版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆奉賢中學(xué)高三(下)數(shù)學(xué)開學(xué)一?填空題(第1-6題每題4分,第7-12題每題5分,滿分54分)1.函數(shù)的定義域是________.【答案】且【解析】【分析】根據(jù)分明不為零以及偶次根式下被開方數(shù)非負(fù)列不等式求解.【詳解】由題意,要使函數(shù)有意義,則,解得,且;故函數(shù)的定義域為:且.故答案為:且.【點睛】本題考查函數(shù)定義域,考查基本分析求解能力,屬基礎(chǔ)題.2.函數(shù)y=2x+6從x=2到x=2.5的平均變化率是_________.【答案】2【解析】【分析】計算自變量的增量與函數(shù)值的增量,可得平均變化率.【詳解】函數(shù)y=2x+6從x=2到x=2.5的平均變化率是=2.故答案為2.【點睛】本題考查平均變化率的概念、計算,屬于簡單題.3.若一個圓錐的母線長是底面半徑的3倍,則該圓錐的側(cè)面積是底面積的_________倍;【答案】3;【解析】【分析】分別計算側(cè)面積和底面積后再比較.【詳解】由題意,,,∴.故答案為3.【點睛】本題考查圓錐的側(cè)面積,掌握側(cè)面積計算公式是解題關(guān)鍵.屬于基礎(chǔ)題.4.已知兩個單位向量,滿足,則向量,的夾角為______.【答案】##【解析】【分析】首先根據(jù)平面向量的運算律求出,再根據(jù)夾角公式計算可得;【詳解】解:由單位向量,滿足,得,所以,,所以,又,所以.故答案為:5.已知虛數(shù)是方程的一個根,則____【答案】3【解析】【分析】根據(jù)實系數(shù)的一元二次方程的兩個虛數(shù)根互為共軛復(fù)數(shù),再利用根與系數(shù)的關(guān)系,即可求出、的值.詳解】虛數(shù)是方程的一個根,共軛虛數(shù)也是此方程的一個根,;;.故答案為:3.【點睛】本題考查了實系數(shù)的一元二次方程兩個虛數(shù)根互為共軛復(fù)數(shù)以及根與系數(shù)關(guān)系的應(yīng)用問題,是基礎(chǔ)題.6.下列命題中錯誤的是__.①將一組數(shù)據(jù)中的每個數(shù)都加上或減去同一個常數(shù)后,均值與方差都不變;②在一組樣本數(shù)據(jù)(不全相等)的散點圖中,若所有樣本點都在直線上,則這組樣本數(shù)據(jù)的線性相關(guān)系數(shù)為;③在吸煙與患肺病這兩個分類變量的計算中,若由獨立性檢驗知,在犯錯誤率不超過0.01的前提下,認(rèn)為吸煙與患肺病有關(guān)系.若某人吸煙,則他有的可能性患肺?。敬鸢浮竣佗冖邸窘馕觥俊痉治觥扛鶕?jù)均值和方差的性質(zhì),相關(guān)系數(shù)的特點,獨立性檢驗的相關(guān)知識,對每個選項進(jìn)行逐一分析,即可判斷和選擇.【詳解】對于①,將一組數(shù)據(jù)中的每個數(shù)都加上或減去同一個常數(shù)后,均值改變,方差不變,所以①錯誤;對于②,在散點圖中,若所有樣本點都在直線上,則這組樣本數(shù)據(jù)線性相關(guān)系數(shù)為,所以②錯誤;對于③,由獨立性檢驗得,有的把握認(rèn)為吸煙與患肺病有關(guān)系時,是指有的可能性使推斷出現(xiàn)錯誤,所以③錯誤.綜上,錯誤的命題序號是①②③.故答案為:①②③.7.從1,2,3,…,15中,甲,乙兩人各任取一數(shù)(不重復(fù)),已知甲取到的是5的倍數(shù),則甲數(shù)大于乙數(shù)的概率是_______.【答案】【解析】【分析】先求出基本事件總數(shù),再求出甲數(shù)大于乙數(shù)包含的基本事件個數(shù),再由古典概型的概率公式求解.