版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川榮縣中學(xué)7年級數(shù)學(xué)下冊第四章三角形章節(jié)測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,為了估算河的寬度,我們可以在河的對岸選定一個目標點,再在河的這一邊選定點和,使,并在垂線上取兩點、,使,再作出的垂線,使點、、在同一條直線上,因此證得,進而可得,即測得的長就是的長,則的理論依據(jù)是()A. B. C. D.2、如圖,點、、、在同一條直線上,已知,,添加下列條件中的一個:①;②;③;④.其中不能確定的是()A.① B.② C.③ D.④3、已知:如圖,D、E分別在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,則∠BDC的度數(shù)是()A.95° B.90° C.85° D.80°4、如圖,已知△ABC中,AB=AC,∠A=72°,D為BC上一點,在AB上取BF=CD,AC上取CE=BD,則∠FDE的度數(shù)為()A.54° B.56° C.64° D.66°5、定理:三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.已知:如圖,∠ACD是△ABC的外角.求證:∠ACD=∠A+∠B.證法1:如圖,∵∠A=70°,∠B=63°,且∠ACD=133°(量角器測量所得)又∵133°=70°+63°(計算所得)∴∠ACD=∠A+∠B(等量代換).證法2:如圖,∵∠A+∠B+∠ACB=180°(三角形內(nèi)角和定理),又∵∠ACD+∠ACB=180°(平角定義),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代換).∴∠ACD=∠A+∠B(等式性質(zhì)).下列說法正確的是()A.證法1用特殊到一般法證明了該定理B.證法1只要測量夠100個三角形進行驗證,就能證明該定理C.證法2還需證明其他形狀的三角形,該定理的證明才完整D.證法2用嚴謹?shù)耐评碜C明了該定理6、若三條線段中a=3,b=5,c為奇數(shù),那么以a、b、c為邊組成的三角形共有()A.1個 B.2個 C.3個 D.4個7、如圖,∠BAD=90°,AC平分∠BAD,CB=CD,則∠B與∠ADC滿足的數(shù)量關(guān)系為()A.∠B=∠ADC B.2∠B=∠ADCC.∠B+∠ADC=180° D.∠B+∠ADC=90°8、一個三角形的兩邊長分別為5和2,若該三角形的第三邊的長為偶數(shù),則該三角形的第三邊的長為()A.6 B.8 C.6或8 D.4或69、如圖,圖形中的的值是()A.50 B.60 C.70 D.8010、如圖,已知∠BAC=∠ABD=90°,AD和BC相交于O.在①AC=BD;②BC=AD;③∠C=∠D;④OA=OB.條件中任選一個,可使△ABC≌△BAD.可選的條件個數(shù)為()A.1 B.2 C.3. D.4第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,一把直尺的一邊緣經(jīng)過直角三角形的直角頂點,交斜邊于點;直尺的另一邊緣分別交、于點、,若,,則___________度.2、如圖,△ABC≌△DEF,BE=a,BF=b,則CF=___.3、如圖,在中,,點D,E在邊BC上,,若,,則CE的長為______.4、如圖,△ABC中,BD平分∠ABC,AD垂直于BD,△BCD的面積為58,△ADC的面積為30,則△ABD的面積等于______.5、如圖,點F,A,D,C在同一條直線上,,,,則AC等于_____.6、如圖,AE是△ABC的中線,BF是△ABE的中線,若△ABC的面積是20cm2,則S△ABF=_____cm2.7、如圖,已知AB=12m,CA⊥AB于點A,DB⊥AB于點B,且AC=4m,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m.