版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
京改版數(shù)學(xué)9年級上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、若關(guān)于的一元二次方程的兩根分別為,,則二次函數(shù)的對稱軸為直線(
)A. B. C. D.2、拋物線的對稱軸為直線.若關(guān)于的一元二次方程(為實數(shù))在的范圍內(nèi)有實數(shù)根,則的取值范圍是()A. B. C. D.3、如圖,點M、N分別是正方形ABCD的邊BC、CD上的兩個動點,在運動過程中保持∠MAN=45°,連接EN、FM相交于點O,以下結(jié)論:①MN=BM+DN;②BE2+DF2=EF2;③BC2=BF?DE;④OM=OF()A.①②③ B.①②④ C.②③④ D.①②③④4、在Rt△ABC中,∠C=90°,a、b、c分別是∠A、∠B、∠C的對邊,則()A. B. C. D.5、如圖,將一張寬為2cm的長方形紙片沿AB折疊成如圖所示的形狀,那么折痕AB的長為(
)cmA. B. C.2 D.6、二次函數(shù)的頂點坐標(biāo)為,圖象如圖所示,有下列四個結(jié)論:①;②;③④,其中結(jié)論正確的個數(shù)為(
)A.個 B.個 C.個 D.個二、多選題(7小題,每小題2分,共計14分)1、季是呼吸道疾病多發(fā)的季節(jié),為預(yù)防病毒的傳播,某學(xué)校用藥熏消毒法對教室進(jìn)行消毒,已知藥物釋放過程中,教室內(nèi)每立方米空氣中含藥量與時間成正比例;藥物釋放完畢后,y與t成反比例,如圖所示.空氣中的含藥量低于時對身體無害.則下列選項正確的是(
)A.藥物釋放過程中,y與t的函數(shù)表達(dá)式是B.藥物的釋放過程需要2hC.從開始消毒,6h后空氣中的含藥量低于D.空氣中含藥量不低于的時長為6h2、如圖,在△ABC中,點D在邊AC上,下列條件中,不能判斷△BDC與△ABC相似的是(
)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA3、如圖,在Rt△ABC中,,于點D,則下列結(jié)論正確的是(
)A. B.C. D.4、運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時間t(單位:s)之間的關(guān)系如下表:t01234567…h(huán)08141820201814…下列結(jié)論正確的是(
)A.足球距離地面的最大高度為20mB.足球飛行路線的對稱軸是直線C.足球被踢出9s時落地D.足球被踢出1.5s時,距離地面的高度是11m5、如圖,在△ABC中,點D,E分別在邊AB、AC上,下列條件中能判斷△AED∽△ABC的是()A.∠AED=∠ABC B.∠ADE=∠ACBC. D.6、如果一種變換是將拋物線向右平移2個單位或向上平移1個單位,我們把這種變換稱為拋物線的簡單變換.已知拋物線經(jīng)過兩次簡單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+177、在△ABC中,∠A、∠B、∠C的對邊分別為a、b、c,且a=5,b=12,c=16,下面四個式子中錯誤的有()A.sinA= B.cosA= C.tanA= D.sinB=第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、若函數(shù)圖像與x軸的兩個交點坐標(biāo)為和,則__________.2、如圖,平行四邊形ABCD中,,點的坐標(biāo)是,以點為頂點的拋物線經(jīng)過軸上的點A,B,則此拋物線的解析式為__________________.3、將拋物線沿直線方向移動個單位長度,若移動后拋物線的頂點在第一象限,則移動后拋物線的解析式是__________.4、將拋物線向上平移()個單位長度,<k<,平移后的拋物線與雙曲線y=(x>0)交于點P(p,q),M(1+,n),則下列結(jié)論正確的是__________.(寫出所有正確結(jié)論的序號)①0<p<1-;
②1-<p<1;
