難點(diǎn)解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷含答案詳解【突破訓(xùn)練】_第1頁(yè)
難點(diǎn)解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷含答案詳解【突破訓(xùn)練】_第2頁(yè)
難點(diǎn)解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷含答案詳解【突破訓(xùn)練】_第3頁(yè)
難點(diǎn)解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷含答案詳解【突破訓(xùn)練】_第4頁(yè)
難點(diǎn)解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷含答案詳解【突破訓(xùn)練】_第5頁(yè)
已閱讀5頁(yè),還剩37頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計(jì)12分)1、已知點(diǎn)都在反比例函數(shù)的圖象上,且,則下列結(jié)論一定正確的是(

)A. B. C. D.2、把拋物線向右平移2個(gè)單位,然后向下平移1個(gè)單位,則平移后得到的拋物線解析式是(

)A. B.C. D.3、當(dāng)0x3,函數(shù)y=﹣x2+4x+5的最大值與最小值分別是()A.9,5 B.8,5 C.9,8 D.8,44、如圖,在中,,,,以點(diǎn)為圓心,為半徑的圓與所在直線的位置關(guān)系是(

)A.相交 B.相離 C.相切 D.無(wú)法判斷5、構(gòu)建幾何圖形解決代數(shù)問(wèn)題是“數(shù)形結(jié)合”思想的重要性,在計(jì)算tan15°時(shí),如圖.在Rt△ACB中,∠C=90°,∠ABC=30°,延長(zhǎng)CB使BD=AB,連接AD,得∠D=15°,所以tan15°.類比這種方法,計(jì)算tan22.5°的值為()A. B.﹣1 C. D.6、若y=(m+1)是二次函數(shù),則m=

)A.-1 B.7 C.-1或7 D.以上都不對(duì)二、多選題(7小題,每小題2分,共計(jì)14分)1、如圖,在2×3的方格中,畫有格點(diǎn)△ABC,下列選項(xiàng)的方格中所畫格點(diǎn)三角形(陰影部分)與△ABC不相似的是()A. B. C. D.2、已知:如圖,AB為⊙O的直徑,CD、CB為⊙O的切線,D、B為切點(diǎn),OC交⊙O于點(diǎn)E,AE的延長(zhǎng)線交BC于點(diǎn)F,連接AD、BD.以下結(jié)論中正確的有()A.AD∥OC B.點(diǎn)E為△CDB的內(nèi)心 C.FC=FE D.CE?FB=AB?CF3、運(yùn)動(dòng)員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過(guò)的時(shí)間t(單位:s)之間的關(guān)系如下表:t01234567…h(huán)08141820201814…下列結(jié)論正確的是(

)A.足球距離地面的最大高度為20mB.足球飛行路線的對(duì)稱軸是直線C.足球被踢出9s時(shí)落地D.足球被踢出1.5s時(shí),距離地面的高度是11m4、如圖所示,AB是⊙O的直徑,D,E是半圓上任意兩點(diǎn),連接AD,DE,AE與BD相交于點(diǎn)C,要使與相似,可以添加一個(gè)條件下列添加的條件中正確的是(

