版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
冀教版8年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、為了反映今天的氣溫變化情況,你認為選擇哪種統(tǒng)計圖最恰當()A.頻數(shù)直方圖 B.條形統(tǒng)計圖 C.扇形統(tǒng)計圖 D.折線統(tǒng)計圖2、如圖,將矩形ABCD繞點B按順時針方向旋轉一定角度得到矩形.此時點A的對應點恰好落在對角線AC的中點處.若AB=3,則點B與點之間的距離為()A.3 B.6 C. D.3、如圖,平面直角坐標系中,直線分別交x軸、y軸于點B、A,以AB為一邊向右作等邊,以AO為一邊向左作等邊,連接DC交直線l于點E.則點E的坐標為()A. B.C. D.4、已知正比例函數(shù)的函數(shù)值隨x的增大而增大,則一次函數(shù)的圖像經(jīng)過()A.第一、二、三象限 B.第一、三、四象限C.第一、二、四象限 D.第二、三、四象限5、下列命題中,是真命題的有()①以1、、為邊的三角形是直角三角形,則1、、是一組勾股數(shù);②若一直角三角形的兩邊長分別是5、12,則第三邊長為13;③二次根式是最簡二次根式;④在實數(shù)0,﹣0.3333……,,0.020020002,,0.23456…,中,無理數(shù)有3個;⑤東經(jīng)113°,北緯35.3°能確定物體的位置.A.①②③④⑤ B.①②④⑤ C.②④⑤ D.④⑤6、如圖是一所學校對學生上學方式進行調(diào)查后,根據(jù)調(diào)查結果繪制了一個不完整的統(tǒng)計圖,其中“其他”部分所對的圓心角度數(shù)是36°則步行部分所占的百分比是()A.36% B.40% C.45% D.50%7、下列各點在函數(shù)y=﹣3x+2圖象上的是()A.(0,﹣2) B.(1,﹣1) C.(﹣1,﹣1) D.(﹣,1)第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、將直線向下平移4個單位后,所得直線的表達式是______.2、如圖,在矩形ABCD中,,,E、F分別是邊AB、BC上的動點,且,M為EF中點,P是邊AD上的一個動點,則的最小值是______.3、如圖,,矩形的頂點、分別在邊、上,當在邊上運動時,隨之在上運動,矩形的形狀保持不變,其中,.在運動過程中:(1)斜邊中線的長度是否發(fā)生變化___(填“是”或“否”);(2)點到點的最大距離是___.4、在Rt中,,CD是斜邊AB上的中線,已知,,則的周長等于______.5、已知直角坐標平面內(nèi)的兩點分別為A(2,﹣3)、B(5,6),那么A、B兩點的距離等于______.6、如圖,正方形ABCD中,E是BC邊上的一點,連接AE,將AB邊沿AE折疊到AF.延長EF交DC于G,點G恰為CD邊中點,連接AG,CF,AC.若AB=6,則△AFC的面積為_______.7、在函數(shù)y=中,自變量x的取值范圍是_____.8、如圖,在矩形中,的角平分線交于點,連接,恰好平分,若,則的長為______.三、解答題(7小題,每小題10分,共計70分)1、如圖,正方形ABCD和正方形CEFG,點G在CD上,AB=5,CE=2,T為AF的中點,求CT的長.2、如圖,在平面直角坐標系中有,兩點,坐標分別為,,已知點的坐標為(1)確定平面直角坐標系,并畫出;(2)請畫出關于軸對稱的圖形,并直接寫出的面積;(3)若軸上存在一點,使的值最?。埉媹D確定點的位置,并直接寫出的最小值.3、如圖,?ABCD中,E為BC邊的中點,求證:DC=CF.4、尺規(guī)作圖并回答問題:(保留作圖痕跡)已知:如圖,四邊形ABCD是平行四邊形.求作:菱形AECF,使點E,F(xiàn)分別在BC,AD上.請回答:在你的作法中,判定四邊形AECF是菱形的依據(jù)是.5、(1)【發(fā)現(xiàn)證明】如圖1,在正方形中,點,分別是,邊上的動點,且,求證:.