版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省康定市中考數(shù)學(xué)真題分類(勾股定理)匯編必考點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點E處,連接DE交AB于點F,當(dāng)∠DEB是直角時,DF的長為(
).A.5 B.3 C. D.2、如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,那么小巷的寬度為(
)A.0.7米 B.1.5米 C.2.2米 D.2.4米3、有一個直角三角形的兩邊長分別為3和4,則第三邊的長為()A.5 B. C. D.5或4、如圖,中,,將折疊,使點C與的中點D重合,折痕交于點M,交于點N,則線段的長為(
).A. B. C.3 D.5、如圖,把長方形紙條ABCD沿EF,GH同時折疊,B,C兩點恰好落在AD邊的P點處,若∠FPH=90°,PF=8,PH=6,則長方形ABCD的邊BC的長為()A.20 B.22 C.24 D.306、一個直角三角形的兩條直角邊邊長分別為6和8,則斜邊上的高為(
)A.4.5 B.4.6 C.4.8 D.57、如圖,在由邊長為1的7個正六邊形組成的網(wǎng)格中,點A,B在格點上.若再選擇一個格點C,使△ABC是直角三角形,且每個直角三角形邊長均大于1,則符合條件的格點C的個數(shù)是(
)A.2 B.4 C.5 D.6第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、附加題:觀察以下幾組勾股數(shù),并尋找規(guī)律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…請你寫出有以上規(guī)律的第⑤組勾股數(shù):________.2、如圖,在中,,,,現(xiàn)將沿進行翻折,使點剛好落在上,則__________.3、把一根長12厘米的木棒,從一端起順次截下3厘米和5厘米的兩段,用得到的三根木棒首尾依次相接,擺成的三角形形狀是______.4、如圖所示,在四邊形ABCD中,AB=5,BC=3,DE⊥AC于E,DE=3,S△DAC=6,則∠ACB的度數(shù)等于_____.5、如圖,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的長為_______6、圖①所示的正方體木塊棱長為6cm,沿其相鄰三個面的對角線(圖中虛線)剪掉一角,得到如圖②的幾何體,一只螞蟻沿著圖②的幾何體表面從頂點A爬行到頂點B的最短距離為_____cm.7、如圖,一架長5米的梯子A1B1斜靠在墻A1C上,B1到墻底端C的距離為3米,此時梯子的高度達不到工作要求,因此把梯子的B1端向墻的方向移動了1.6米到B處,此時梯子的高度達到工作要求,那么梯子的A1端向上移動了_____米.8、如圖,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,點E在BC上,將△ABC沿AE折疊,使點B落在AC邊上的點B′處,則BE的長為________________.三、解答題(7小題,每小題10分,共計70分)1、一個25米長的梯子,斜靠在一豎直的墻上,這時的距離為24米,如果梯子的頂端A沿墻下滑4米,那么梯子底端B外移多少米?2、勾股定理的證明方法是多樣的,其中“面積法”是常用的方法.小麗發(fā)現(xiàn):當(dāng)四個全等的直角三角形如圖擺放時,可以用“面積法”來證明勾股定理.請寫出勾股定理的內(nèi)容,并利用給定的圖形進行證明.3、已知:如圖,四邊形ABCD,∠A=90°,AD=12,AB=16,CD=15,BC=25.(1)求BD的長;(2)求四邊形ABCD的面積.4、如圖,在四邊形中,,,于,(1)求證:;(2)若,,求四邊形的面積.5、如圖所示的一塊地,已知,,,,,求這塊地的面積.6、如圖,高速公路上有A,B兩點相距10km,C,D為兩村莊,已知DA=4km,CB=6km,DA⊥AB于點A,CB⊥AB于B,現(xiàn)要在AB上建一個服務(wù)站E,使得C,D兩村莊到E站的距離相等,求BE的長.7、如圖,一個長5m的梯子AB,斜靠在一豎直的墻AO上,這時AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點.(1)求梯子底端B外移距離BD的長度;(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.