)A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD?CD5、如圖,在⊙O中,AB是⊙O的直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是弧AD的中點(diǎn),弦CE⊥AB于點(diǎn)F,過(guò)點(diǎn)D的切線交EC的延長(zhǎng)線于點(diǎn)G,連接AD,分別交CF、BC于點(diǎn)P、Q,連接AC.則下列結(jié)論中正確的是()A.∠BAD=∠ABC B.GP=GD C.點(diǎn)P是△ACQ的外心 D.AP?AD=CQ?CB6、在等邊中,,AD是邊BC上的中線,點(diǎn)E是BD上點(diǎn)(不與B、D重合),點(diǎn)F是AC上一點(diǎn),連接EF交AD于點(diǎn)G,,以下結(jié)論正確的是(

)A.當(dāng)EF//AB時(shí), B.當(dāng)時(shí),C. D.點(diǎn)G可能是AD的中點(diǎn)7、如圖,在⊙O中,AB為直徑,BC為切線,弦ADOC,直線CD交BA的延長(zhǎng)線于點(diǎn)E,連接BD.下列結(jié)論正確的是(

)A.CD是⊙O的切線 B.CO⊥DBC.△EDA∽△EBD D.第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計(jì)14分)1、圖1是一輛吊車的實(shí)物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動(dòng)點(diǎn)A離地面BD的高度AH為3.4m.當(dāng)起重臂AC長(zhǎng)度為9m,張角∠HAC為118°時(shí),操作平臺(tái)C離地面的高度為_______米.(結(jié)果保留小數(shù)點(diǎn)后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)2、如圖,拋物線與直線交于A(-1,P),B(3,q)兩點(diǎn),則不等式的解集是_____.3、拋物線的開口方向向______.4、如圖是用杠桿撬石頭的示意圖,是支點(diǎn),當(dāng)用力壓杠桿的端時(shí),杠桿繞點(diǎn)轉(zhuǎn)動(dòng),另一端向上翹起,石頭就被撬動(dòng).現(xiàn)有一塊石頭,要使其滾動(dòng),杠桿的端必須向上翹起,已知杠桿的動(dòng)力臂與阻力臂之比為6:1,要使這塊石頭滾動(dòng),至少要將杠桿的端向下壓______.5、在平面直角坐標(biāo)系中,二次函數(shù)過(guò)點(diǎn)(4,3),若當(dāng)0≤x≤a時(shí),y有最大值7,最小值3,則a的取值范圍是_____.6、如圖,已知DC為∠ACB的平分線,DE∥BC.若AD=8,BD=10,BC=15,求EC的長(zhǎng)=_____.7、如圖,AB是⊙O的直徑,AC是⊙O的切線,切點(diǎn)為A,BC交⊙O于點(diǎn)D,直線DE是⊙O的切線,切點(diǎn)為D,交AC于E,若⊙O半徑為1,BC=4,則圖中陰影部分的面積為_____.四、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,A,B兩點(diǎn)被池塘隔開,在AB外取一點(diǎn)C,連接AC,BC,在AC上取點(diǎn)M,使AM=3MC,作MN∥AB交BC于點(diǎn)N,量得MN=38m,求AB的長(zhǎng).2、定義:我們知道,四邊形的一條對(duì)角線把這個(gè)四邊形分成了兩個(gè)三角形,如果這兩個(gè)三角形相似(不全等),我們就把這條對(duì)角線叫做這個(gè)四邊形的“相似對(duì)角線”.(1)如圖1,在四邊形中,,,對(duì)角線平分.求證:是四邊形的“相似對(duì)角線”;(2)如圖2,已知是四邊形的“相似對(duì)角線”,.