若P,Q兩點同時出發(fā),運動_____分鐘后,△CAP與△PQB全等.8、如圖,△PBC的面積為5cm2,BP平分∠ABC,AP⊥BP于點P,則△ABC的面積為_____cm2.9、如圖,AE與BD相交于點C,AC=EC,BC=DC,AB=5cm,點P從點A出發(fā),沿A→B方向以2cm/s的速度運動,點Q從點D出發(fā),沿D→E方向以1cm/s的速度運動,P、Q兩點同時出發(fā).當點P到達點B時,P、Q兩點同時停止運動.設(shè)點P的運動時間為t(s).(1)AP的長為___cm.(用含t的代數(shù)式表示)(2)連接PQ,當線段PQ經(jīng)過點C時,t=___s.10、如圖,在△ABC中,D是AC延長線上一點,∠A=50°,∠B=70°,則∠BCD=__________°.三、解答題(6小題,每小題10分,共計60分)1、已知∠ACD=90°,MN是過點A的直線,AC=DC,且DB⊥MN于點B,如圖易證BD+ABCB,過程如下:解:過點C作CE⊥CB于點C,與MN交于點E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵DB⊥MN,∴∠ABC+∠CBD=90°,CE⊥CB,∴∠ABC+∠CEA=90°,∴∠CBD=∠CEA.又∵AC=DC,∴△ACE≌△DCB(AAS),∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BECB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+ABCB.(1)當MN繞A旋轉(zhuǎn)到如圖(2)位置時,BD、AB、CB滿足什么樣關(guān)系式,請寫出你的猜想,并給予證明.(2)當MN繞A旋轉(zhuǎn)到如圖(3)位置時,BD、AB、CB滿足什么樣關(guān)系式,請直接寫出你的結(jié)論.2、已知:如圖,線段BE、DC交于點O,點D在線段AB上,點E在線段AC上,AB=AC,AD=AE.求證:∠B=∠C.3、將一副三角板中的兩塊直角三角尺的直角頂點C按如圖1方式疊放在一起,其中,.(1)若,則的度數(shù)為_______;(2)直接寫出與的數(shù)量關(guān)系:_________;(3)直接寫出與的數(shù)量關(guān)系:__________;(4)如圖2,當且點E在直線的上方時,將三角尺固定不動,改變?nèi)浅叩奈恢?,但始終保持兩個三角尺的頂點C重合,這兩塊三角尺是否存在一組邊互相平行?請直接寫出角度所有可能的值___________.4、在中,,,點D是直線AC上一動點,連接BD并延長至點E,使.過點E作于點F.(1)如圖1,當點D在線段AC上(點D不與點A和點C重合)時,此時DF與DC的數(shù)量關(guān)系是______.(2)如圖2,當點D在線段AC的延長線上時,依題意補全圖形,并證明:.(3)當點D在線段CA的延長線上時,直接用等式表示線段AD,AF,EF之間的數(shù)量關(guān)系是______.5、在邊長為10厘米的等邊三角形△ABC中,如果點M,N都以3厘米/秒的速度勻速同時出發(fā).(1)若點M在線段AC上由A向C運動,點N在線段BC上由C向B運動.①如圖①,當BD=6,且點M,N在線段上移動了2s,此時△AMD和△BND是否全等,請說明理由.②求兩點從開始運動經(jīng)過幾秒后,△CMN是直角三角形.(2)若點M在線段AC上由A向點C方向運動,點N在線段CB上由C向點B方向運動,運動的過程中,連接直線AN,BM,交點為E,探究所成夾角∠BEN的變化情況,結(jié)合計算加以說明.6、已知的三邊長分別為a,b,c.若a,b,c滿足,試判斷的形狀.-參考答案-一、單選題1、C【分析】根據(jù)題意及全等三角形的判定定理可直接進行求解.【詳解】解:∵,,∴,在和中,,∴(ASA),∴;故選C.【點睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.2、B【分析】由已知條件知可得:∠A=∠D,AB=DE,再結(jié)合全等三角形的判定定理進行解答即可.