小明發(fā)現(xiàn),當把繞點順時針旋轉90°至,使與重合時能夠證明,請你給出證明過程.(2)【類比引申】①如圖2,在正方形中,如果點,分別是,延長線上的動點,且,則(1)中的結論還成立嗎?若不成立,請寫出,,之間的數(shù)量關系______(不要求證明)②如圖3,如果點,分別是,延長線上的動點,且,則,,之間的數(shù)量關系是______(不要求證明)(3)【聯(lián)想拓展】如圖1,若正方形的邊長為6,,求的長.6、如圖1,已知∠ACD是ABC的一個外角,我們?nèi)菀鬃C明∠ACD=∠A+∠B,即:三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.那么,三角形的一個內(nèi)角與它不相鄰的兩個外角的和之間存在怎樣的數(shù)量關系呢?(1)嘗試探究:如圖2,已知:∠DBC與∠ECB分別為ABC的兩個外角,則∠DBC+∠ECB-∠A180°.(橫線上填<、=或>)(2)初步應用:如圖3,在ABC中,BP、CP分別平分外角∠DBC、∠ECB,∠P與∠A有何數(shù)量關系?請利用上面的結論直接寫出答案:∠P=.(3)解決問題:如圖4,在四邊形ABCD中,BP、CP分別平分外角∠EBC、∠FCB,請利用上面的結論探究∠P與∠BAD、∠CDA的數(shù)量關系.7、為了貫徹落實市委市政府提出的“精準扶貧”精神.某校特制定了一系列關于幫扶A,B兩貧困村的計劃.現(xiàn)決定從某地運送168箱小雞到A,B兩村養(yǎng)殖,若用大、小貨車共18輛,則恰好能一次性運完這批小雞,已知這兩種大、小貨車的載貨能力分別為10箱/輛和8箱/輛,其運往A、B兩村的運費如下表:目的地車型A村(元/輛)B村(元/輛)大貨車8090小貨車4060(1)試求這18輛車中大、小貨車各多少輛?(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設前往4村的大貨車為x輛,前往A、B兩村總費用為y元,試求出y與x的函數(shù)表達式,并直接寫出自變量取值范圍;(3)在(2)的條件下,若運往A村的小雞不少于96箱,請你寫出使總費用最少的貨車調(diào)配方案,并求出最少費用.-參考答案-一、單選題1、D【解析】【分析】首先要清楚每一種統(tǒng)計圖的特點:頻數(shù)直方圖能夠顯示各組頻數(shù)分布的情況;條形統(tǒng)計圖能很容易看出數(shù)量的多少;折線統(tǒng)計圖不僅容易看出數(shù)量的多少,而且能反映數(shù)量的增減變化情況;扇形統(tǒng)計圖能反映部分與整體的關系;由此根據(jù)情況選擇即可.【詳解】解:如果想反映一天的氣溫變化,選擇折線統(tǒng)計圖合適,故選:D.【點睛】本題考查統(tǒng)計圖的選擇,解答此題要熟練掌握統(tǒng)計圖的特點,根據(jù)實際情況靈活選擇.2、B【解析】【分析】連接,由矩形的性質(zhì)得出∠ABC=90°,AC=BD,由旋轉的性質(zhì)得出,證明是等邊三角形,由等邊三角形的性質(zhì)得出,由直角三角形的性質(zhì)求出AC的長,由矩形的性質(zhì)可得出答案.【詳解】解:連接,∵四邊形ABCD是矩形,∴∠ABC=90°,AC=BD,∵點是AC的中點,∴,∵將矩形ABCD繞點B按順時針方向旋轉一定角度得到矩形,∴∴,∴是等邊三角形,∴∠BAA'=60°,∴∠ACB=30°,∵AB=3,∴AC=2AB=6,∴.即點B與點之間的距離為6.故選:B.【點睛】本題考查了旋轉的性質(zhì),矩形的性質(zhì),直角三角形的性質(zhì),等邊三角形的判定和性質(zhì),求出AC的長是解本題的關鍵.3、C【解析】【分析】由題意求出C和D點坐標,求出直線CD的解析式,再與直線AB解析式聯(lián)立方程組即可求出交點E的坐標.