連接,若的面積為,求的長(zhǎng).3、頂點(diǎn)為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點(diǎn)C,直線y=﹣x+m經(jīng)過(guò)點(diǎn)C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點(diǎn)M為線段BD上不與B、D重合的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作x軸的垂線,垂足為N,設(shè)點(diǎn)M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;(3)點(diǎn)P為x軸的正半軸上一個(gè)動(dòng)點(diǎn),過(guò)P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點(diǎn)G的對(duì)應(yīng)點(diǎn)F恰好落在y軸上時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).4、某賓館共有80間客房.賓館負(fù)責(zé)人根據(jù)經(jīng)驗(yàn)作出預(yù)測(cè):今年5月份,每天的房間空閑數(shù)y(間)與定價(jià)x(元/間)之間滿足y=x﹣42(x≥168).若賓館每天的日常運(yùn)營(yíng)成本為4000元,有客人入住的房間,賓館每天每間另外還需支出36元的各種費(fèi)用,賓館想要獲得最大利潤(rùn),同時(shí)也想讓客人得到實(shí)惠.(1)求入住房間z(間)與定價(jià)x(元/間)之間關(guān)系式;(2)應(yīng)將房間定價(jià)確定為多少元時(shí),獲得利潤(rùn)最大?求出最大利潤(rùn)?5、小明和小麗先后從A地出發(fā)同一直道去B地,設(shè)小麗出發(fā)第時(shí),小麗、小明離B地的距離分別為、,與x之間的數(shù)表達(dá)式,與x之間的函數(shù)表達(dá)式是.(1)小麗出發(fā)時(shí),小明離A地的距離為.(2)小麗發(fā)至小明到達(dá)B地這段時(shí)間內(nèi),兩人何時(shí)相距最近?最近距離是多少?6、如圖,在正方形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,點(diǎn)E是BC上的一個(gè)動(dòng)點(diǎn),連接DE,交AC于點(diǎn)F.(1)如圖①,當(dāng)時(shí),求的值;(2)如圖②,當(dāng)點(diǎn)E是BC的中點(diǎn)時(shí),過(guò)點(diǎn)F作FG⊥BC于點(diǎn)G,求證:CG=BG.

-參考答案-一、單選題1、C【解析】【分析】根據(jù)反比例函數(shù)的性質(zhì),可得答案.【詳解】反比例函數(shù)中,=-2020<0,圖象位于二、四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故選:C.【考點(diǎn)】本題考查了反比例函數(shù)的性質(zhì),利用反比例函數(shù)的性質(zhì):k<0時(shí),圖象位于二四象限是解題關(guān)鍵.2、D【解析】【分析】直接根據(jù)“左加右減,上加下減”的原則進(jìn)行解答即可.【詳解】由“左加右減”的原則可知,拋物線y=2x2向右平移2個(gè)單位所得拋物線是y=2(x?2)2;由“上加下減”的原則可知,拋物線y=2(x?2)2向下平移1個(gè)單位所得拋物線是y=2(x?2)2?1.故選D.【考點(diǎn)】本題考查了二次函數(shù)圖象與幾何變換,解題的關(guān)鍵是掌握二次函數(shù)圖象與幾何變換.3、A【解析】【分析】利用配方法把原方程化為頂點(diǎn)式,再根據(jù)二次函數(shù)的性質(zhì)即可解答.【詳解】y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴當(dāng)x=2時(shí),最大值是9,∵0≤x≤3,∴x=0時(shí),最小值是5,故選:A.【考點(diǎn)】本題考查二次函數(shù)的最值,掌握二次函數(shù)的性質(zhì)與利用配方法將一般式改為頂點(diǎn)式是解答本題的關(guān)鍵.4、A【解析】【分析】過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,由題意易得AB=5,然后可得,進(jìn)而根據(jù)直線與圓的位置關(guān)系可求解.