jù)題中所給的分析方法先求出這幾個數(shù)的立方根都是兩位數(shù),然后根據(jù)第二和第三步求出個位數(shù)和十位數(shù)即可.【詳解】解:(1)第一步:,,,,能確定110592的立方根是個兩位數(shù).第二步:的個位數(shù)是2,,能確定110592的立方根的個位數(shù)是8.第三步:如果劃去110592后面的三位592得到數(shù)110,而,則,可得,由此能確定110592的立方根的十位數(shù)是4,因此110592的立方根是48;(2)第一步:,,,,能確定21952的立方根是個兩位數(shù).第二步:的個位數(shù)是2,,能確定21952的立方根的個位數(shù)是8.第三步:如果劃去21952后面的三位952得到數(shù)21,而,則,可得,由此能確定21952的立方根的十位數(shù)是2,因此21952的立方根是28.即,故答案為:28.【點睛】本題主要考查了數(shù)的立方,理解一個數(shù)的立方的個位數(shù)就是這個數(shù)的個位數(shù)的立方的個位數(shù)是解題的關鍵,有一定難度.11.(1)2;3﹣;(2)1、2、3;(3)256,4【分析】(1)依照定義進行計算即可;(2)由題可知,,則可得滿足題意的整數(shù)的的值為1、2、3;(3)由,可知,是某個整數(shù)的平方,又是符合條件的所有數(shù)中最大的數(shù),則,再依次進行計算.【詳解】解:(1)由定義可得,,,.故答案為:2;.(2),,即,整數(shù)的值為1、2、3.故答案為:1、2、3.(3),即,可設,且是自然數(shù),是符合條件的所有數(shù)中的最大數(shù),,,,,,即.故答案為:256,4.【點睛】本題屬于新定義類問題,主要考查估算無理數(shù)大小,無理數(shù)的整數(shù)部分和小數(shù)部分,理解定義內(nèi)容是解題關鍵.12.(1);(2);(3)【分析】(1)設式子等于s,將方程兩邊都乘以2后進行計算即可;(2)設式子等于s,將方程兩邊都乘以3,再將兩個方程相減化簡后得到答案;(3)設式子等于s,將方程兩邊都乘以a后進行計算即可.【詳解】(1)設s=①,∴2s=②,②-①得:s=,故答案為:;(2)設s=①,∴3s=②,②-①得:2s=,∴,故答案為:;(3)設s=①,∴as=②,②-①得:(a-1)s=,∴s=.【點睛】此題考查代數(shù)式的規(guī)律計算,能正確理解已知的代數(shù)式的運算規(guī)律是難點,依據(jù)規(guī)律對于每個式子變形計算是關鍵.13.(1);(2);(3),點C的坐標為【分析】(1)由題意易得,然后可求a、b的值,進而問題可求解;(2)由(1)及題意易得,然后根據(jù)建立方程求解即可;(3)分別過點作軸于點P,軸于點Q,由題意易得,然后可得,進而可求t的值,最后根據(jù)(2)可得三角形的面積為3,則問題可求解.【詳解】解:(1)∵,∴,∴,∴點,點;(2)由(1)可得點,點,∵軸于點,軸于點,軸于點,∴,,∵,∴,∵,且,∴,化簡得;(3)分別過點作軸于點P,軸于點Q,如圖所示:∵線段以每秒2個單位長度的速度向左水平移動到線段,時間為,∴,∵三角形和三角形的面積相等,∴,∴,∴,解得:,∴,由(2)可得三角形的面積為,∴三角形的面積為3,即,∴,∴.【點睛】本題主要考查圖形與坐標、算術平方根與偶次冪的非負性及等積法,熟練掌握圖形與坐標、算術平方根與偶次冪的非負性及等積法是解題的關鍵.14.