【詳解】解:已知條件知:∠A=∠D,AB=DEA、當添加AC=DF時,根據(jù)SAS能判,故本選項不符合題意;B、當添加BC=EF時則BC=EF,根據(jù)SSA不能判定,故本選項符合題意;C、當添加時,根據(jù)ASA能判定,故本選項不符合題意;D、當添加時,根據(jù)AAS能判定,故本選項不符合題意.故選:B.【點睛】本題主要考查了全等三角形的判定定理,理解SSA不能判定三角形全等成為解答本題的關(guān)鍵.3、C【分析】根據(jù)SAS證△ABE≌△ACD,推出∠C=∠B,求出∠C的度數(shù),根據(jù)三角形的外角性質(zhì)得出∠BDC=∠A+∠C,代入求出即可.【詳解】解:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠C=∠B,∵∠B=25°,∴∠C=25°,∵∠A=60°,∴∠BDC=∠A+∠C=85°,故選C.【點睛】本題主要考查了全等三角形的性質(zhì)與判定,三角形外角的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.4、A【分析】由“SAS”可證△BDF≌△CED,可得∠BFD=∠CDE,由外角的性質(zhì)可求解.【詳解】解答:解:∵AB=AC,∠A=72°,∴∠B=∠C=54°,在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE,∵∠FDC=∠B+∠BFD=∠CDE+∠FDE,∴∠FDE=∠B=54°,故選:A.【點睛】本題考查全等三角形的判定與性質(zhì),掌握全等三角形的判定定理與性質(zhì)是解題的關(guān)鍵.5、D【分析】利用測量的方法只能是驗證,用定理,定義,性質(zhì)結(jié)合嚴密的邏輯推理推導(dǎo)新的結(jié)論才是證明,再逐一分析各選項即可得到答案.【詳解】解:證法一只是利用特殊值驗證三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,證法2才是用嚴謹?shù)耐评碜C明了該定理,故A不符合題意,C不符合題意,D符合題意,證法1測量夠100個三角形進行驗證,也只是驗證,不能證明該定理,故B不符合題意;故選D【點睛】本題考查的是三角形的外角的性質(zhì)的驗證與證明,理解驗證與證明的含義及證明的方法是解本題的關(guān)鍵.6、C【分析】根據(jù)三角形的三邊關(guān)系,得到合題意的邊,進而求得三角形的個數(shù).【詳解】解:c的范圍是:5﹣3<c<5+3,即2<c<8.∵c是奇數(shù),∴c=3或5或7,有3個值.則對應(yīng)的三角形有3個.故選:C.【點睛】本題主要考查了三角形三邊關(guān)系,準確分析判斷是解題的關(guān)鍵.7、C【分析】由題意在射線AD上截取AE=AB,連接CE,根據(jù)SAS不難證得△ABC≌△AEC,從而得BC=EC,∠B=∠AEC,可求得CD=CE,得∠CDE=∠CED,證得∠B=∠CDE,即可得出結(jié)果.【詳解】解:在射線AD上截取AE=AB,連接CE,如圖所示:∵∠BAD=90°,AC平分∠BAD,∴∠BAC=∠EAC,在△ABC與△AEC中,,∴△ABC≌△AEC(SAS),∴BC=EC,∠B=∠AEC,∵CB=CD,∴CD=CE,∴∠CDE=∠CED,∴∠B=∠CDE,∵∠ADC+∠CDE=180°,∴∠ADC+∠B=180°.故選:C.【點睛】本題主要考查全等三角形的判定與性質(zhì),解答的關(guān)鍵是作出適當?shù)妮o助線AE,CE.8、D【分析】根據(jù)三角形兩邊之和大于第三邊確定第三邊的范圍,根據(jù)題意計算即可.【詳解】解:設(shè)三角形的第三邊長為x,則5﹣2<x<5+2,即3<x<7,∵三角形的第三邊是偶數(shù),∴x=4或6,故選:D.【點睛】本題考查了三角形三邊關(guān)系,在一個三角形中,任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.9、B【分析】根據(jù)三角形外角的性質(zhì):三角形一個外角的度數(shù)等于與其不相鄰的兩個內(nèi)角的度數(shù)和進行求解即可.【詳解】解:由題意得:∴,∴,故選B.