【詳解】從1,2,3,…,15中,甲、乙兩人各取一數(shù)(不重復(fù)),甲取到的數(shù)是5的倍數(shù),則基本事件總數(shù),則甲數(shù)大于乙數(shù)包含的基本事件有:,,,,共27個,∴甲數(shù)大于乙數(shù)的概率.故答案為:8.在的展開式中,項的系數(shù)為__________.(結(jié)果用數(shù)值表示)【答案】45【解析】【分析】由二項式展開得項只能展開式中,進(jìn)一步結(jié)合二項式系數(shù)即可求解.【詳解】,項只能在展開式中,即為,系數(shù)為.故選:45.9.圖1為一種衛(wèi)星接收天線,其曲面與軸截面的交線為拋物線的一部分,已知該衛(wèi)星接收天線的口徑,深度,信號處理中心F位于焦點處,以頂點O為坐標(biāo)原點,建立如圖2所示的平面直角坐標(biāo)系xOy,若P是該拋物線上一點,點,則的最小值為__________.【答案】3【解析】【分析】由題意可知點在拋物線上,利用待定系數(shù)法求拋物線方程,結(jié)合拋物線定義求的最小值.【詳解】設(shè)拋物線的方程為,因為,,所以點在拋物線上,所以,故,所以拋物線的方程為,所以拋物線的焦點,準(zhǔn)線方程為,在方程中取可得,所以點在拋物線內(nèi),過點作與準(zhǔn)線垂直,垂足,點作與準(zhǔn)線垂直,為垂足,則,所以,當(dāng)且僅當(dāng)直線與準(zhǔn)線垂直時等號成立,所以的最小值為3.故答案為:3.10.已知定義在R上的偶函數(shù)滿足.若,且在單調(diào)遞增,則滿足的x的取值范圍是__________.【答案】【解析】【分析】由題意可知,是周期為的周期函數(shù),的最小正周期為8,結(jié)合與的單調(diào)性,易知在一個周期內(nèi),由,可得,再結(jié)合周期求出范圍即可.【詳解】因為是偶函數(shù),所以,由,可得關(guān)于對稱,因為,所以,則,因為是偶函數(shù),所以,因為,所以,則,所以函數(shù)是周期為的周期函數(shù).因為是偶函數(shù),且在單調(diào)遞增,所以在單調(diào)遞減,令中,則,則,又因為關(guān)于對稱,所以在上單調(diào)遞增,上單調(diào)遞減,結(jié)合函數(shù)是周期為的周期函數(shù),綜上可得在,上單調(diào)遞增,,上單調(diào)遞減.因為的最小正周期為,結(jié)合圖象可知,在,上單調(diào)遞增,在上單調(diào)遞減,令中,則,則,當(dāng),又,所以,當(dāng),又,所以,所以當(dāng)時,,解得.又因為與均為周期函數(shù),且8均為其周期,所以的x的取值范圍是.故答案為:.【點睛】本題解題的關(guān)鍵是求出與的周期性,由,,結(jié)合函數(shù)的單調(diào)性和周期性求解即可.11.若函數(shù)()的最大值為11,則___________.【答案】【解析】【分析】根據(jù)絕對值的幾何意義圓的三角代換即可求解.【詳解】的幾何意義為:以原點為圓心,為半徑的圓周上點到與到軸距離之和的最大值為11,故.所以.故答案為:50.12.已知為數(shù)列的前n項和,數(shù)列滿足,且,是定義在R上的奇函數(shù),且滿足,則______.【答案】0【解析】【分析】利用數(shù)列通項公式與前n項和公式的關(guān)系求通項的遞推關(guān)系,再構(gòu)造等比數(shù)列求出通項公式.根據(jù)和f(x)是R上奇函數(shù)可得f(x)是周期為4的函數(shù),且f(0)=f(2)=0.,將用二項式定理展開,其中能被4整除的部分在計算時即可“去掉”,由此即可求出答案.【詳解】,,兩式相減得,,即,,即數(shù)列是以為首項,3為公比的等比數(shù)列,,.