(1)見解析;(2)10°;(3)【分析】(1)過點E作EF∥CD,根據(jù)平行線的性質,兩直線平行,內(nèi)錯角相等,得出結合已知條件,得出即可證明;(2)過點E作HE∥CD,設由(1)得AB∥CD,則AB∥CD∥HE,由平行線的性質,得出再由平分,得出則,則可列出關于x和y的方程,即可求得x,即的度數(shù);(3)過點N作NP∥CD,過點M作QM∥CD,由(1)得AB∥CD,則NP∥CD∥AB∥QM,根據(jù)和,得出根據(jù)CD∥PN∥QM,DE∥NB,得出即根據(jù)NP∥AB,得出再由,得出由AB∥QM,得出因為,代入的式子即可求出.【詳解】(1)過點E作EF∥CD,如圖,∵EF∥CD,∴∴∵,∴∴EF∥AB,∴CD∥AB;(2)過點E作HE∥CD,如圖,設由(1)得AB∥CD,則AB∥CD∥HE,∴∴又∵平分,∴∴即解得:即;(3)過點N作NP∥CD,過點M作QM∥CD,如圖,由(1)得AB∥CD,則NP∥CD∥AB∥QM,∵NP∥CD,CD∥QM,∴,又∵,∴∵,∴∴又∵PN∥AB,∴∵,∴又∵AB∥QM,∴∴∴.【點睛】本題考查平行線的性質,角平分線的定義,解決問題的關鍵是作平行線構造相等的角,利用兩直線平行,內(nèi)錯角相等,同位角相等來計算和推導角之間的關系.15.(1)C(-2,0);(2)點P坐標為(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,證明見解析.【分析】(1)由點A坐標可得OA=4,再根據(jù)C點x軸負半軸上,AC=6即可求得答案;(2)先求出S△ABC=9,S△BOP=OP,再根據(jù)S△POB=S△ABC,可得OP=6,即可寫出點P的坐標;(3)先得到點H的坐標,再結合點B的坐標可得到BH//AC,然后根據(jù)點M在射線CH上,分點M在線段CH上與不在線段CH上兩種情況分別進行討論即可得.【詳解】(1)∵A(4,0),∴OA=4,∵C點x軸負半軸上,AC=6,∴OC=AC-OA=2,∴C(-2,0);(2)∵B(2,3),∴S△ABC=×6×3=9,S△BOP=OP×2=OP,又∵S△POB=S△ABC,∴OP=×9=6,∴點P坐標為(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,證明如下:∵把點C往上平移3個單位得到點H,C(-2,0),∴H(-2,3),又∵B(2,3),∴BH//AC;如圖1,當點M在線段HC上時,過點M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠BMN+∠AMN,∴∠BMA=∠HBM+∠MAC;如圖2,當點M在射線CH上但不在線段HC上時,過點M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠AMN-∠BMN,∴∠BMA=∠MAC-∠HBM;綜上,∠BMA=∠MAC±∠HBM.【點睛】本題考查了點的坐標,三角形的面積,點的平移,平行線的判定與性質等知識,綜合性較強,正確進行分類并準確畫出圖形是解題的關鍵.16.(1)a=﹣2或a=8;(2)1<b<4;(3)t或0<t.【分析】(1)將點P與點A代入d(M,N)=|x1?x2|+|y1?y2|即可求解;(2)將點B與點P代入d(M,N)=|x1?x2|+|y1?y2|,得到d(P,B)=|3?b|+|2?b|,分三種情況去掉絕對值符號進行化簡,有當b<2時,d(P,B)=3?b+2?b=5?2b<3;當2≤b≤3時,d(P,B)=3?b+b?2=1<3;當b>3時,d(P,B)=b?3+b?2=2b?5<3;(3)設T點的坐標為(t,m),由點T與點P的“橫長”與“縱長”相等,得到|t?3|=|m?2|,得到t與m的關系式,再由T在第一象限,d(P,T)>5,結合求解即可.