【點睛】本題主要考查了三角形外角的性質(zhì),解一元一次方程,熟知三角形外角的性質(zhì)是解題的關(guān)鍵.10、D【分析】先得到∠BAC=∠ABD=90°,若添加AC=BD,則可根據(jù)“SAS”判斷△ABC≌△BAD;若添加BC=AD,則可利用“HL”證明Rt△ABC≌Rt△BAD,若添加∠C=∠D,則可利用“AAS”證明△ABC≌△BAD;若添加OA=OB,可先根據(jù)“ASA”證明△AOC≌△BOD得∠C=∠D,則可利用“AAS”證明△ABC≌△BAD.【詳解】解:在△ABC和△BAD中,∴△ABC≌△BAD故選AC=BD可使△ABC≌△BAD.∵∠BAC=∠ABD=90°,∴△ABC和△BAD均為直角三角形在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD故選BC=AD可使△ABC≌△BAD.在△ABC和△BAD中,∴△ABC≌△BAD故選∠C=∠D可使△ABC≌△BAD.∵OA=OB∴∵∠BAC=∠ABD=90°,∴在△AOC和△BOD中,∴△AOC≌△BOD∴在△ABC和△BAD中,∴△ABC≌△BAD故選OA=OB可使△ABC≌△BAD.∴可選的條件個數(shù)有4個故選:D【點睛】本題考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”、“HL”.二、填空題1、20【分析】利用平行線的性質(zhì)求出∠1,再利用三角形外角的性質(zhì)求出∠DCB即可.【詳解】解:∵EF∥CD,∴,∵∠1是△DCB的外角,∴∠1-∠B=50°-30°=20o,故答案為:20.【點睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識.2、##【分析】先利用線段和差求EF=BE﹣BF=a-b,根據(jù)全等三角形的性質(zhì)BC=EF,再結(jié)合線段和差求出FC可得答案.【詳解】解:∵BE=,BF=,∴EF=BE﹣BF=,∵△ABC≌△DEF,∴BC=EF=,∴CF=BC﹣BF=,故答案為:.【點睛】本題考查全等三角形的性質(zhì),線段和差,解題的關(guān)鍵是根據(jù)全等三角形的性質(zhì)得出BC=EF.3、5【分析】由題意易得,然后可證,則有,進而問題可求解.【詳解】解:∵,∴,∵,∴(ASA),∴,∵,,∴,∴;故答案為5.【點睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.4、28【分析】延長交于,由證明,得出,得出,進而得出,即可得出結(jié)果.【詳解】如圖所示,延長交于,∵平分,,∴,,在和中,,∴,∴,∴,,∴.故答案為:28.【點睛】此題考查全等三角形的判定與性質(zhì),三角形面積的計算,證明三角形全等得出是解題關(guān)鍵.5、6.5【分析】由全等三角形的性質(zhì)可得到AC=DF,從而推出AF=CD,再由,,求出,則.【詳解】解:∵△ABC≌△DEF,∴AC=DF,即AF+AD=CD+AD,∴AF=CD,∵,,∴,∴,∴,故答案為:6.5.【點睛】本題主要考查了全等三角形的性質(zhì),線段的和差,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì).6、5【分析】利用三角形的中線把三角形分成面積相等的兩個三角形進行解答.【詳解】解:∵AE是△ABC的中線,BF是△ABE的中線,∴S△ABF=S△ABC=×20=5cm2.故答案為:5.【點睛】本題考查了三角形的面積,能夠利用三角形的中線把三角形分成面積相等的兩個三角形的性質(zhì)求解是解題的關(guān)鍵.7、4【分析】根據(jù)題意CA⊥AB,DB⊥AB,則,則分或兩種情況討論,根據(jù)路程等于速度乘以時間求得的長,根據(jù)全等列出一元一次方程解方程求解即可【詳解】解:CA⊥AB,DB⊥AB,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m,設(shè)運動時間為,且AC=4m,,當時則,即,解得當時,則,即,解得且不符合題意,故舍去綜上所述即分鐘后,△CAP與△PQB全等.