【詳解】解:令直線中,得到,故,令直線中,得到,故,由勾股定理可知:,∵,且,∴,,過C點作CH⊥x軸于H點,過D點作DF⊥x軸于F,如下圖所示:∵為等邊三角形,∴,∴,∴,∴,∴,同理,∵為等邊三角形,∴,,∴,∴,∴,設直線CD的解析式為:y=kx+b,代入和,得到:,解得,∴CD的解析式為:,與直線聯(lián)立方程組,解得,故E點坐標為,故選:C.【點睛】本題考查的是一次函數(shù)圖象上點的坐標特征,本題的關鍵是求出點C、D的坐標,進而求解.4、C【解析】【分析】由正比例函數(shù)的函數(shù)值隨x的增大而增大,可得結合可得的圖象經(jīng)過一,二,四象限,從而可得答案.【詳解】解:正比例函數(shù)的函數(shù)值隨x的增大而增大,則一次函數(shù)的圖像經(jīng)過一,二,四象限,故選C【點睛】本題考查的是正比例函數(shù)圖象的性質(zhì),一次函數(shù)的圖象與性質(zhì),掌握“一次函數(shù)的圖象與性質(zhì)”是解本題的關鍵.5、D【解析】【分析】根據(jù)勾股數(shù)的定義、勾股定理、最簡二次根式定義、無理數(shù)定義、有序數(shù)對定義分別判斷.【詳解】解:①以1、、為邊的三角形是直角三角形,但1、、不是勾股數(shù),故該項不是真命題;②若一直角三角形的兩邊長分別是5、12,則第三邊長為13或,故該項不是真命題;③二次根式不是最簡二次根式,故該項不是真命題;④在實數(shù)0,﹣0.3333……,,0.020020002,,0.23456…,中,無理數(shù)有3個,故該項是真命題;⑤東經(jīng)113°,北緯35.3°能確定物體的位置,故該項是真命題;故選:D.【點睛】此題考查了真命題的定義:正確的命題是真命題,正確掌握勾股數(shù)的定義、勾股定理、最簡二次根式定義、無理數(shù)定義、有序數(shù)對定義是解題的關鍵.6、B【解析】【分析】先根據(jù)“其他”部分所對應的圓心角是36°,算出“其他”所占的百分比,再計算“步行”部分所占百分比即可.【詳解】解:∵其他部分對應的百分比為:×100%=10%,∴步行部分所占百分比為1﹣(35%+15%+10%)=40%,故選:B.【點睛】本題考查扇形統(tǒng)計圖,熟知“扇形統(tǒng)計圖中各部分所占百分比的計算方法和各部分所占百分比間的關系”是解答本題的關鍵.7、B【解析】【分析】根據(jù)一次函數(shù)圖象上點的坐標滿足函數(shù)解析式,逐一判斷,即可得到答案.【詳解】∵,∴A不符合題意,∵,∴B符合題意,∵,∴C不符合題意,∵,∴D不符合題意,故選B.【點睛】本題主要考查一次函數(shù)圖象上點的坐標,掌握一次函數(shù)圖象上點的坐標滿足函數(shù)解析式,是解題的關鍵.二、填空題1、【解析】【分析】根據(jù)直線向下平移4個單位,可得平移后的直線的表達式為,即可求解.【詳解】解:將直線向下平移4個單位后,所得直線的表達式是.故答案為:【點睛】本題主要考查了一次函數(shù)圖象的平移,熟練掌握一次函數(shù)圖象向上平移個單位后得到;向下平移個單位后得到是解題的關鍵.2、11【解析】【分析】作點C關于AD的對稱點G,連接PG、GD、BM、GB,則當點P、M在線段BG上時,GP+PM+BM最小,從而CP+PM最小,在Rt△BCG中由勾股定理即可求得BG的長,從而求得最小值.【詳解】如圖,作點C關于AD的對稱點G,連接PG、GD、BM、GB由對稱的性質(zhì)得:PC=PG,GD=CD∵GP+PM+BM≥BG∴CP+PM=GP+PM≥BG-BM則當點P、M在線段BG上時,CP+PM最小,且最小值為線段BG-BM∵四邊形ABCD是矩形∴CD=AB=6,∠BCD=∠ABC=90°∴CG=2CD=12∵M為線段EF的中點,且EF=4∴在Rt△BCG中,由勾股定理得:∴GM=BG-BM=13-2=11即CP+PM的最小值為11.