【詳解】(1)∵點P(3,2),點A(a,2),∴d(P,A)=|3﹣a|+|2﹣2|=5,∴a=﹣2或a=8;(2)∵點P(3,2),點B(b,b),∴d(P,B)=|3﹣b|+|2﹣b|,當b<2時,d(P,B)=3﹣b+2﹣b=5﹣2b<3,∴b>1,∴1<b<2;當2≤b≤3時,d(P,B)=3﹣b+b﹣2=1<3成立,∴2≤b≤3;當b>3時,d(P,B)=b﹣3+b﹣2=2b﹣5<3,∴b<4,∴3<b<4;綜上所述:1<b<4;(3)設T點的坐標為(t,m),點T與點P的“橫長”=|t﹣3|,點T與點P的“縱長”=|m﹣2|.∵點T與點P的“橫長”與“縱長”相等,∴|t﹣3|=|m﹣2|,∴t﹣3=m﹣2或t﹣3=2﹣m,∴m=t﹣1或m=5﹣t.∵點T是第一象限內(nèi)的點,∴m>0,∴t>1或t<5,又∵d(P,T)>5,∴2|t﹣3|>5,∴t或t,∴t或0<t.【點睛】本題考查平面內(nèi)點的坐標,新定義;能夠將定義內(nèi)容轉化為絕對值不等式,再將絕對值不等式根據(jù)絕對值的意義轉化為一元一次不等式的求解是解題的關鍵.17.(1),2;(2)或;(3)或2【分析】(1)由,求出和的值即可;(2)過點作直線軸,延長交于,設出點坐標,根據(jù)面積關系求出點坐標,再求出的長度,即可求出值;(3)先根據(jù)求出點坐標,再根據(jù)面積關系求出值即可.【詳解】解:(1),,,,,故答案為,2;(2)如圖1,過作直線垂直于軸,延長交直線于點,設的坐標為,過作交直線于點,連接,,,,解得,,,又點滿足的面積等于6,,解得或;(3)如圖2,延長交軸于,過作軸于,過作軸于,,,解得,,,,解得,,,,由題知,當秒時,,,,,,,,解得或2.【點睛】本題是三角形綜合題,考查三角形的面積,熟練掌握直角坐標系的知識,三角形的面積,梯形面積等知識是解題的關鍵.18.(1)B(3,4),7;(2);(3)或【分析】(1)由算術平方根的意義可求出a,b的值,可求出B點的坐標,過點B作BH⊥x軸于點H,過點A作AM⊥BH于點M,過點E作EN⊥AM于點N,連接EM,由三角形面積公式可得出答案;(2)當點C在x軸上時,此時m=2,當點D在x軸上時,m=4,由題意可得出答案;(3)根據(jù)點C和點D不同的位置,由坐標與圖形的性質及三角形面積公式可得出答案.【詳解】解:(1)∵,∴,∴b=4,∴=0,∴a-3=0,∴a=3,∴B(3,4),∴過點B作BH⊥x軸于點H,過點A作AM⊥BH于點M,過點E作EN⊥AM于點N,連接EM,則S△ABE=S△ABM+S△EBM+S△AME=×2×2+×2×3+×2×2=7;(2)當點C在x軸上時,此時m=2,當點D在x軸上時,m=4,∴2≤m≤4時,線段CD與x軸有公共點;(3)當點C在x軸上時,此時m=2,C(1,0),D(3,2),S△CDE=5,當點D在x軸上時,此時m=4,C(1,-2),D(3,0),S△CDE=3,當點C在x軸下方時,點D在x軸上方時,且S△CDE=4,如圖2,分別過點C,D作x軸,y軸平行線交于點G,連接GE,過點E作EH⊥CG于點H,∵C(1,2-m),D(3,4-m),∴CG=2,DG=2,EH=m-2,∴S△CDE=S△CDG+S△EDG-S△CEG,∴4=×2×2+×2×3?×2?(m?2),∴m=3.∴當2≤m≤3時,4≤S≤5;當C,D均為x軸下方時,如圖3,∵CG=DG=2,GH=3,EH=m-2,∴S△CDE=S△ECG-S△CDG-S△EDG,∴S△CDE=×2?(m?2)-×2×2?×2×3=m-7,當m-7=4時,m=11,當m-7=5時,m=12,∴當11≤m≤12時,4≤S≤5.綜合以上可得,當2≤m≤3或11≤m≤12時,4≤S≤5.