故答案為:【點睛】本題考查了三角形全等的性質(zhì),根據(jù)全等的性質(zhì)列出方程是解題的關(guān)鍵.8、10【分析】根據(jù)已知條件證得△ABP≌△EBP,根據(jù)全等三角形的性質(zhì)得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△ABC=2S△PBC,代入求出即可.【詳解】解:延長AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△ABC=2S陰影=10(cm2),故答案為:10.【點睛】本題考查了全等三角形的性質(zhì)和判定,三角形的面積的應(yīng)用,注意:等底等高的三角形的面積相等.9、2【分析】(1)根據(jù)路程=速度×?xí)r間求解即可;(2)根據(jù)全等三角形在判定證明△ACB≌△ECD可得AB=DE,∠A=∠E,當PQ經(jīng)過點C時,可證得△ACP≌△ECQ,則有AP=EQ,進而可得出t的方程,解方程即可.【詳解】解:(1)由題意知:AP=2t,0<t≤,故答案為:2t;(2)∵AC=EC,∠ACB=∠ECD,BC=DC,∴△ACB≌△ECD(SAS),∴DE=AB=5cm,∠A=∠E,當PQ經(jīng)過點C時,∵∠A=∠E,AC=EC,∠ACP=∠ECQ,∴△ACP≌△ECQ(ASA),∴AP=EQ,又∵AP=2t,DQ=t,∴2t=5-t,解得:t=,故答案為:.【點睛】本題考查全等三角形的應(yīng)用,熟練掌握全等三角形的判定與性質(zhì)是解答的關(guān)鍵.10、120【分析】根據(jù)三角形的外角性質(zhì),可得,即可求解.【詳解】解:∵是的外角,∴,∵∠A=50°,∠B=70°,∴.故答案為:120【點睛】本題主要考查了三角形的外角性質(zhì),熟練掌握三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和是解題的關(guān)鍵.三、解答題1、(1)AB-BD=CB,證明見解析.(2)BD-AB=CB,證明見解析.【分析】(1)仿照圖(1)的解題過程即可解答.過點C作CE⊥CB于點C,與MN交于點E,根據(jù)同角(等角)的余角相等可證∠BCD=∠ACE及∠CAE=∠D,由ASA可證△ACE≌△DCB,然后由全等三角形的對應(yīng)邊相等可得:AE=DB,CE=CB,從而確定△ECB為等腰直角三角形,由勾股定理可得:BE=CB,由BE=AB-AE,可得BE=AB-BD,即AB-BD=CB;(2)解題思路同(1),過點C作CE⊥CB于點C,與MN交于點E,根據(jù)等角的余角相等及等式的性質(zhì)可證∠BCD=∠ACE及∠CAE=∠D,由ASA可證△ACE≌△DCB,然后由全等三角形的對應(yīng)邊相等可得:AE=DB,CE=CB,從而確定△ECB為等腰直角三角形,由勾股定理可得:BE=CB,由BE=AE-AB,可得BE=BD-AB,即BD-AB=CB.【詳解】解:(1)AB-BD=CB.證明:如圖(2)過點C作CE⊥CB于點C,與MN交于點E,∵∠ACD=90°,∠ECB=90°,∴∠ACE=90°-∠DCE,∠BCD=90°-∠ECD,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=90°-∠AFC,∠D=90°-∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,在△ACE和△DCB中,∴△ACE≌△DCB(ASA),∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BE=CB.又∵BE=AB-AE,∴BE=AB-BD,∴AB-BD=CB.(2)BD-AB=CB.如圖(3)過點C作CE⊥CB于點C,與MN交于點E,∵∠ACD=90°,∠BCE=90°,∴∠ACE=90°+∠ACB,∠BCD=90°+∠ACB,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=90°-∠AFC,∠D=90°-∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,在△ACE和△DCB中,∴△ACE≌△DCB(ASA),∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BE=CB.