【點睛】本題是求兩條線段和的最小值問題,考查了矩形性質(zhì),折疊的性質(zhì),直角三角形斜邊上中線的性質(zhì),兩點間線段最短,勾股定理等知識,有一定的綜合性,關鍵是作點C關于AD的對稱點及連接BM,GP+PM+BM的最小值轉化為線段CP+PM的最小值.3、否【解析】【分析】(1)設斜邊中點為,根據(jù)直角三角形斜邊中線即可;(2)取的中點,連接、、,根據(jù)三角形的任意兩邊之和大于第三邊可知當、、Q三點共線時,點到點的距離最大,再根據(jù)勾股定理列式求出的長,根據(jù)直角三角形斜邊上的中線等于斜邊的一半求出的長,兩者相加即可得解.【詳解】解:(1)如圖,設斜邊中點為,在運動過程中,斜邊中線長度不變,故不變,故答案為:否;(2)連接、、,在矩形的運動過程當中,根據(jù)三角形的任意兩邊之和大于第三邊有,當、、三點共線時,則有,此時,取得最大值,如圖所示,為中點,,又,,.故答案為:.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半得到性質(zhì),三角形的三邊關系,矩形的性質(zhì),勾股定理,根據(jù)三角形的三邊關系判斷出點、Q、三點共線時,點到點的距離最大是解題的關鍵.4、##【解析】【分析】過點作,根據(jù)直角三角形斜邊上的中線等于斜邊的一半,可得,根據(jù)等腰三角形的三線合一可得,中位線的性質(zhì)求得,根據(jù)勾股定理求得,繼而求得的周長.【詳解】解:如圖,過點作在Rt中,,CD是斜邊AB上的中線,為的中點,又為的中點,則在中,的周長等于故答案為:【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半,三線合一,中位線的性質(zhì)與判定,勾股定理,掌握以上知識是解題的關鍵.5、【解析】【分析】根據(jù)兩點,利用勾股定理進行求解.【詳解】解:在平面直角坐標系中描出、,分別過作平行于的線交于點,如圖:的橫坐標與的橫坐標相同,的縱坐標與的縱坐標相同,,,,,故答案為:.【點睛】本題考查的是勾股定理,坐標與圖形性質(zhì),解題的關鍵是掌握如果直角三角形的兩條直角邊長分別是,,斜邊長為,那么.6、3.6##【解析】【分析】首先通過HL證明Rt△ABE≌Rt△AFB,得BE=EF,同理可得:DG=FG,設BE=x,則CE=6﹣x,EG=3+x,在Rt△CEG中,利用勾股定理列方程求出BE=2,S△AFC=S△AEC﹣S△AEF﹣S△EFC代入計算即可.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∵將AB邊沿AE折疊到AF,∴AB=AF,∠B=∠AFB=90°,在Rt△ABE和Rt△AFB中,,∴Rt△ABE≌Rt△AFB(HL),∴BE=EF,同理可得:DG=FG,∵點G恰為CD邊中點,∴DG=FG=3,設BE=x,則CE=6﹣x,EG=3+x,在Rt△CEG中,由勾股定理得:(x+3)2=32+(6﹣x)2,解得x=2,∴BE=EF=2,CE=4,∴S△CEG=×4×3=6,∵EF∶FG=2∶3,∴S△EFC=×6=,∴S△AFC=S△AEC﹣S△AEF﹣S△EFC=×4×6﹣×2×6﹣=12﹣6﹣=3.6.故答案為:3.6.【點睛】本題考查了三角形全等的性質(zhì)與判定,勾股定理,正方形的性質(zhì),根據(jù)勾股定理求得BE的長是解題的關鍵.7、x≠【解析】【分析】根據(jù)分式分母不為0列出不等式,解不等式得到答案.【詳解】解:由題意得:3x?4≠0,解得:x≠,故答案為:x≠.【點睛】本題考查的是函數(shù)自變量的取值范圍的確定,掌握分式分母不為0是解題的關鍵.8、【解析】【分析】根據(jù)矩形的性質(zhì)得,,,根據(jù)BE是的角平分線,得,則,,在中,根據(jù)勾股定理得,根據(jù)平行線的性質(zhì)得,由因為EC平分則,等量代換得,所以,,即可得.【詳解】解:∵四邊形ABCD為矩形,∴,,,∵,BE是的角平分線,∴,∴,在中,根據(jù)勾股定理得,,∵,∴,∵EC平分,∴,∴,∴,∴,∴,故答案為:.【點睛】本題考查了矩形的性質(zhì),勾股定理,角平分線的性質(zhì),平行線的性質(zhì),解題的關鍵是掌握這些知識點.