-參考答案-一、單選題1、C【解析】【分析】如圖,由題意知,,,,可知三點共線,與重合,在中,由勾股定理得,求的值,設(shè),,在中,由勾股定理得,計算求解即可.【詳解】解:如圖,∵是直角∴由題意知,,∴∴三點共線∴與重合在中,由勾股定理得設(shè),在中,由勾股定理得即解得∴的長為故選C.【考點】本題考查了折疊的性質(zhì),勾股定理等知識.解題的關(guān)鍵在于明確三點共線,與重合.2、C【解析】【分析】在直角三角形中利用勾股定理計算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選:C.【考點】本題考查勾股定理的運用,利用梯子長度不變找到斜邊是關(guān)鍵.3、D【解析】【分析】分4是直角邊、4是斜邊兩種情況考慮,再根據(jù)勾股定理計算即可.【詳解】解:當(dāng)4是直角邊時,斜邊==5;當(dāng)4是斜邊時,另一條直角邊=;故選:D.【考點】本題考查的是勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.4、D【解析】【分析】由折疊的性質(zhì)可得DN=CN,根據(jù)勾股定理可求DN的長,即可得出結(jié)果.【詳解】解:∵D是AB中點,AB=4,∴AD=BD=2,∵將△ABC折疊,使點C與AB的中點D重合,∴DN=CN,∴BN=BC-CN=6-DN,在Rt△DBN中,DN2=BN2+DB2,∴DN2=(6-DN)2+4,∴DN=,∴CN=DN=,故選:D.【考點】本題考查了翻折變換、折疊的性質(zhì)、勾股定理,熟練運用折疊的性質(zhì)是本題的關(guān)鍵.5、C【解析】【詳解】由折疊得:在Rt中,∠FPH=90°,PF=8,PH=6,則故BC=BF+FH+HC=6+8+10=24.故選C.6、C【解析】【分析】根據(jù)勾股定理求出斜邊的長,再根據(jù)面積法求出斜邊的高.【詳解】解:設(shè)斜邊長為c,高為h.由勾股定理可得:c2=62+82,則c=10,直角三角形面積S=×6×8=×c×h,可得h=4.8,故選:C.【考點】本題考查了勾股定理,利用勾股定理求直角三角形的邊長和利用面積法求直角三角形的高是解決此類題的關(guān)鍵.7、D【解析】【分析】分三種情況討論,當(dāng)∠A=90°,或∠B=90°,或∠C=90°時,分別畫出符合條件的圖形,即可解答.【詳解】解:分三種情況討論,當(dāng)∠A=90°,或∠B=90°,或∠C=90°如圖符合條件的格點C的個數(shù)是6個故選:D.【考點】本題考查正多邊形和圓的性質(zhì)、直角三角形的判定與性質(zhì)、直徑所對的圓周角是90°等知識,是基礎(chǔ)考點,掌握相關(guān)知識是解題關(guān)鍵.二、填空題1、11,60,61【解析】【分析】由所給勾股數(shù)發(fā)現(xiàn)第一個數(shù)是奇數(shù),且逐步遞增2,知第5組第一個數(shù)是11,第二、第三個數(shù)相差為1,設(shè)第二個數(shù)為x,則第三個數(shù)為,由勾股定理得:,計算求解即可.【詳解】解:由所給勾股數(shù)發(fā)現(xiàn)第一個數(shù)是奇數(shù),且逐步遞增2,∴知第5組第一個數(shù)是11,第二、第三個數(shù)相差為1,設(shè)第二個數(shù)為x,則第三個數(shù)為,由勾股定理得:,解得x=60,∴第5組數(shù)是:11、60、61故答案為:11、60、61.【考點】本題考查了數(shù)字類規(guī)律,勾股定理等知識.解題的關(guān)鍵在于推導(dǎo)規(guī)律.2、【解析】【詳解】解:設(shè)CD=x,則AD=A′D=4-x.在直角三角形ABC中,BC==5.則A′C=BC-AB=BC-A′B=5-3=2.在直角三角形A′DC中:AD2+AC2=CD2.即:(4-x)2+22=x2.解得:x=.故答案為:2.53、直角三角形【解析】【分析】首先計算出第三條鐵絲的長度,再利用勾股定理的逆定理可證明擺成的三角形是直角三角形.【詳解】解:12-3-5=4(cm),∵32+42=52,∴這三條鐵絲擺成的三角形是直角三角形,故答案為:直角三角形.【考點】此題主要考查了勾股定理逆定理,關(guān)鍵是掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.4、90°##90度【解析】【分析】根據(jù)三角形面積公式求出AC=4,根據(jù)勾股定理逆定理即可求出∠ACB=90°.