③q<n;
④q>2k-k.5、在平面直角坐標(biāo)系中,已知和是拋物線上的兩點,將拋物線的圖象向上平移n(n是正整數(shù))個單位,使平移后的圖象與x軸沒有交點,則n的最小值為_____.6、如圖,點O是正方形ABCD的對稱中心,射線OM,ON分別交正方形的邊AD,CD于E,F(xiàn)兩點,連接EF,已知,.(1)以點E,O,F(xiàn),D為頂點的圖形的面積為_________;(2)線段EF的最小值是_________.7、在每個小正方形的邊長為1的網(wǎng)格圖形中,每個小正方形的頂點稱為格點,頂點都是格點的三角形稱為格點三角形.如圖,已知Rt△ABC是6×6網(wǎng)格圖形中的格點三角形,則該圖中所有與Rt△ABC相似的格點三角形中.面積最大的三角形的斜邊長是_____.四、解答題(6小題,每小題10分,共計60分)1、某種商品每件的進(jìn)價為10元,若每件按20元的價格銷售,則每月能賣出360件;若每件按30元的價格銷售,則每月能賣出60件.假定每月的銷售件數(shù)y是銷售價格x(單位:元)的一次函數(shù).(1)求y關(guān)于x的一次函數(shù)解析式;(2)當(dāng)銷售價格定為多少元時,每月獲得的利潤最大?并求此最大利潤.2、在平面直角坐標(biāo)系中,拋物線的頂點為P,且與y軸交于點A,與直線交于點B,C(點B在點C的左側(cè)).(1)求拋物線的頂點P的坐標(biāo)(用含a的代數(shù)式表示);(2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點,記拋物線與線段AC圍成的封閉區(qū)域(不含邊界)為“W區(qū)域”.①當(dāng)時,請直接寫出“W區(qū)域”內(nèi)的整點個數(shù);②當(dāng)“W區(qū)域”內(nèi)恰有2個整點時,結(jié)合函數(shù)圖象,直接寫出a的取值范圍.3、已知關(guān)于的二次函數(shù).(1)求證:不論為何實數(shù),該二次函數(shù)的圖象與軸總有兩個公共點;(2)若,兩點在該二次函數(shù)的圖象上,直接寫出與的大小關(guān)系;(3)若將拋物線沿軸翻折得到新拋物線,當(dāng)時,新拋物線對應(yīng)的函數(shù)有最小值3,求的值.4、定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.(1)如圖1,在四邊形中,,,對角線平分.求證:是四邊形的“相似對角線”;(2)如圖2,已知是四邊形的“相似對角線”,.連接,若的面積為,求的長.5、如圖,二次函數(shù)的圖象交軸于、兩點,交軸于點,點的坐標(biāo)為,頂點的坐標(biāo)為.求二次函數(shù)的解析式和直線的解析式;點是直線上的一個動點,過點作軸的垂線,交拋物線于點,當(dāng)點在第一象限時,求線段長度的最大值;在拋物線上是否存在異于、的點,使中邊上的高為?若存在求出點的坐標(biāo);若不存在請說明理由.6、如圖,矩形ABCD中,AB=6cm,BC=12cm..點M從點A開始沿AB邊向點B以1cm/秒的速度向B點移動,點N從點B開始沿BC邊以2cm/秒的速度向點C移動.若M,N分別從A,B點同時出發(fā),設(shè)移動時間為t(0<t<6),△DMN的面積為S.(1)求S關(guān)于t的函數(shù)關(guān)系式,并求出S的最小值;(2)當(dāng)△DMN為直角三角形時,求△DMN的面積.-參考答案-一、單選題1、C【解析】【分析】根據(jù)兩根之和公式可以求出對稱軸公式.【詳解】解:∵一元二次方程ax2+bx+c=0的兩個根為?2和4,∴x1+x2=?=2.∴二次函數(shù)的對稱軸為x=?=×2=1.故選:C.【考點】本題考查了求二次函數(shù)的對稱軸,要求熟悉二次函數(shù)與一元二次方程的關(guān)系和兩根之和公式,并熟練運用.2、A【解析】【分析】根據(jù)給出的對稱軸求出函數(shù)解析式為,將一元二次方程的實數(shù)根可以看做與函數(shù)的有交點,再由的范圍確定的取值范圍即可求解;【詳解】∵的對稱軸為直線,∴,∴,∴一元二次方程的實數(shù)根可以看做與函數(shù)的有交點,∵方程在的范圍內(nèi)有實數(shù)根,當(dāng)時,,當(dāng)時,,函數(shù)在時有最小值2,∴,故選A.