【詳解】解:過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,如圖所示:∵,,,∴,根據(jù)等積法可得,∴,∵以點(diǎn)為圓心,為半徑的圓,∴該圓的半徑為,∵,∴圓與AB所在的直線的位置關(guān)系為相交,故選A.【考點(diǎn)】本題主要考查直線與圓的位置關(guān)系,熟練掌握直線與圓的位置關(guān)系是解題的關(guān)鍵.5、B【解析】【分析】作Rt△ABC,使∠C=90°,∠ABC=45°,延長(zhǎng)CB到D,使BD=AB,連接AD,根據(jù)構(gòu)造的直角三角形,設(shè)AC=x,再用x表示出CD,即可求出tan22.5°的值.【詳解】解:作Rt△ABC,使∠C=90°,∠ABC=90°,∠ABC=45°,延長(zhǎng)CB到D,使BD=AB,連接AD,設(shè)AC=x,則:BC=x,AB=,CD=,故選:B.【考點(diǎn)】本題考查解直角三角形,解題的關(guān)鍵是根據(jù)閱讀構(gòu)造含45°的直角三角形,再作輔助線得到22.5°的直角三角形.6、B【解析】【分析】令x的指數(shù)為2,系數(shù)不為0,列出方程與不等式解答即可.【詳解】由題意得:m2-6m-5=2;且m+1≠0;解得m=7或-1;m≠-1,∴m=7,故選:B.【考點(diǎn)】利用二次函數(shù)的定義,二次函數(shù)中自變量的指數(shù)是2;二次項(xiàng)的系數(shù)不為0.二、多選題1、BCD【解析】【分析】先判斷格中所畫格點(diǎn)三角形為直角三角形,利用兩組對(duì)應(yīng)邊的比相等且夾角對(duì)應(yīng)相等的兩個(gè)三角形相似,否則不相似,對(duì)各選項(xiàng)進(jìn)行判斷.【詳解】解:由圖知:∠ACB=90°,AC=2,BC=1,AC:BC=2,A選項(xiàng)中,三條線段的長(zhǎng)為,因?yàn)椋巳切螢橹苯侨切?,長(zhǎng)直角邊與短直角邊的比為2,所以A選項(xiàng)的方格中所畫格點(diǎn)三角形(陰影部分)與△ABC相似,不符合題意;B選項(xiàng)中,長(zhǎng)直角邊與短直角邊的比為3,所以B中格點(diǎn)三角形與△ABC不相似,符合題意;C選項(xiàng)中,三條線段的長(zhǎng)為√,因?yàn)?,此三角形為直角三角形,兩直角邊的比?,所以C選項(xiàng)的方格中所畫格點(diǎn)三角形(陰影部分)與△ABC不相似,符合題意;D選項(xiàng)中,三角形的兩直角邊的比為1:1.所以D中格點(diǎn)三角形與△ABC不相似,符合題意,故選:BCD.【考點(diǎn)】本題考查相似三角形的判定,能在格點(diǎn)中表示各個(gè)線段的長(zhǎng)度和掌握相似三角形的判定定理是解決此題的關(guān)鍵.2、ABD【解析】【分析】連接OD,由CD、CB為⊙O的切線,可得DC=BC,由OD=OB,可得OC為BD的垂直平分線,可證OC⊥BD,再證AD⊥BD,可判斷選項(xiàng)A正確;連接DE、BE,CD、CB為⊙O的切線,可得∠ODE+∠CDE=90°,∠OBE+∠CBE=90°,推得∠CDE=∠DOE,∠CBE=∠BOE,由,可得∠EDB=∠EBD=∠CDE=∠CBE,可判斷選項(xiàng)B正確;用反證法假設(shè)FC=FE,可得∠FCE=∠FEC,可證△CDB為等邊三角形,與已知△CDB為等腰三角形矛盾,可判斷選項(xiàng)C不正確;先證△ABE∽△BFE,可得,再證△CEF∽△CBE,可得,推出,可判斷選項(xiàng)D正確.