三、解答題1、58【解析】【分析】連接AC,CF,如圖,根據(jù)正方形的性質(zhì)得到AC=,AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,則利用勾股定理得到AF=58,然后根據(jù)直角三角形斜邊上的中線性質(zhì)得到CT的長.【詳解】解:連接AC、CF,如圖,∵四邊形ABCD和四邊形CEFG都是正方形,∴AC=AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,∴∠ACF=45°+45°=90°,在Rt△ACF中AF=(5∵T為AF的中點,∴CT=1∴CT的長為582【點睛】本題考查了正方形的性質(zhì):正方形的四條邊都相等,四個角都是直角;正方形的兩條對角線相等,互相垂直平分,并且每條對角線平分一組對角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質(zhì),也考查了直角三角形斜邊上的中線性質(zhì).2、(1)圖見解析;(2)圖見解析,的面積為6;(3)點M的位置見解析,的最小值為【解析】【分析】(1)根據(jù)A、B兩點的坐標確定平面直角坐標系,再描出點C的坐標,然后順次連接A、B、C三點即可畫出△ABC;(2)根據(jù)坐標與圖形變換-軸對稱即可畫出,根據(jù)對稱性質(zhì)求解△ABC的面積即可;(3)連接AB1交x軸于M,根據(jù)兩點之間線段最短知,此時的點M使得的值最小,最小值為AB1的長,利用點A、B坐標求解AB1即可.(1)解,如圖,平面直角坐標系和△ABC即為所求:(2)解:如圖,即為所求:由圖知:=S△ABC==6;(3)解:如圖,連接AB1交x軸于M,根據(jù)兩點之間線段最短知,此時的點M使得的值最小,即點M即為所求,最小值為AB1的長,∵A(2,3)、B1(6,-1),∴AB1==,∴的最小值為.【點睛】本題考查平面直角坐標系、作圖-軸對稱變換、坐標與圖形、軸對稱-最短路線問題、三角形的面積公式,正確作出圖形是解答的關鍵.3、見解析【解析】【分析】根據(jù)平行四邊形的性質(zhì)可得AB∥CD,AB=CD,根據(jù)平行線的性質(zhì)可得∠BAE=∠CFE,根據(jù)中點的定義可得EB=EC,利用AAS可證明△ABE≌△FCE,可得AB=CF,進而可得結論.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∴∠BAE=∠CFE;∵E為BC中點,∴EB=EC,在△ABE與△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF,∴DC=CF.【點睛】本題考查平行四邊形的性質(zhì)及全等三角形的判定與性質(zhì),熟練掌握相關性質(zhì)及判定定理是解題關鍵.4、證明見解析;鄰邊相等的平行四邊形是菱形,對角線垂直的平行四邊形是菱形.【解析】【分析】根據(jù)鄰邊相等的平行四邊形是菱形或?qū)蔷€垂直的平行四邊形是菱形證明即可.【詳解】解:如圖,四邊形AECF即為所求作.理由:四邊形ABCD是平行四邊形,∴AE∥CF,∴∠EAO=∠FCO,∵EF垂直平分線段AC,∴OA=OC,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴AE=CF,∴四邊形AECF是平行四邊形,∵EA=EC或AC⊥EF,∴四邊形AECF是菱形.故答案為:鄰邊相等的平行四邊形是菱形,對角線垂直的平行四邊形是菱形.【點睛】本題考查作圖-復雜作圖,平行四邊形的性質(zhì),菱形的判定等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.5、(1)見解析;(2)①不成立,結論:;②,見解析;(3)【解析】【分析】(1)證明,可得出,則結論得證;(2)①將繞點順時針旋轉至根據(jù)可證明,可得,則結論得證;②將繞點逆時針旋轉至,證明,可得出,則結論得證;(3)求出,設,則,,在中,得出關于的方程,解出則可得解.