【考點】本題考查二次函數(shù)的圖象及性質(zhì);能夠?qū)⒎匠痰膶崝?shù)根問題轉(zhuǎn)化為二次函數(shù)與直線的交點問題,借助數(shù)形結(jié)合解題是關(guān)鍵.3、A【解析】【分析】由旋轉(zhuǎn)的性質(zhì)可得AM'=AM,BM=DM',∠BAM=∠DAM',∠MAM'=90°,∠ABM=∠ADM'=90°,由“SAS”可證△AMN≌△AM′N,可得MN=NM′,可得MN=BM+DN,故①正確;由“SAS”可證△AEF≌△AED',可得EF=D'E,由勾股定理可得BE2+DF2=EF2;故②正確;通過證明△DAE∽△BFA,可得,可證BC2=DE?BF,故③正確;通過證明點A,點B,點M,點F四點共圓,∠ABM=∠AFM=90°,∠AMF=∠ABF=45°,∠BAM=∠BFM,可證MO=EO,由∠BAM≠∠DAN,可得OE≠OF,故④錯誤,即可求解.【詳解】解:將△ABM繞點A逆時針旋轉(zhuǎn)90°,得到△ADM′,將△ADF繞點A順時針旋轉(zhuǎn)90°,得到△ABD',∴AM'=AM,BM=DM',∠BAM=∠DAM',∠MAM'=90°,∠ABM=∠ADM'=90°,∴∠ADM'+∠ADC=180°,∴點M'在直線CD上,∵∠MAN=45°,∴∠DAN+∠MAB=45°=∠DAN+∠DAM'=∠M'AN,∴∠M′AN=∠MAN=45°,又∵AN=AN,AM=AM',∴△AMN≌△AM′N(SAS),∴MN=NM′,∴M′N=M′D+DN=BM+DN,∴MN=BM+DN;故①正確;∵將△ADF繞點A順時針旋轉(zhuǎn)90°,得到△ABD',∴AF=AD',DF=D'B,∠ADF=∠ABD'=45°,∠DAF=∠BAD',∴∠D'BE=90°,∵∠MAN=45°,∴∠BAE+∠DAF=45°=∠BAD'+∠BAE=∠D'AE,∴∠D'AE=∠EAF=45°,又∵AE=AE,AF=AD',∴△AEF≌△AED'(SAS),∴EF=D'E,∵D'E2=BE2+D'B2,∴BE2+DF2=EF2;故②正確;∵∠BAF=∠BAE+∠EAF=∠BAE+45°,∠AEF=∠BAE+∠ABE=45°+∠BAE,∴∠BAF=∠AEF,又∵∠ABF=∠ADE=45°,∴△DAE∽△BFA,∴,又∵AB=AD=BC,∴BC2=DE?BF,故③正確;∵∠FBM=∠FAM=45°,∴點A,點B,點M,點F四點共圓,∴∠ABM=∠AFM=90°,∠AMF=∠ABF=45°,∠BAM=∠BFM,同理可求∠AEN=90°,∠DAN=∠DEN,∴∠EOM=45°=∠EMO,∴EO=EM,∴MO=EO,∵∠BAM≠∠DAN,∴∠BFM≠∠DEN,∴EO≠FO,∴OM≠FO,故④錯誤,故選:A.【考點】本題考查了全等三角形的判定和性質(zhì),正方形的性質(zhì),相似三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì)等知識,添加恰當(dāng)輔助線構(gòu)造全等三角形是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)Rt△ABC中,cos
B,tan
B,sin
A的定義,進(jìn)行判斷.【詳解】∵Rt△ABC中,sinA=,cosA=,sin
B=,tanB=,∴選項C正確,選項A、B、D錯誤,故選C.【考點】本題考查了銳角三角函數(shù)的定義.關(guān)鍵是熟練掌握銳角三角函數(shù)的定義及其變形.5、A【解析】【分析】作點A作,交BC于點D,作點B作,交AC于點E,根據(jù)長方形紙條的寬得出,繼而可證明是等邊三角形,則有,然后在直角三角形中利用銳角三角函數(shù)即可求出AB的值.【詳解】作點A作,交BC于點D,作點B作,交AC于點E,∵長方形的寬為2cm,,,.∴是等邊三角形,故選:A.