是定義在R上的奇函數(shù),且滿足,令,則,又=-f(-x),∴f(2+x)=-f(x),∴f(x+4)=f(x+2+2)=-f(x+2)=-[-f(-x)]=f(x),即f(x+4)=f(x),即是以4為周期的周期函數(shù).其中能被4整除,.故答案為:0.【點睛】本題綜合考察了數(shù)列求通項公式的兩個方法:利用通項公式和前n項和公式的關(guān)系,以及構(gòu)造等比數(shù)列,考察了函數(shù)周期的求法,還考查了利用二項式定理處理整除問題,屬于難題.二?單選題(本大題共4題,滿分20分)13.已知實數(shù)、,那么是的()條件.A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要【答案】D【解析】【分析】等式兩邊平方結(jié)合反例即可判斷.【詳解】因為,所以必要性不成立;當(dāng)時,滿足,但,所以充分性不成立;所以是的既不充分也不必要條件.故選:D.14.設(shè)兩個正態(tài)分布和的密度函數(shù)圖像如圖所示.則有A.B.C.D.【答案】A【解析】【詳解】根據(jù)正態(tài)分布函數(shù)的性質(zhì):正態(tài)分布曲線是一條關(guān)于對稱,在處取得最大值的連續(xù)鐘形曲線;越大,曲線的最高點越底且彎曲較平緩;反過來,越小,曲線的最高點越高且彎曲較陡峭,選A.15.在圓錐中,已知高,底面圓的半徑為4,M為母線的中點,根據(jù)圓錐曲線的定義,下列四個圖中的截面邊界曲線分別為圓、橢圓、雙曲線及拋物線,下面四個命題,正確的個數(shù)為()①圓的面積為;②橢圓的長軸長為;③雙曲線兩漸近線的夾角正切值為;④拋物線的焦點到準(zhǔn)線的距離為A.1個 B.2個 C.3個 D.4個【答案】B【解析】【分析】對于①,利用圓錐的幾何性質(zhì)確定圓的半徑,即可求得圓的面積;對于②,結(jié)合圓錐的軸截面可求得橢圓的長軸長;對于③,建立平面直角坐標(biāo)系,設(shè)雙曲線方程,確定雙曲線上的點的坐標(biāo),即可求得雙曲線方程,進(jìn)而求得雙曲線兩漸近線的夾角正切值;對于④,建立平面直角坐標(biāo)系,設(shè)拋物線方程,確定拋物線上的點的坐標(biāo),即可求得參數(shù),由此可判斷出答案.【詳解】對于①,M為母線的中點,因此截面圓的半徑為底面圓的半徑的,即截面圓半徑為2,則圓的面積為,故①正確;對于②,如圖,在圓錐的軸截面中,作,垂足為C,由題意可得M為母線的中點,則,故橢圓的長軸長為,②正確;對于③,如圖,在與平面垂直且過點M的平面內(nèi),建立平面直角坐標(biāo)系,坐標(biāo)原點與點P到底面距離相等,則點M坐標(biāo)為,雙曲線與底面圓的一個交點為D,其坐標(biāo)為,則設(shè)雙曲線方程為,則,將代入雙曲線方程,得,設(shè)雙曲線的漸近線與軸的夾角為,則,故雙曲線兩漸近線的夾角正切值為,③錯誤;對于④,如圖,建立平面直角坐標(biāo)系,設(shè)拋物線與底面圓的一個交點為H,則,則,設(shè)拋物線方程為,則,即拋物線的焦點到準(zhǔn)線的距離為,④錯誤,故正確的命題有2個,故選:B16.如圖,正四棱錐的底面邊長和高均為2,M是側(cè)棱PC的中點,若過AM作該正四棱錐的截面,分別交棱PB?PD于點E?F(可與端點重合),則四棱錐的體積的取值范圍是()A. B. C. D.【答案】D【解析】【分析】設(shè),則,然后利用等體積法由,得到,再消元得到,令,利用對勾函數(shù)的性質(zhì)求解.【詳解】設(shè),則所以,,,所以,則,令,因為,所以,所以,所以,故選:D【點睛】方法點睛:求解棱錐的體積時,等體積轉(zhuǎn)化是常用的方法,轉(zhuǎn)化原則是其高易求,底面放在已知幾何體的某一面上.