【詳解】解:連接OD,∵CD、CB為⊙O的切線,∴DC=BC,∵OD=OB,∴OC為BD的垂直平分線,∴OC⊥BD,∵AB為直徑,∴∠ADB=90°,∴AD⊥BD,∴AD∥OC,故選項(xiàng)A正確;連接DE、BE,∵CD、CB為⊙O的切線,∴OD⊥DC,OB⊥BC,∴∠ODE+∠CDE=90°,∠OBE+∠CBE=90°,∵2∠ODE+∠DOE=180°,2∠OBE+∠BOE=180°,∴∠ODE+∠DOE=90°,∠OBE+∠BOE=90°,∴∠CDE=∠DOE,∠CBE=∠BOE,∵,∴∠DAE=∠DBE=∠EDB=∠EBD=∠DOE=∠BOE,∴∠EDB=∠EBD=∠CDE=∠CBE,∴點(diǎn)E為△CDB各內(nèi)角平分線的交點(diǎn),故選項(xiàng)B正確;假設(shè)FC=FE,∴∠FCE=∠FEC,∵∠CEF=∠AEO=∠EAB=∠EDB=∠EBD,∴2∠EDB=2∠EBD=2∠BCE即∠DCB=∠CDB=∠CBD,∴△CDB為等邊三角形,與已知△CDB為等腰三角形矛盾,故假設(shè)不正確,故選項(xiàng)C不正確;∵AB為直徑,∴∠AEB=90°又∵BC為切線,AB為直徑,∴∠ABF=90°,∴∠FBE+∠EBA=90°,∠EAB+∠EBA=90°,∴∠EAB=∠EBF,∠AEB=∠BEF=90°,∴△ABE∽△BFE,∴,∵∠CBE=∠CEF,∠ECF=∠BCE,∴△CEF∽△CBE,∴,∴,∴CE?FB=AB?CF,故選項(xiàng)D正確;結(jié)論中正確的有ABD.故選擇ABD.【考點(diǎn)】本題考查圓的切線性質(zhì),線段垂直平分線判定與性質(zhì),圓周角定理,證明三角形內(nèi)心,反證法,三角形相似判定與性質(zhì),掌握?qǐng)A的切線性質(zhì),線段垂直平分線判定與性質(zhì),圓周角定理,證明三角形內(nèi)心,反證法,三角形相似判定與性質(zhì)是解題關(guān)鍵.3、BC【解析】【分析】由題意,拋物線經(jīng)過(guò)(0,0),(9,0),所以可以假設(shè)拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判斷.【詳解】解:由題意,拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故A錯(cuò)誤,∴拋物線的對(duì)稱軸t=4.5,故B正確,∵t=9時(shí),h=0,∴足球被踢出9s時(shí)落地,故C正確,∵t=1.5時(shí),h=11.25,故D錯(cuò)誤.∴正確的有②③,故選:BC【考點(diǎn)】本題考查二次函數(shù)的應(yīng)用、求出拋物線的解析式是解題的關(guān)鍵,屬于中考??碱}型.4、ABD【解析】【分析】根據(jù)有兩組角對(duì)應(yīng)相等的兩個(gè)三角形相似可對(duì)A選項(xiàng)判斷;根據(jù)圓周角定理和有兩組角對(duì)應(yīng)相等的兩個(gè)三角形相似可對(duì)B選項(xiàng)判斷;根據(jù)兩組對(duì)應(yīng)邊的比相等且夾角對(duì)應(yīng)相等的兩個(gè)三角形相似可對(duì)C、D選項(xiàng)判斷.【詳解】解:A、,,,故A選項(xiàng)的添加條件正確;B、,,而,,,故B選項(xiàng)的添加條件正確;C、∵AD·AB=CD·BD,∴AD∶BD=CD∶AB,又∵∠ADC≠∠B,∴無(wú)法證明與相似,故C選項(xiàng)的添加條件不正確;D、∵,,又,,故D選項(xiàng)的添加條件正確.故選:ABD.【考點(diǎn)】本題考查了相似三角形的判定:兩組對(duì)應(yīng)邊的比相等且夾角對(duì)應(yīng)相等的兩個(gè)三角形相似;有兩組角對(duì)應(yīng)相等的兩個(gè)三角形相似.也考查了圓周角定理.5、BCD【解析】【分析】A錯(cuò)誤,假設(shè)成立,推出矛盾即可;B正確.想辦法證明即可;C正確.想辦法證明即可;D正確.證明,可得,證明,可得,證明,可得,由此即可解決問(wèn)題;【詳解】解:A錯(cuò)誤,假設(shè),則,,,顯然不可能,故A錯(cuò)誤.B正確.連接.是切線,,,,,,,,,故B正確.C正確.,,,,,,是直徑,,,,,,,點(diǎn)是的外心.故C正確.D正確.連接.,,,,,,,,可得,,,,可得,.故D正確,故選:BCD.