【考點】本題主要考查等邊三角形的判定及性質(zhì),銳角三角函數(shù),掌握等邊三角形的判定及性質(zhì)和特殊角的三角函數(shù)值是解題的關(guān)鍵.6、A【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)和已知條件,對每一項逐一進(jìn)行判斷即可.【詳解】解:由圖像可知a<0,c>0,∵對稱軸在正半軸,∴>0,∴b>0,∴,故①正確;當(dāng)x=2時,y>0,故,故③正確;函數(shù)解析式為:y=a(x-1)2+2=ax2-2ax+a+2假設(shè)成立,結(jié)合解析式則有a+2<,解得a<,故②,④正確;故選:A.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,結(jié)合圖象,運用所學(xué)知識是解題關(guān)鍵.二、多選題1、AC【解析】【分析】根據(jù)題意及圖象先確定反比例函數(shù)解析式及正比例函數(shù)解析式,然后根據(jù)題意對各選項進(jìn)行判斷即可.【詳解】解:A、藥物釋放完畢后,y與t成反比例,設(shè),由圖象可得經(jīng)過點,∴k=3×,∴,當(dāng)y=1時,t=,∴正比例函數(shù)經(jīng)過點,設(shè)正比例函數(shù)解析式為y=at,將點代入求得:a=,∴正比例函數(shù)解析式為y=t,故A正確;B、由A選項可得,當(dāng)t=時,y達(dá)到最大為1,故B錯誤;C、當(dāng)t=6時,代入反比例函數(shù)可得:,∴6h后空氣中的含藥量低于0.25mg/m3,故C正確;D、根據(jù)圖象及C選項可得:空氣中含藥量不低于0.25mg/m3的時長小于6h,故D錯誤;故選:AC.【考點】題目主要考查一次函數(shù)與反比例函數(shù)的綜合應(yīng)用,理解題意,確定出一次函數(shù)與反比例函數(shù)解析式是解題關(guān)鍵.2、ABD【解析】【分析】根據(jù)三角形相似的判斷方法逐個判斷即可.【詳解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合題意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合題意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故選項不符合題意;D、BD2=CD·DA,不能判定△BDC與△ABC,符合題意;故選:ABD.【考點】此題考查了三角形相似的判定方法,解題的關(guān)鍵是熟練掌握三角形相似的判定方法.3、BC【解析】【分析】根據(jù)正切函數(shù)的定義即可一一判定.【詳解】解:,,,,,在中,,故選項A、D不正確;在中,,故選項B正確;在中,,,故選項C正確;故選:BC.【考點】本題考查了正切函數(shù)的定義和直角三角形的性質(zhì),熟練掌握和運用正切函數(shù)的定義和求法是解決本題的關(guān)鍵.4、BC【解析】【分析】由題意,拋物線經(jīng)過(0,0),(9,0),所以可以假設(shè)拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判斷.【詳解】解:由題意,拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故A錯誤,∴拋物線的對稱軸t=4.5,故B正確,∵t=9時,h=0,∴足球被踢出9s時落地,故C正確,∵t=1.5時,h=11.25,故D錯誤.∴正確的有②③,故選:BC【考點】本題考查二次函數(shù)的應(yīng)用、求出拋物線的解析式是解題的關(guān)鍵,屬于中考??碱}型.5、ABD【解析】【分析】根據(jù)三角形相似的判斷方法判斷即可.【詳解】解:A、∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC,符合題意;B、∵∠ADE=∠AC,∠A=∠A,∴△AED∽△ABC,符合題意;C、,不能判定△AED∽△ABC,不符合題意;D、∵,∠A=∠A,∴△AED∽△ABC,符合題意.故選:ABD.