求不規(guī)則幾何體的體積,常用分割或補(bǔ)形的思想,將不規(guī)則幾何體轉(zhuǎn)化為規(guī)則幾何體以便于求解.三?解答題(本大題共有5題,滿分76分)17.在三棱錐中,,,.(1)求證:;(2)若為上一點,且,求直線與平面所成角的正弦值.【答案】(1)證明見解析;(2).【解析】【分析】(1)取中點,連接,,證明平面即可;(2)首先證明平面,然后以射線,,為,,正半軸建系,然后算出和平面的法向量即可得到答案.【詳解】(1)取中點,連接,,因為,,所以,,又因為,所以平面,即.(2)由(1)得,平面,又因為平面,所以平面平面,易得,,所以,即,又因為平面平面,所以平面,如圖所示,以射線,,為,,正半軸建系,,,,,,,,,設(shè)為平面一個法向量,則有,取,設(shè)為直線與平面所成角,則.即直線與平面所成角的正弦值為.18.在△中,a,b,c分別是內(nèi)角A,B,C的對邊,,,.(1)求角B大??;(2)設(shè),當(dāng)時,求的最小值及相應(yīng)的x.【答案】(1)(2)當(dāng)時,有最小值.【解析】【分析】(1)利用向量垂直的充要條件和正弦定理即可求解;(2)先利用兩角和的正弦公式及余弦的二倍角公式化簡,再用輔助角公式化為,最后利用三角函數(shù)的性質(zhì)求出最小值及其取得最小值時的值.【小問1詳解】由已知條件得,由正弦定理得,即,,則,∵,∴,又∵,∴;【小問2詳解】,∵,∴,,則的最小值,其中,即當(dāng)時,有最小值.19.一項試驗旨在研究臭氧效應(yīng).實驗方案如下:選40只小白鼠,隨機(jī)地將其中20只分配到實驗組,另外20只分配到對照組,實驗組的小白鼠飼養(yǎng)在高濃度臭氧環(huán)境,對照組的小白鼠飼養(yǎng)在正常環(huán)境,一段時間后統(tǒng)計每只小白鼠體重的增加量(單位:g).(1)設(shè)表示指定的兩只小白鼠中分配到對照組的只數(shù),求的分布列和數(shù)學(xué)期望;(2)實驗結(jié)果如下:對照組的小白鼠體重的增加量從小到大排序為:15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2實驗組的小白鼠體重的增加量從小到大排序為:7.89.211.412.413.215.516.518.018.819.219820.221.622.823.623.925.128.232.336.5(i)求40只小鼠體重的增加量的中位數(shù)m,再分別統(tǒng)計兩樣本中小于m與不小于的數(shù)據(jù)的個數(shù),完成如下列聯(lián)表:對照組實驗組(ii)根據(jù)(i)中的列聯(lián)表,能否有95%的把握認(rèn)為小白鼠在高濃度臭氧環(huán)境中與正常環(huán)境中體重的增加量有差異.附:0.1000.0500.0102.7063.8416.635【答案】(1)分布列見解析,(2)(i);列聯(lián)表見解析,(ii)能【解析】【分析】(1)利用超幾何分布的知識即可求得分布列及數(shù)學(xué)期望;(2)(i)根據(jù)中位數(shù)的定義即可求得,從而求得列聯(lián)表;(ii)利用獨立性檢驗的卡方計算進(jìn)行檢驗,即可得解.【小問1詳解】依題意,的可能取值為,則,,,所以的分布列為:故.【小問2詳解】(i)依題意,可知這40只小白鼠體重增量的中位數(shù)是將兩組數(shù)據(jù)合在一起,從小到大排后第20位與第21位數(shù)據(jù)的平均數(shù),觀察數(shù)據(jù)可得第20位為,第21位數(shù)據(jù)為,所以,故列聯(lián)表為:合計對照組61420實驗組14620合計202040(ii)由(i)可得,,所以能有的把握認(rèn)為小白鼠在高濃度臭氧環(huán)境中與正常環(huán)境中體重的增加量有差異.20.