【考點(diǎn)】本題考查相似三角形的判定和性質(zhì)、垂徑定理、圓周角定理、切線的性質(zhì)等知識(shí),解題的關(guān)鍵是正確現(xiàn)在在相似三角形解決問(wèn)題,屬于中考選擇題中的壓軸題.6、ABC【解析】【分析】由題意分別畫出圖形,然后對(duì)選項(xiàng)逐一判斷即可.【詳解】解:A、如圖:,,∵等邊,也為等邊三角形,,,,,;故A選項(xiàng)正確;B、如圖:∵等邊,,,,,;故B正確;C、如圖所示:過(guò)點(diǎn)F作于點(diǎn)H,,,,,,,,,是等邊三角形,AD是邊BC上的中線,,,,,故選項(xiàng)C正確;D、若G是AD的中點(diǎn),,則四邊形AEDF為平行四邊形,由題意可得:,故假設(shè)不成立,故選項(xiàng)D不正確.故選:ABC.【考點(diǎn)】本題考查了等邊三角形的性質(zhì),平行線的性質(zhì),平行四邊形的判定,銳角三角函數(shù),相似三角形的判定與性質(zhì),熟練掌握以上性質(zhì)和判定是解題的關(guān)鍵.7、ABC【解析】【分析】由切線的性質(zhì)得∠CBO=90°,首先連接OD,易證得△COD≌△COB(SAS),然后由全等三角形的對(duì)應(yīng)角相等,求得∠CDO=90°,即可證得直線CD是⊙O的切線;根據(jù)全等三角形的性質(zhì)得到CD=CB,根據(jù)線段垂直平分線的判定定理得到即CO⊥DB;根據(jù)余角的性質(zhì)得到∠ADE=∠BDO,等量代換得到∠EDA=∠DBE,根據(jù)相似三角形的判定定理得到△EDA∽△EBD;根據(jù)相似三角形的性質(zhì)得到,于是得到ED?BC=BO?BE.【詳解】解:A.證明:連接DO.∵AB為⊙O的直徑,BC為⊙O的切線,∴∠CBO=90°,∵ADOC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵點(diǎn)D在⊙O上,∴CD是⊙O的切線;故選項(xiàng)正確,符合題意;B.證明:∵△COD≌△COB,∴CD=CB,∵OD=OB,∴CO垂直平分DB,即CO⊥DB,故選項(xiàng)正確,符合題意;C.證明:∵AB為⊙O的直徑,DC為⊙O的切線,∴∠EDO=∠ADB=90°,∴∠EDA+∠ADO=∠BDO+∠ADO=90°,∴∠ADE=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠EDA=∠DBE,∵∠E=∠E,∴△EDA∽△EBD,故選項(xiàng)正確,符合題意;D.證明:∵∠EDO=∠EBC=90°,∠E=∠E,∴△EOD∽△ECB,∴,∵OD=OB,∴ED?BC=BO?BE,故選項(xiàng)錯(cuò)誤,不符合題意.故選:ABC.【考點(diǎn)】本題主要考查了切線的判定、全等三角形的判定與性質(zhì)以及相似三角形的判定與性質(zhì),注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用是解答此題的關(guān)鍵.三、填空題1、7.6【解析】【分析】作于,于,如圖2,易得四邊形為矩形,則,,再計(jì)算出,在中利用正弦可計(jì)算出,然后計(jì)算即可.【詳解】解:作于E,于,如圖2,∴四邊形為矩形,∴,,∴,∴在中,,∴,∴,∴操作平臺(tái)離地面的高度為.故答案是:.【考點(diǎn)】本題考查了解直角三角形的應(yīng)用:先將實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題(畫出平面圖形,構(gòu)造出直角三角形轉(zhuǎn)化為解直角三角形問(wèn)題),然后利用三角函數(shù)的定義進(jìn)行幾何計(jì)算.2、或.【解析】【分析】由可變形為,即比較拋物線與直線之間關(guān)系,而直線PQ:與直線AB:關(guān)于與y軸對(duì)稱,由此可知拋物線與直線交于,兩點(diǎn),再觀察兩函數(shù)圖象的上下位置關(guān)系,即可得出結(jié)論.【詳解】解:∵拋物線與直線交于,兩點(diǎn),∴,,∴拋物線與直線交于,兩點(diǎn),觀察函數(shù)圖象可知:當(dāng)或時(shí),直線在拋物線的下方,∴不等式的解集為或.