西安海棠職業(yè)學院《機器學習與深度學習理論雙語教學》2024-2025學年第一學期期末試卷_第1頁
西安海棠職業(yè)學院《機器學習與深度學習理論雙語教學》2024-2025學年第一學期期末試卷_第2頁
西安海棠職業(yè)學院《機器學習與深度學習理論雙語教學》2024-2025學年第一學期期末試卷_第3頁
西安海棠職業(yè)學院《機器學習與深度學習理論雙語教學》2024-2025學年第一學期期末試卷_第4頁
西安海棠職業(yè)學院《機器學習與深度學習理論雙語教學》2024-2025學年第一學期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共2頁西安海棠職業(yè)學院《機器學習與深度學習理論雙語教學》2024-2025學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、某機器學習項目需要對文本進行主題建模,以發(fā)現(xiàn)文本中的潛在主題。以下哪種方法常用于文本主題建模?()A.潛在狄利克雷分配(LDA)B.非負矩陣分解(NMF)C.概率潛在語義分析(PLSA)D.以上方法都常用2、在機器學習中,特征工程是非常重要的一步。假設(shè)我們要預測一個城市的空氣質(zhì)量,有許多相關(guān)的原始數(shù)據(jù),如氣象數(shù)據(jù)、交通流量、工廠排放等。以下關(guān)于特征工程的描述,哪一項是不準確的?()A.對原始數(shù)據(jù)進行標準化或歸一化處理,可以使不同特征在數(shù)值上具有可比性B.從原始數(shù)據(jù)中提取新的特征,例如計算交通流量的日變化率,有助于提高模型的性能C.特征選擇是選擇對目標變量有顯著影響的特征,去除冗余或無關(guān)的特征D.特征工程只需要在模型訓練之前進行一次,后續(xù)不需要再進行調(diào)整和優(yōu)化3、在進行特征工程時,如果特征之間存在共線性,即一個特征可以由其他特征線性表示,以下哪種方法可以處理共線性?()A.去除相關(guān)特征B.對特征進行主成分分析C.對特征進行標準化D.以上都可以4、假設(shè)正在進行一個異常檢測任務,數(shù)據(jù)具有高維度和復雜的分布。以下哪種技術(shù)可以用于將高維數(shù)據(jù)映射到低維空間以便更好地檢測異常?()A.核主成分分析(KPCA)B.局部線性嵌入(LLE)C.拉普拉斯特征映射D.以上技術(shù)都可以5、在深度學習中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)被廣泛應用于圖像識別等領(lǐng)域。假設(shè)我們正在設(shè)計一個CNN模型,對于圖像分類任務,以下哪個因素對模型性能的影響較大()A.卷積核的大小B.池化層的窗口大小C.全連接層的神經(jīng)元數(shù)量D.以上因素影響都不大6、在一個強化學習問題中,如果智能體需要與多個對手進行交互和競爭,以下哪種算法可以考慮對手的策略?()A.雙人零和博弈算法B.多智能體強化學習算法C.策略梯度算法D.以上算法都可以7、某研究需要對音頻信號進行分類,例如區(qū)分不同的音樂風格。以下哪種特征在音頻分類中經(jīng)常被使用?()A.頻譜特征B.時域特征C.時頻特征D.以上特征都常用8、在進行模型選擇時,除了考慮模型的性能指標,還需要考慮模型的復雜度和可解釋性。假設(shè)我們有多個候選模型。以下關(guān)于模型選擇的描述,哪一項是不正確的?()A.復雜的模型通常具有更高的擬合能力,但也更容易過擬合B.簡單的模型雖然擬合能力有限,但更容易解釋和理解C.對于一些對可解釋性要求較高的任務,如醫(yī)療診斷,應優(yōu)先選擇復雜的黑盒模型D.在實際應用中,需要根據(jù)具體問題和需求綜合權(quán)衡模型的性能、復雜度和可解釋性9、考慮一個回歸問題,我們使用均方誤差(MSE)作為損失函數(shù)。如果模型的預測值與真實值之間的MSE較大,這意味著什么()A.模型的預測非常準確B.模型存在過擬合C.模型存在欠擬合D.無法確定模型的性能10、想象一個無人駕駛汽車的環(huán)境感知任務,需要識別道路、車輛、行人等對象。以下哪種機器學習方法可能是最關(guān)鍵的?()A.目標檢測算法,如FasterR-CNN或YOLO,能夠快速準確地識別多個對象,但對小目標檢測可能存在挑戰(zhàn)B.語義分割算法,對圖像進行像素級的分類,但計算量較大C.實例分割算法,不僅區(qū)分不同類別,還區(qū)分同一類別中的不同個體,但模型復雜D.以上三種方法結(jié)合使用,根據(jù)具體場景和需求進行選擇和優(yōu)化11、考慮一個情感分析任務,判斷一段文本所表達的情感是積極、消極還是中性。在特征提取方面,可以使用詞袋模型、TF-IDF等方法。如果文本數(shù)據(jù)量較大,且包含豐富的語義信息,以下哪種特征提取方法可能表現(xiàn)更好?()A.詞袋模型,簡單直觀,計算速度快B.TF-IDF,考慮了詞的頻率和文檔的分布C.基于深度學習的詞向量表示,能夠捕捉語義和上下文信息D.以上方法效果相同,取決于模型的復雜程度12、在進行機器學習模型評估時,除了準確性等常見指標外,還可以使用混淆矩陣來更詳細地分析模型的性能。