已知點為雙曲線的左右焦點,過作垂直于軸的直線,在軸上方交雙曲線于點,且的面積為.圓的方程是.(1)求雙曲線的方程;(2)過雙曲線上任意一點作該雙曲線兩條漸近線的垂線,垂足分別為,求的值;(3)過圓上任意一點作圓的切線交雙曲線于兩點,中點為,若恒成立,試確定圓半徑.【答案】(1);(2);(3).【解析】【分析】(1)由面積可求,再根據(jù)雙曲線的定義可求,從而可求雙曲線的方程;(2)求出雙曲線的漸近線方程,設(shè)兩漸近線的夾角為,根據(jù)到角公式可求與,根據(jù)點到直線的距離公式可求,根據(jù)平面向量的數(shù)量積運算結(jié)合在雙曲線上即可求解;(3)由題意可得,設(shè),,當(dāng)?shù)男甭蚀嬖跁r,設(shè)直線,與雙曲線方程聯(lián)立,根據(jù)韋達(dá)定理及可得,根據(jù)點到直線的距離公式可求,當(dāng)?shù)男甭什淮嬖跁r亦可求得.【小問1詳解】因為的面積為,所以,所以,解得,此時,所以,故雙曲線的方程為.【小問2詳解】由題意得兩條漸近線分別為,設(shè)雙曲線上的點,設(shè)兩漸近線的夾角為,則,得.則點到兩條漸近線的距離分別為,因為在雙曲線上,所以,又,所以.【小問3詳解】中點為,若,則.設(shè),,當(dāng)?shù)男甭蚀嬖跁r,設(shè)直線,由得,所以,所以,所以,所以,所以,所以,所以圓心到直線的距離.當(dāng)?shù)男甭什淮嬖跁r,直線,得,也滿足,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學(xué)四年級(保險學(xué))保險理賠綜合測試題及答案
- 東海縣2024-2025學(xué)年第一學(xué)期六年級英語期末學(xué)業(yè)測評試卷及答案
- 2025-2030汽車零部件制造行業(yè)市場深度研究及供應(yīng)鏈管理與發(fā)展策略報告
- 2025-2030汽車零部件制造業(yè)市場現(xiàn)狀供需情況及發(fā)展?jié)摿ν顿Y評估規(guī)劃分析研究報告
- 2025-2030汽車銷售行業(yè)市場發(fā)展供需分析及投資合作規(guī)劃研究報告
- 2025-2030汽車配件市場競爭分析現(xiàn)狀技術(shù)代差供應(yīng)鏈競爭投入創(chuàng)新競爭發(fā)展報告
- 2025-2030汽車電子行業(yè)市場發(fā)展趨勢分析及企業(yè)競爭評估發(fā)展研究
- 2025-2030汽車方向盤多功能觸控屏集成技術(shù)方案設(shè)計與人機(jī)工效學(xué)研究分析報告
- 2025-2030汽車工業(yè)電動助力轉(zhuǎn)向器市場供需趨勢分析與戰(zhàn)略布局發(fā)展報告
- 2025-2030汽車后市場服務(wù)需求分析及企業(yè)業(yè)務(wù)拓展方向
- 漢源縣審計局關(guān)于公開招聘編外專業(yè)技術(shù)人員的備考題庫附答案
- GB/T 46758-2025紙漿硫酸鹽法蒸煮液總堿、活性堿和有效堿的測定(電位滴定法)
- 2026屆福建省龍巖市龍巖一中生物高一第一學(xué)期期末綜合測試試題含解析
- 2026年上海市普陀區(qū)社區(qū)工作者公開招聘筆試參考題庫及答案解析
- 二元思辨:向外探索(外)與向內(nèi)審視(內(nèi))-2026年高考語文二元思辨作文寫作全面指導(dǎo)
- 智能清掃機(jī)器人設(shè)計與研發(fā)方案
- 《中華人民共和國危險化學(xué)品安全法》全套解讀
- 糖尿病足護(hù)理指導(dǎo)
- 甲狀腺腫瘤的課件
- 新型鋁合金雨棚施工方案
- 戰(zhàn)略屋策略體系roadmapPP T模板(101 頁)
評論
0/150
提交評論