【考點】此題考查了三角形相似的判斷方法,解題的關(guān)鍵是熟練掌握三角形相似的判定方法.6、ACD【解析】【分析】根據(jù)圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個單位得到y(tǒng)=x2,再向上平移1個單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點】本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式,注意由目標(biāo)函數(shù)圖象到原函數(shù)圖象方向正好相反.7、ABCD【解析】【分析】根據(jù)三角函數(shù)的定義即可得到結(jié)論.【詳解】解:∵a=5,b=12,c=16,∴a2+b2≠c2,∴△ABC不是直角三角形,∴A、B、C、D四個選項都不對,故選:ABCD.【考點】本題考查的是銳角三角函數(shù)的定義,銳角A的對邊a與斜邊c的比叫做∠A的正弦;銳角A的鄰邊b與斜邊c的比叫做∠A的余弦;銳角A的對邊a與鄰邊b的比叫做∠A的正切.三、填空題1、-2【解析】【分析】根據(jù)二次函數(shù)圖象對稱軸所在的直線與x軸的交點的坐標(biāo),即為它的圖象與x軸兩交點之間線段中點的橫坐標(biāo),即可求得.【詳解】解:函數(shù)圖像與x軸的兩個交點坐標(biāo)為和由對稱軸所在的直線為:解得故答案為:-2.【考點】本題考查了二次函數(shù)的性質(zhì)及中點坐標(biāo)的求法,熟練掌握和運用二次函數(shù)的性質(zhì)及中點坐標(biāo)的求法是解決本題的關(guān)鍵.2、【解析】【分析】根據(jù)平行四邊形的性質(zhì)得到CD=AB=4,即C點坐標(biāo)為,進(jìn)而得到A點坐標(biāo)為,B點坐標(biāo)為,利用待定系數(shù)法即可求得函數(shù)解析式.【詳解】∵四邊形ABCD為平行四邊形∴CD=AB=4∴C點坐標(biāo)為∴A點坐標(biāo)為,B點坐標(biāo)為設(shè)函數(shù)解析式為,代入C點坐標(biāo)有解得∴函數(shù)解析式為,即故答案為.【考點】本題考查了平行四邊形的性質(zhì),和待定系數(shù)法求二次函數(shù)解析式,問題的關(guān)鍵是求出A點或B點的坐標(biāo).3、【解析】【分析】設(shè)拋物線沿直線方向移動個單位長度后頂點坐標(biāo)為(t,3t),再求出平移后的頂點坐標(biāo),最后求出平移后的函數(shù)關(guān)系式.【詳解】設(shè)拋物線沿直線方向移動個單位長度后頂點坐標(biāo)為(t,3t),∴,解得:t=1或t=-1(舍去),∴平移后的頂點坐標(biāo)為(1,3),∴移動后拋物線的解析式是.故答案為:.【考點】本題考查二次函數(shù)的圖象變換及一次函數(shù)的圖像,解題的關(guān)鍵是正確理解圖象變換的條件,本題屬于基礎(chǔ)題型.4、②④##④②【解析】【分析】先畫出函數(shù)圖像,判斷出當(dāng)時拋物線和反比例函數(shù)圖象上的點的縱坐標(biāo)的關(guān)系,確定拋物線右支與反比例函數(shù)圖象的交點個數(shù),再利用拋物線的對稱性與反比例函數(shù)的圖象與性質(zhì)直接判斷即可.【詳解】解:∵拋物線,∴該拋物線對稱軸為,頂點坐標(biāo)為(1,),將該拋物線向上平移()個單位長度,則頂點坐標(biāo)為(1,),當(dāng)時,反比例函數(shù)圖象上點的坐標(biāo)為(1,),如圖所示,拋物線平移后的頂點縱坐標(biāo)即為m,反比例函數(shù)上橫坐標(biāo)為1的點的縱坐標(biāo)即為s,∴m-s=,∵<k<,∴∴拋物線的右支與反比例函數(shù)圖象只有一個交點,且該交點橫坐標(biāo)大于1;∵平移后的拋物線與雙曲線y=(x>0)交于點P(p,q),M(1+,n),∴點M為拋物線右支與反比例函數(shù)圖象的交點,∴點P為拋物線左支與反比例函數(shù)圖象的交點,由于反比例函數(shù)的圖像在第一象限內(nèi)y隨x的增大而減小,且拋物線關(guān)于直線對稱∴1-<p<1;q>2k-k.∴②④正確;故答案為:②④.