【點睛】本題是幾何變換綜合題,考查了三角形的面積,坐標與圖形的性質,平移的性質,正確進行分類討論是解題的關鍵.19.(1)C;(2)39和29【分析】(1)首先設較大的兩位數(shù)為,較小的兩位數(shù)為,根據(jù)題意可得等量關系:①兩個兩位數(shù)的和為68,②比大990,根據(jù)等量關系列出方程組;(2)利用加減消元法解方程組即可.【詳解】解:(1)解:設較大的兩位數(shù)為,較小的兩位數(shù)為,根據(jù)題意,得故選:C;(2)化簡得,①+②,得,即.①-②,得,即.所以這兩個數(shù)分別是39和29.【點睛】此題主要考查了由實際問題抽象出二元一次方程組和解二元一次方程組,關鍵是弄清題目意思,表示出“較小的兩位數(shù)寫在較大的兩位數(shù)的右邊,得到一個四位數(shù)為”,把較小的兩位數(shù)寫在較大的兩位數(shù)的左邊,得到另一個四位數(shù)為.20.(1)10.5;(2)12.5;(3)10.5,12.5,23;;30【分析】(1)畫出圖形,根據(jù)三角形的面積公式求解;(2)畫出圖形,利用割補法求解;(3)設S=am+bn+c,其中a,b,c為常數(shù),根據(jù)表中數(shù)據(jù)列方程組求出a,b,c,然后根據(jù)公式即可求出六邊形的面積.【詳解】(1)如圖1,的底為7,高為3,所以面積為,故答案為:10.5;(2)如圖2,,故答案為:12.5;(3)由(1)、(2)可填表格如下:形內(nèi)格點數(shù)m邊界格點數(shù)n格點多邊形面積S61110.5四邊形81112.5五邊形20823設S=am+bn+c,其中a,b為常數(shù),由題意得,解得,∴皮克公式為,∵六邊形中,m=27,n=8,∴六邊形的面積為=30.【點睛】本題考查了坐標與圖形的性質,三角形的面積,三元一次方程組的應用等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題.21.(1)A(30,0),C(24,7);(2)≤t<10;(3)見解析【分析】(1)利用非負數(shù)的性質求出a=30,b=7,得出A,B的坐標,由平移的性質可得出答案;(2)由題意得出CD=2t,則BD=24﹣2t,OE=3t,根據(jù)梯形的面積公式得出S四邊形BOED=×(24﹣2t+3t)×7,S四邊形ACDE=×7×(2t+30﹣3t),則可得出關于t的不等式,解不等式可得出答案;(3)由題意可得出S△OEF﹣S△DCF=3.5t,根據(jù)t>0則可得出結論.【詳解】(1)解:∵∴=0,|2a﹣3b﹣39|=0.∴a﹣b﹣23=0,2a﹣3b﹣39=0,解得,a=30,b=7.∴A(30,0),B(0,7),∵點B向右平移24個單位長度得到點C,∴C(24,7).(2)解:由題意得,CD=2t,則BD=24﹣2t,OE=3t,∴S四邊形BOED=×(24﹣2t+3t)×7,S四邊形ACDE=×7×(2t+30﹣3t),∵S四邊形BOED≥S四邊形ACDE,∴×(24﹣2t+3t)×7≥××7×(2t+30﹣3t),解得t≥,∵0<t<10,∴≤t<10.(3)證明:∵S△OEF﹣S△DCF=S四邊形BOED﹣S△OBC=×(24﹣2t+3t)×7﹣×24×7,∴S△OEF﹣S△DCF=3.5t,∵0<t<10,∴3.5t>0,∴S△OEF﹣S△DCF>0,∴S△OEF>S△DCF.【點睛】本題是四邊形綜合題,考查了非負數(shù)的性質,平移的性質,坐標與圖形的性質,梯形的面積,解一元一次不等式,解二元一次方程組,解題的關鍵學會利用參數(shù)解決問題,屬于中考??碱}型.22.(1);5;(2)購買6支水筆、6塊橡皮、6本記事本共需48元;(3).