又∵BE=AE-AB,∴BE=BD-AB,∴BD-AB=CB.【點睛】本題考查了三角形全等的判定和性質(zhì),等腰直角三角形的判定和性質(zhì)等.注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性質(zhì)是全等三角形的對應(yīng)邊相等,對應(yīng)角相等.2、見解析【分析】只需要利用SAS證明△AEB≌△ADC,即可得到∠B=∠C.【詳解】解:在△AEB和△ADC中,,∴△AEB≌△ADC(SAS),∴∠B=∠C.【點睛】本題主要考查了全等三角形的性質(zhì)與判定,熟知全等三角形的性質(zhì)與判定條件是解題的關(guān)鍵.3、(1);(2);(3);(4)存在一組邊互相平行;或或或或.【分析】(1)根據(jù)垂直的性質(zhì)結(jié)合圖形求解即可;(2)根據(jù)垂直的性質(zhì)及各角之間的關(guān)系即可得出;(3)由(2)可得,根據(jù)圖中角度關(guān)系可得,將其代入即可得;(4)根據(jù)題意,分五種情況進行分類討論:①當時;②當時;③當時;④當時;⑤當時;分別利用平行線的性質(zhì)進行求解即可得.【詳解】解:(1)∵,∴,∵,∴,故答案為:;(2)∵,,∴,,即,,∴,故答案為:;(3)由(2)得:,∴,由圖可知:,∴,故答案為:;(4)①如圖所示:當時,,由(2)可知:;②如圖所示:當時,;③如圖所示:當時,,∴;④如圖所示:當時,,∴;⑤如圖所示:當時,延長AC交BE于點F,∴,∵,∴,∴;綜合可得:的度數(shù)為:或或或或,故答案為:或或或或.【點睛】題目主要考查垂直的性質(zhì)、各角之間的計算、平行線的性質(zhì)等,熟練掌握平行線的性質(zhì)進行分類討論是解題關(guān)鍵.4、(1)(2)見解析(3)【分析】(1)利用邊相等和角相等,直接證明,即可得到結(jié)論.(2)利用邊相等和角相等,直接證明,得到和,最后通過邊與邊之間的關(guān)系,即可證明結(jié)論成立.(3)要證明,先利用邊相等和角相等,直接證明,得到和,最后通過邊與邊之間的關(guān)系,即可證明結(jié)論成立.【詳解】(1)解:,,,在和中,,.(2)解:當點D在線段AC的延長線上時,如下圖所示:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 地鐵車輛鋁合金焊接質(zhì)量控制方案
- 企業(yè)知識產(chǎn)權(quán)保護策略方案
- 早期重癥康復(fù)護理常規(guī)
- 企業(yè)釘釘考勤管理實施方案
- 零售連鎖店鋪陳列與促銷方案設(shè)計
- 語文教學(xué)說課稿與課堂筆記范例
- 小學(xué)二年級科學(xué)天氣專題教案升級版
- 專業(yè)專家合作協(xié)議簽訂流程規(guī)范
- 五年級語文課本知識點詳細解析
- 小學(xué)生英語閱讀興趣調(diào)查問卷
- 2025年西昌市邛海瀘山風景名勝區(qū)管理局招聘5名執(zhí)法協(xié)勤人員備考題庫有答案詳解
- 2025年杭州市公安局上城區(qū)分局警務(wù)輔助人員招聘60人備考題庫及完整答案詳解一套
- 2025中央社會工作部所屬事業(yè)單位招聘11人筆試試題附答案解析
- 2025國開期末考試《中國現(xiàn)代文學(xué)專題》機考試題含答案
- 居民自管小組建設(shè)方案
- 2025年煤礦安全生產(chǎn)治本攻堅三年行動工作總結(jié)
- 美團代運營服務(wù)合同協(xié)議模板2025
- 2025江蘇南京市市場監(jiān)督管理局所屬事業(yè)單位招聘高層次人才5人(公共基礎(chǔ)知識)測試題帶答案解析
- 2025年二級建造師繼續(xù)教育考試題庫及答案
- 2025年6月浙江省高考化學(xué)試卷真題(含答案及解析)
- 2025年廣西公需科目答案02
評論
0/150
提交評論