【考點】本題考查了拋物線與反比例函數(shù)的圖像與性質(zhì),解題關(guān)鍵是弄清楚這兩個交點分別位于拋物線的左支和右支上,再利用拋物線的軸對稱性和反比例函數(shù)圖像的增減性進(jìn)行判斷.5、4【解析】【分析】通過A、B兩點得出對稱軸,再根據(jù)對稱軸公式算出b,由此可得出二次函數(shù)表達(dá)式,從而算出最小值即可推出n的最小值.【詳解】∵A、B的縱坐標(biāo)一樣,∴A、B是對稱的兩點,∴對稱軸,即,∴b=-4.∴拋物線解析式為:.∴拋物線頂點(2,-3).∴滿足題意n的最小值為4,故答案為:4.【考點】本題考查二次函數(shù)對稱軸的性質(zhì),頂點式的變形及拋物線的平移,關(guān)鍵在于根據(jù)對稱軸的性質(zhì)從題意中判斷出對稱軸.6、
1
【解析】【分析】(1)連接AO,DO,證明,可得,求出即可求解;(2)設(shè),則,由勾股定理可得,即可求EF的最小值.【詳解】解:(1)連接AO,DO,∵,∴,∵四邊形ABCD是正方形,O是中心,∴,,,∴,∴,∴,∴,∵,∴,∴故答案為:1;(2)設(shè),則,,在中,,∴當(dāng)時,EF有最小值,故答案為:.【考點】本題考查正方形的性質(zhì),全等三角形的判定與性質(zhì),二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)求最值的方法是解題的關(guān)鍵.7、5【解析】【分析】根據(jù)相似三角形的性質(zhì)確定兩直角邊的比值為1:2,以及6×6網(wǎng)格圖形中,最長線段為6,進(jìn)行嘗試,可確定、、為邊的這樣一組三角形滿足條件.【詳解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴與Rt△ABC相似的格點三角形的兩直角邊的比值為1:2,若該三角形最短邊長為4,則另一直角邊長為8,但在6×6網(wǎng)格圖形中,最長線段為6,但此時畫出的直角三角形為等腰直角三角形,從而畫不出端點都在格點且長為8的線段,故最短直角邊長應(yīng)小于4,在圖中嘗試,可畫出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此時△DEF的面積為:×2÷2=10,△DEF為面積最大的三角形,其斜邊長為:5.故答案為:5.【考點】本題考查了作圖-應(yīng)用與設(shè)計、相似三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學(xué)會利用數(shù)形結(jié)合的思想解決問題,屬于中考填空題中的壓軸題.四、解答題1、(1)(2)價格為21元時,才能使每月獲得最大利潤,最大利潤為3630元【解析】【分析】(1)設(shè),把,和,代入求出k、b的值,從而得出答案;(2)根據(jù)總利潤=每件利潤×每月銷售量列出函數(shù)解析式,配方成頂點式,利用二次函數(shù)的性質(zhì)求解可得答案.(1)解:設(shè),把,和,代入可得,解得,則;(2)解:每月獲得利潤.∵,∴當(dāng)時,P有最大值,最大值為3630.答:當(dāng)價格為21元時,才能使每月獲得最大利潤,最大利潤為3630元.【考點】本題主要考查了一次函數(shù)解析式的求法和二次函數(shù)的應(yīng)用,解題的關(guān)鍵是理解題意找到其中蘊(yùn)含的相等關(guān)系,并據(jù)此得出函數(shù)解析式及二次函數(shù)的性質(zhì),然后再利用二次函數(shù)求最值.2、(1)頂點P的坐標(biāo)為;(2)①6個;②,.【解析】【分析】(1)由拋物線解析式直接可求;(2)①由已知可知A(0,2),C(2+,-2),畫出函數(shù)圖象,觀察圖象可得;②分兩種情況求:當(dāng)a>0時,拋物線定點經(jīng)過(2,-2)時,a=1,拋物線定點經(jīng)過(2,-1)時,a=,則<a≤1;當(dāng)a<0時,拋物線定點經(jīng)過(2,2)時,a=-1,拋物線定點經(jīng)過(2,1)時,a=-,則-1≤a<-.【詳解】解:(1)∵y=ax2-4ax+2a=a(x-2)2-2a,∴頂點為(2,-2a);(2)如圖,①∵a=2,∴y=2x2-8x+2,y=-2,∴A(0,2),C(2+,-2),∴有6個整數(shù)點;②當(dāng)a>0時,拋物線定點經(jīng)過(2,-2)時,a=1,拋物線定點經(jīng)過(2,-1)時,,;∴.