【分析】(1)利用①?②可得x-y的值,利用可得出x+y的值;(2)設鉛筆的單價為m元,橡皮的單價為元,記事本的單價為元,根據(jù)“買20支水筆、3塊橡皮、2本記事本共需35元,買39支水筆、5塊橡皮、3本記事本工序62元”,即可得出關于m,n,p的三元一次方程組,由2×①-②可得的值,再乘5即可求得結果;(3)根據(jù)新運算的定義可得出關于a,b,c的三元一次方程組,由3×①?2×②可得出的值,從而可求得結果.【詳解】(1)由①?②可得:x-y=-1,由可得x+y=5故答案為:;5.(2)設水筆的單價為元,橡皮的單價為元,記事本的單價為元,依題意,得:,由可得,.故購買6支水筆、6塊橡皮、6本記事本共需48元.(3)依題意得:由3×①?2×②可得:即故答案為:.【點睛】本題考查了二元一次方程組的應用及三元一次方程組的應用,解題的關鍵是:(1)運用“整體思想”求出x-y,x+y的值;(2)(3)找出等量關系,正確列出三元一次方程組.23.(1)x=1,y=1;(2);(3)或或或或或【分析】(1)根據(jù)新運算定義建立方程組,解方程組即可得出答案;(2)應用新運算定義建立方程組,解關于、的方程組可得,進而得出,再運用不等式性質即可得出答案;(3)根據(jù)題意得,由平移可得,根據(jù)點落在坐標軸上,且,分類討論即可.【詳解】解:(1)根據(jù)新運算的定義可得:,解得:;(2)由題意得:,解得:,,,,,;(3)由(2)知,,,將線段沿軸向右平移2個單位,得線段,,點落在坐標軸上,且,或,或;①當時,,若點在軸上,,,或;若點在軸上,,,或;②當時,;點只能在軸上,,,或;綜上所述,點的坐標為或或或或或.【點睛】本題考查了新運算定義,解二元一次方程組,不等式性質,平移變換的性質,理解并應用新運算定義是解題關鍵.24.(1);(2);(3)當點C在x軸的正半軸上時,;當點C在點A和點O之間時,,理由見解析.【分析】(1)由非負性可得,解方程組可求解a,b的值,即可求解;(2)由平移的性質可得AC=m-(-3)=m+3,OB=2,由三角形的面積公式可求m的取值范圍;(3)由平移的性質可得AD∥BC.分兩種情況:當點C在x軸的正半軸上時;當點C在點A和點O之間時.由平行線的性質可求解.【詳解】解:(1)由題意可知解得所以(2)三角形的面積為由得4<≤7所以;(3)作OF//BC,當點C在x軸的正半軸上時,如圖1,當點C在點A和點O之間時,如圖2,.【點睛】本題是幾何變換綜合題,考查了非負性,二元一次方程組的解法,一元一次不等式組的解法,平移的性質等知識,靈活運用這些性質進行推理計算是本題的關鍵,要注意分類討論.25.(1)P3,P4;(2)(-0.5,3)或(-0.5,-1);(3);(4)或【分析】(1)根據(jù)題意分析,即可得到答案;(2)結合題意,首先求得線段中點C坐標,再根據(jù)題意分析,即可得到答案;(3)過點A作軸,過點C作軸,交于點D,過點A作,交y軸于點,過點C作,交y軸于點,根據(jù)三角形和直角坐標系的性質,得;再根據(jù)直角坐標系和等腰直角三角形性質,得,,從而得到答案;(4)根據(jù)題意,得線段中點坐標;再結合題意列不等式并求解,即可得到答案.【詳解】(1)根據(jù)題意,點P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,線段AB的內(nèi)垂點為P3(﹣1,﹣2),P4(﹣,4)故答案為:P3,P4;(2)∵A(﹣2,1),B(1,1)∴線段中點C坐標為:,即∵點M是線段AB的最佳內(nèi)垂點且到線段AB的距離是2∴當或,即當或時,|AQ-BQ|=0,為最小值故答案為:(-0.5,3)或(-0.5,-1);(3)如圖,過點A作軸,過點C作軸,交于點D,過點A作,交y軸于點,過點C作,交y軸于點,∵點A(﹣2,1),C(﹣4,3)∴,,∴∴,,即,∴故答案為:;(4)∵點D(m,0),E(m+4,0)∴線段中點坐標為根據(jù)題意,得:當時,;當時,;∴或.