故答案為或.【考點(diǎn)】本題考查了二次函數(shù)與不等式,根據(jù)兩函數(shù)圖象的上下位置關(guān)系找出不等式的解集是解題的關(guān)鍵.3、下【解析】【分析】根據(jù)二次函數(shù)二次項(xiàng)系數(shù)的大小判斷即可;【詳解】∵,∴拋物線開口向下;故答案是下.【考點(diǎn)】本題主要考查了判斷拋物線的開口方向,準(zhǔn)確分析判斷是解題的關(guān)鍵.4、60【解析】【分析】首先根據(jù)題意構(gòu)造出相似三角形,然后根據(jù)相似三角形的對(duì)應(yīng)邊成比例求得端點(diǎn)A向下壓的長(zhǎng)度.【詳解】解:如圖;AM、BN都與水平線垂直,即AM∥BN;易知:△ACM∽△BCN;∴,∵AC與BC之比為6:1,∴,即AM=6BN;∴當(dāng)BN≥10cm時(shí),AM≥60cm;故要使這塊石頭滾動(dòng),至少要將杠桿的端點(diǎn)A向下壓60cm.故答案為:60.【考點(diǎn)】本題考查相似三角形的判定與性質(zhì)的實(shí)際應(yīng)用,正確的構(gòu)造相似三角形是解題的關(guān)鍵.5、2≤a≤4.【解析】【分析】先求得拋物線的解析式,根據(jù)二次函數(shù)的性質(zhì)以及二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可得到a的取值范圍.【詳解】解:∵二次函數(shù)y=-x2+mx+3過(guò)點(diǎn)(4,3),∴3=-16+4m+3,∴m=4,∴y=-x2+4x+3,∵y=-x2+4x+3=-(x-2)2+7,∴拋物線開口向下,對(duì)稱軸是x=2,頂點(diǎn)為(2,7),函數(shù)有最大值7,把y=3代入y=-x2+4x+3得3=-x2+4x+3,解得x=0或x=4,∵當(dāng)0≤x≤a時(shí),y有最大值7,最小值3,∴2≤a≤4.故答案為:2≤a≤4.【考點(diǎn)】本題考查了待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.6、【解析】【分析】先由角平分線的定義及平行線的性質(zhì)求得∠EDC=∠ECD,從而EC=DE;再DE∥BC,證得△ADE∽△ABC,然后根據(jù)相似三角形的性質(zhì)列出比例式,求得DE的長(zhǎng),即為EC的長(zhǎng).【詳解】解:∵DC為∠ACB的平分線∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案為:【考點(diǎn)】本題考查了角平分線的定義、平行線的性質(zhì)、等腰三角形的判定及相似三角形的判定與性質(zhì),熟練掌握相關(guān)性質(zhì)與定理是解題的關(guān)鍵.7、【解析】【分析】連接OD、OE、AD,AD交OE于F,如圖,根據(jù)切線的性質(zhì)得到∠BAC=90°,利用余弦的定義可計(jì)算出∠B=60°,則根據(jù)圓周角定理得到∠ADB=90°,∠AOD=120°,于是可計(jì)算出BD=1,AD=,接著證明△ADE為等邊三角形,求出OF=,根據(jù)扇形的面積公式,利用S陰影部分=S四邊形OAED﹣S扇形AOD=S△ADE+S△AOD﹣S扇形AOD進(jìn)行計(jì)算.【詳解】解:連接OD、OE、AD,AD交OE于F,如圖,∵AC是⊙O的切線,切點(diǎn)為A,∴AB⊥AC,∴∠BAC=90°,在Rt△ABC中,cosB===,∴∠B=60°,∴∠AOD=2∠B=120°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-∠B=90°-60°=30°,在Rt△ADB中,BD=AB=1,∴AD=BDtan60°=BD=,∵直線DE、EA都是⊙O的切線,∴EA=ED,∠DAE=90°-∠BAD=90°-30°=60°,∴△ADE為等邊三角形,而OA=OD,∴OE垂直平分AD,∴∠AFO=90°,在Rt△AOF中,∠OAF=30°,∴OF=OA=,∴S陰影部分=S四邊形OAED﹣S扇形AOD,=S△ADE+S△AOD﹣S扇形AOD,=×()2+××﹣,=.