當(dāng)時,拋物線頂點經(jīng)過點(2,2)時,;拋物線頂點經(jīng)過點(2,1)時,;∴.∴綜上所述:,.【考點】本題考查二次函數(shù)的圖象及性質(zhì);熟練掌握二次函數(shù)的圖象及性質(zhì)是解題的關(guān)鍵.3、(1)見解析(2)(3)的值為1或-5【解析】【分析】(1)計算判別式的值,得到,即可判定;(2)計算二次函數(shù)的對稱軸為:直線,利用當(dāng)拋物線開口向上時,誰離對稱軸遠(yuǎn)誰大判斷即可;(3)先得到拋物線沿y軸翻折后的函數(shù)關(guān)系式,再利用對稱軸與取值范圍的位置分類討論即可.(1)證明:令,則∴∴不論為何實數(shù),方程有兩個不相等的實數(shù)根∴無論為何實數(shù),該二次函數(shù)的圖象與軸總有兩個公共點(2)解:二次函數(shù)的對稱軸為:直線∵,拋物線開口向上∴拋物線上的點離對稱軸越遠(yuǎn)對應(yīng)的函數(shù)值越大∵∴M點到對稱軸的距離為:1N點到對稱軸的距離為:2∴(3)解:∵拋物線∴沿軸翻折后的函數(shù)解析式為∴該拋物線的對稱軸為直線①若,即,則當(dāng)時,有最小值∴解得,∵∴②若,即,則當(dāng)時,有最小值-1不合題意,舍去③若,,則當(dāng)時,有最小值∴解得,∵∴綜上,的值為1或-5【考點】本題考查了拋物線與x軸的交點以及二次函數(shù)的最值問題,利用一元二次方程根的判別式判斷拋物線與x軸的交點情況;熟練掌握二次函數(shù)的最值情況、根據(jù)對稱軸與取值范圍的位置關(guān)系來確定二次函數(shù)的最值是解本題的關(guān)鍵.4、(1)見解析;(2)【解析】【分析】(1)根據(jù)所給的相似對角線的證明方法證明即可;(2)由題可證的,得到,過點E作,可得出EQ,根據(jù)即可求解;【詳解】(1)證明:∵,平分,∴,∴.∵,∴.,∴∴是四邊形ABCD的“相似對角線”.(2)∵是四邊形EFGH的“相似對角線”,∴三角形EFH與三角形HFG相似.又,∴,∴,∴.過點E作,垂足為.則.∵,∴,∴,∴,∴.【考點】本題主要考查了四邊形綜合知識點,涉及了相似三角形,解直角三角形等知識,準(zhǔn)確分析并能靈活運用相關(guān)知識是解題的關(guān)鍵.5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026國家中煙物流技術(shù)有限責(zé)任公司第一批招聘5人筆試備考試題及答案解析
- 2026山東事業(yè)單位統(tǒng)考濟(jì)南高新區(qū)代管街道辦事處招聘初級綜合類崗位筆試模擬試題及答案解析
- 2026蘆溪供銷冷鏈科技有限公司招聘勞務(wù)外包工作人員1人考試備考題庫及答案解析
- 2025年工業(yè)互聯(lián)網(wǎng)邊緣計算系統(tǒng)知識考察試題及答案解析
- 2025年注冊測繪師案例分析真題及答案解析
- 培訓(xùn)學(xué)校安全宣傳制度
- 社區(qū)培訓(xùn)工作基地制度
- 體育傳統(tǒng)項目培訓(xùn)制度
- 騰訊員工培訓(xùn)制度
- 監(jiān)理崗前培訓(xùn)制度
- 2026年中國航空傳媒有限責(zé)任公司市場化人才招聘備考題庫有答案詳解
- 2026年《全科》住院醫(yī)師規(guī)范化培訓(xùn)結(jié)業(yè)理論考試題庫及答案
- 2026北京大興初二上學(xué)期期末語文試卷和答案
- 專題23 廣東省深圳市高三一模語文試題(學(xué)生版)
- 2026年時事政治測試題庫100道含完整答案(必刷)
- 保健按摩師初級試題
- 上腔靜脈綜合征的護(hù)理
- 2021年度四川省專業(yè)技術(shù)人員繼續(xù)教育公需科目(答案整合)
- 醫(yī)療廢物處理方案
- 船舶靠離泊作業(yè)風(fēng)險辨識表
- DB37T 2673-2019醫(yī)療機(jī)構(gòu)能源消耗定額標(biāo)準(zhǔn)
評論
0/150
提交評論