對于一個二分類問題,混淆矩陣包含了真陽性(TP)、真陰性(TN)、假陽性(FP)和假陰性(FN)等信息。以下哪個指標可以通過混淆矩陣計算得到,并且對于不平衡數(shù)據(jù)集的評估較為有效?()A.準確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)13、特征工程是機器學習中的重要環(huán)節(jié)。以下關(guān)于特征工程的說法中,錯誤的是:特征工程包括特征提取、特征選擇和特征轉(zhuǎn)換等步驟。目的是從原始數(shù)據(jù)中提取出有效的特征,提高模型的性能。那么,下列關(guān)于特征工程的說法錯誤的是()A.特征提取是從原始數(shù)據(jù)中自動學習特征表示的過程B.特征選擇是從眾多特征中選擇出對模型性能有重要影響的特征C.特征轉(zhuǎn)換是將原始特征進行變換,以提高模型的性能D.特征工程只在傳統(tǒng)的機器學習算法中需要,深度學習算法不需要進行特征工程14、在強化學習中,智能體通過與環(huán)境交互來學習最優(yōu)策略。如果智能體在某個狀態(tài)下采取的行動總是導致低獎勵,它應該()A.繼續(xù)采取相同的行動,希望情況會改善B.隨機選擇其他行動C.根據(jù)策略網(wǎng)絡(luò)的輸出選擇行動D.調(diào)整策略以避免采取該行動15、假設(shè)正在研究一個語音合成任務,需要生成自然流暢的語音。以下哪種技術(shù)在語音合成中起到關(guān)鍵作用?()A.聲碼器B.文本到語音轉(zhuǎn)換模型C.語音韻律模型D.以上技術(shù)都很重要16、在分類問題中,如果正負樣本比例嚴重失衡,以下哪種評價指標更合適?()A.準確率B.召回率C.F1值D.均方誤差17、在機器學習中,特征選擇是一項重要的任務,旨在從眾多的原始特征中選擇出對模型性能有顯著影響的特征。假設(shè)我們有一個包含大量特征的數(shù)據(jù)集,在進行特征選擇時,以下哪種方法通常不被采用?()A.基于相關(guān)性分析,選擇與目標變量高度相關(guān)的特征B.隨機選擇一部分特征,進行試驗和比較C.使用遞歸特征消除(RFE)方法,逐步篩選特征D.基于領(lǐng)域知識和經(jīng)驗,手動選擇特征18、假設(shè)要為一個智能推薦系統(tǒng)選擇算法,根據(jù)用戶的歷史行為、興趣偏好和社交關(guān)系為其推薦相關(guān)的產(chǎn)品或內(nèi)容。以下哪種算法或技術(shù)可能是最適合的?()A.基于協(xié)同過濾的推薦算法,利用用戶之間的相似性或物品之間的相關(guān)性進行推薦,但存在冷啟動和數(shù)據(jù)稀疏問題B.基于內(nèi)容的推薦算法,根據(jù)物品的特征和用戶的偏好匹配推薦,但對新物品的推薦能力有限C.混合推薦算法,結(jié)合協(xié)同過濾和內(nèi)容推薦的優(yōu)點,并通過特征工程和模型融合提高推薦效果,但實現(xiàn)復雜D.基于強化學習的推薦算法,通過與用戶的交互不斷優(yōu)化推薦策略,但訓練難度大且收斂慢19、假設(shè)正在進行一個目標檢測任務,例如在圖像中檢測出人物和車輛。以下哪種深度學習框架在目標檢測中被廣泛應用?()A.TensorFlowB.PyTorchC.CaffeD.以上框架都常用于目標檢測20、想象一個圖像分類的競賽,要求在有限的計算資源和時間內(nèi)達到最高的準確率。以下哪種優(yōu)化策略可能是最關(guān)鍵的?()A.數(shù)據(jù)增強,通過對原始數(shù)據(jù)進行隨機變換增加數(shù)據(jù)量,但可能引入噪聲B.超參數(shù)調(diào)優(yōu),找到模型的最優(yōu)參數(shù)組合,但搜索空間大且耗時C.模型壓縮,減少模型參數(shù)和計算量,如剪枝和量化,但可能損失一定精度D.集成學習,組合多個模型的預測結(jié)果,提高穩(wěn)定性和準確率,但訓練成本高二、簡答題(本大題共5個小題,共25分)1、(本題5分)簡述情感分析任務中常用的機器學習方法。2、(本題5分)談談如何使用機器學習進行客戶細分。3、(本題5分)解釋機器學習在護理學中的患者監(jiān)測。4、(本題5分)解釋機器學習在園藝設(shè)計中的植物搭配。5、(本題5分)解釋如何使用機器學習進行冰川變化監(jiān)測。三、應用題(本大題共5個小題,共25分)1、(本題5分)利用門控循環(huán)單元(GRU)對語音信號進行分類。2、(本題5分)依據(jù)社會學調(diào)查數(shù)據(jù)分析社會現(xiàn)象和趨勢。3、(本題5分)運用美容醫(yī)療數(shù)據(jù)為患者提供個性化美容方案。4、(本題5分)通過建筑設(shè)計數(shù)據(jù)生成創(chuàng)新的建筑設(shè)計方案。5、(本題5分)運用LSTM網(wǎng)絡(luò)對電商平臺的商品銷量進行預測。四、論述題(本大題共3個小題,共30分)1、(本題10分)探討機器學習在生物學數(shù)據(jù)分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論