【詳解】(1)證明:把繞點順時針旋轉至,如圖1,,,,,,,三點共線,,,,,,,,;(2)①不成立,結論:;證明:如圖2,將繞點順時針旋轉至,,,,,,,,;②如圖3,將繞點逆時針旋轉至,,,,,,,,,.即.故答案為:.(3)解:由(1)可知,正方形的邊長為6,,.,,設,則,,在中,,,解得:.,.【點睛】本題屬于四邊形綜合題,主要考查了正方形的性質(zhì)、旋轉的性質(zhì)、全等三角形的判定與性質(zhì)以及勾股定理的綜合應用,解題的關鍵是作輔助線構造全等三角形,根據(jù)全等三角形的對應邊相等進行推導.6、(1)=(2)∠P=90°-∠A(3)∠P=180°-∠BAD-∠CDA,探究見解析【解析】【分析】(1)根據(jù)三角形外角的性質(zhì)得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,兩式相加可得結論;(2)根據(jù)角平分線的定義得:∠CBP=∠DBC,∠BCP=∠ECB,根據(jù)三角形內(nèi)角和可得:∠P的式子,代入(1)中得的結論:∠DBC+∠ECB=180°+∠A,可得:∠P=90°?∠A;(3)根據(jù)平角的定義得:∠EBC=180°-∠1,∠FCB=180°-∠2,由角平分線得:∠3=∠EBC=90°?∠1,∠4=∠FCB=90°?∠2,相加可得:∠3+∠4=180°?(∠1+∠2),再由四邊形的內(nèi)角和與三角形的內(nèi)角和可得結論.(1)∠DBC+∠ECB-∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,∴∠DBC+∠ECB-∠A=180°,故答案為:=;(2)∠P=90°-∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=∠DBC,∠BCP=∠ECB,∵△BPC中,∠P=180°-∠CBP-∠BCP=180°-(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°-(180°+∠A)=90°-∠A.故答案為:∠P=90°-∠A,(3)∠P=180°-∠BAD-∠CDA,理由是:如圖,∵∠EBC=180°-∠1,∠FCB=180°-∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°-∠1,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 24276-2025通過計算進行低壓成套開關設備和控制設備溫升驗證的一種方法
- 2025年中職煙草栽培與加工(煙草技術專題)試題及答案
- 2025年大學交通運輸(物流運輸規(guī)劃)試題及答案
- 2025年大學農(nóng)村電氣技術(農(nóng)村新能源利用)試題及答案
- 2026年生物科技(基因編輯技術)試題及答案
- 2025年高職獸醫(yī)服務(服務技術)試題及答案
- 2025年高職(野生動植物資源保護與利用)野生動物監(jiān)測試題及答案
- 2025年中職護理(老年護理)試題及答案
- 2025年高職電網(wǎng)監(jiān)控技術(電網(wǎng)監(jiān)控操作)試題及答案
- 2025年高職(中藥購銷員)中藥銷售綜合測試題及答案
- 商超信息系統(tǒng)操作規(guī)定
- 如何做好一名護理帶教老師
- 房地產(chǎn)項目回款策略與現(xiàn)金流管理
- 花溪區(qū)高坡苗族鄉(xiāng)國土空間總體規(guī)劃 (2021-2035)
- 非連續(xù)性文本閱讀(中考試題20篇)-2024年中考語文重難點復習攻略(解析版)
- 專題13 三角函數(shù)中的最值模型之胡不歸模型(原卷版)
- 門診藥房西藥管理制度
- 新能源汽車生產(chǎn)代工合同
- 2025年中煤科工集團重慶研究院有限公司招聘筆試參考題庫含答案解析
- 消防救援預防職務犯罪
- 一體化泵站安裝施工方案
評論
0/150
提交評論