【點睛】本題考查了直角坐標系、一元一次不等式知識;解題的關鍵是熟練掌握直角坐標系、一元一次不等式、坐標的性質,從而完成求解.26.(1)①21;②9,m+n;(2)b=25,c=49;(3)3或4;(4)10<t≤12【分析】(1)①由“互異數(shù)”的定義可得;②根據(jù)定義計算可得;(2)由W(b)=7,W(c)=13,列出二元一次方程組,即可求x和y;(3)根據(jù)題意W(d)+W(e)<25可列出不等式,即可求x的值;(4)根據(jù)“互異數(shù)”f的十位數(shù)字是x+4,個位數(shù)字是x,分類討論f,根據(jù)滿足W(f)<t的互異數(shù)有且僅有3個,求出t的取值范圍.【詳解】解:(1)①∵如果一個兩位數(shù)a的十位數(shù)字為m,個位數(shù)字為n,且m≠n、m≠0、n≠0,那么這個兩位數(shù)叫做“互異數(shù)”,∴“互異數(shù)”為21,故答案為:21;②W(36)=(36+63)÷11=9,W(10m+n)=(10m+n+10n+m)÷11=m+n;故答案為:9,m+n;(2)∵W(10m+n)=(10m+n+10n+m)÷11=m+n,且W(b)=7,∴x+y=7①,∵W(c)=13,∴x+2+2y-1=13②,聯(lián)立①②解得,故b=10×2+5=25,c=10×(2+2)+2×5-1=49;(3)∵W(d)+W(e)<25,∴x+x+3+(x-2+3)<25,
解得x<7,∵x-2>0,x+3<9,∴2<x<6,∴2<x<6,且x為正整數(shù),∴x=3,4,5,當x=5時e為33不是互異數(shù),舍去,故答案為:3或4;(4)當x=0時,x+4=4,此時f為40不是互異數(shù);當x=1時,x+4=5,此時f為51是互異數(shù),W(f)=x+4+x=2x+4=6;當x=2時,x+4=6,此時f
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 獸藥介紹教學
- 云南省玉溪市2025-2026學年八年級上學期期末考試信息技術 試題(原卷版)
- 納稅人培訓教學課件
- 養(yǎng)老院家屬溝通制度
- 人力資源管理與發(fā)展制度
- 企業(yè)信息安全規(guī)范制度
- 企業(yè)績效考核制度
- 2026湖南新駿保安服務有限公司駐省公安廳周邊專職特勤人員招聘30人參考題庫附答案
- 2026玉溪師范學院附屬實驗學校、玉溪師范學院附屬小學區(qū)外人才引進(28人)參考題庫附答案
- 2026福建廈門市集美區(qū)杏濱中心幼兒園招聘1人參考題庫附答案
- 關于提高護士輸液時PDA的掃描率的品管圈PPT
- GB/T 30564-2023無損檢測無損檢測人員培訓機構
- 中華人民共和國汽車行業(yè)標準汽車油漆涂層QC-T484-1999
- XGDT-06型脈動真空滅菌柜4#性能確認方案
- GB/T 96.2-2002大墊圈C級
- 第九章-第一節(jié)-美洲概述
- GB/T 13004-2016鋼質無縫氣瓶定期檢驗與評定
- GB/T 12060.5-2011聲系統(tǒng)設備第5部分:揚聲器主要性能測試方法
- GB/T 11945-2019蒸壓灰砂實心磚和實心砌塊
- 下肢深靜脈血栓形成的診斷和治療課件
- 防水班日常安全教育登記表
評論
0/150
提交評論