故答案為.【考點(diǎn)】本題考查圓的切線,圓周角定理,扇形面積公式,銳角三角函數(shù)求角,30°角直角三角形的性質(zhì),掌握和運(yùn)用圓的切線,圓周角定理,扇形面積公式,銳角三角函數(shù)求角,30°角直角三角形的性質(zhì)是解題關(guān)鍵.四、解答題1、.【解析】【分析】先根據(jù)可判斷出,再根據(jù)相似三角形的對(duì)應(yīng)邊成比例列出方程解答即可.【詳解】解:,,,,,即,.的長(zhǎng)為.【考點(diǎn)】本題考查相似三角形性質(zhì)的應(yīng)用.解題時(shí)關(guān)鍵是找出相似的三角形,然后根據(jù)對(duì)應(yīng)邊成比例列出方程,建立適當(dāng)?shù)臄?shù)學(xué)模型來(lái)解決問(wèn)題.2、(1)見解析;(2)【解析】【分析】(1)根據(jù)所給的相似對(duì)角線的證明方法證明即可;(2)由題可證的,得到,過(guò)點(diǎn)E作,可得出EQ,根據(jù)即可求解;【詳解】(1)證明:∵,平分,∴,∴.∵,∴.,∴∴是四邊形ABCD的“相似對(duì)角線”.(2)∵是四邊形EFGH的“相似對(duì)角線”,∴三角形EFH與三角形HFG相似.又,∴,∴,∴.過(guò)點(diǎn)E作,垂足為.則.∵,∴,∴,∴,∴.【考點(diǎn)】本題主要考查了四邊形綜合知識(shí)點(diǎn),涉及了相似三角形,解直角三角形等知識(shí),準(zhǔn)確分析并能靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.3、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當(dāng)x=時(shí),S有最大值,最大值為;(3)存在,點(diǎn)P的坐標(biāo)為(4,0)或(,0).【解析】【分析】(1)將點(diǎn)E代入直線解析式中,可求出點(diǎn)C的坐標(biāo),將點(diǎn)C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點(diǎn)式,可求出點(diǎn)D的坐標(biāo),設(shè)直線BD的解析式,代入點(diǎn)B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設(shè)點(diǎn)P的坐標(biāo),則點(diǎn)G的坐標(biāo)可表示,點(diǎn)H的坐標(biāo)可表示,HG長(zhǎng)度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點(diǎn)E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線BD的解析式為y=kx+b,代入點(diǎn)B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點(diǎn)M的坐標(biāo)為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當(dāng)x=時(shí),S有最大值,最大值為.(3)存在,如圖所示,設(shè)點(diǎn)P的坐標(biāo)為(t,0),則點(diǎn)G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對(duì)應(yīng)點(diǎn)為點(diǎn)F,F(xiàn)落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當(dāng)t2﹣t=t時(shí),解得t1=0(舍),t2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論