【詳解】解:∵DE⊥AC于E,DE=3,S△DAC=6,∴×AC×DE=6,∴AC=4,∴,∵AB=5,∴AB2=25,∴,∴∠ACB=90°.故答案為:90°【考點】本題考查了勾股定理逆定理和三角形的面積應(yīng)用,熟練掌握勾股定理逆定理是解題關(guān)鍵.5、13【解析】【分析】先根據(jù)△BCE等腰直角三角形得出BC的長,進而可得出BD的長,根據(jù)△ABD是等腰直角三角形可知AB=BD.在Rt△ABC中利用勾股定理即可求出AC的長.【詳解】∵△BCE等腰直角三角形,BE=5,∴BC=5.∵CD=17,∴DB=CD﹣BE=17﹣5=12.∵△ABD是等腰直角三角形,∴AB=BD=12.在Rt△ABC中,∵AB=12,BC=5,∴AC13.故答案為13.【考點】本題考查了等腰直角三角形的性質(zhì)及勾股定理,熟知等腰三角形兩腰相等的性質(zhì)是解答此題的關(guān)鍵.6、(3+3).【解析】【分析】要求螞蟻爬行的最短距離,需將圖②的幾何體表面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果.【詳解】如圖所示:△BCD是等腰直角三角形,△ACD是等邊三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴從頂點A爬行到頂點B的最短距離為(3+3)cm.故答案為(3+3).【考點】本題考查了平面展開-最短路徑問題,關(guān)鍵是把圖②的幾何體表面展開成平面圖形,根據(jù)等腰直角三角形的性質(zhì)和等邊三角形的性質(zhì)解題.7、0.8【解析】【分析】梯子的長是不變的,只要利用勾股定理解出梯子滑動前和滑動后的所構(gòu)成的兩直角三角形,分別得出AO,A1O的長即可.【詳解】解:在Rt△ABO中,根據(jù)勾股定理知,A1O==4(m),在Rt△ABO中,由題意可得:BO=1.4(m),根據(jù)勾股定理知,AO==4.8(m),所以AA1=AO-A1O=0.8(米).故答案為0.8.【考點】本題考查勾股定理的應(yīng)用,解題關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.8、.【解析】【分析】首先根據(jù)勾股定理求出BC的長,根據(jù)折疊性質(zhì),可得=AB=3,=BE,∠B=∠=90°,然后設(shè)BE=,根據(jù)勾股定理,列出,求解即可.【詳解】解:∵∠ABC=90°,AB=3,AC=5,在Rt△ABC中,,將△ABC沿AE折疊,∴=AB=3,=BE,∠B=∠=90°,則,設(shè)BE=,EC=4-,,在Rt△中,由勾股定理得:,即,解得,∴BE=.故答案為.【考點】本題主要考查了翻折變換的性質(zhì)及勾股定理的應(yīng)用;解題的關(guān)鍵是準(zhǔn)確找出圖形中隱含的相等關(guān)系.三、解答題1、8米.【解析】【分析】梯子下滑4米,梯子的長度不變始終為25米,利用勾股定理分別求出OB、OB'的長度,進而求出BB'的長度即可.【詳解】解:如圖,依題意可知AB=25(米),AO=24(米),∠O=90°,∴BO2=AB2﹣AO2=252-242,∴BO=7(米),移動后,=20(米),∴(米),∴(米).答:梯子底端B外移8米.【考點】本題考查的是勾股定理的應(yīng)用及勾股定理在直角三角形中的正確運用,本題中求的長度是解題的關(guān)鍵.2、見解析【解析】【分析】多邊形的面積可以等于邊長為c的正方形面積加上兩個直角三角形的面積,也可以等于兩個直角梯形的面積和,由此得證.【詳解】解:若直角三角形的兩條直角邊分別為a、b,斜邊為c,則,如圖,這個多邊形的面積為整理得ab+c2=,故.【考點】此題考查了勾股定理的證明,正確掌握多邊形的面積的計算方法及勾股定理的內(nèi)容是解題的關(guān)鍵.3、(1)BD=20;(2)S四邊形ABCD=246.【解析】【分析】(1)由∠A=90°,AD=12,AB=16,利用勾股定理:BD2=AD2+AB2,從而可得答案;(2)利用勾股定理的逆定理證明:∠CDB=90°,再由四邊形的面積等于兩個直角三角形的面積之和可得答案.【詳解】解:(1)∵∠A=90°,AD=12,AB=16,∴BD2=AD2+AB2,∴BD2=122+162,∴BD=20;(2)∵BD2+CD2=202+152=625,CB2=252=625,∴BD2+CD2=CB2,∴∠CDB=90°,∴S四邊形ABCD=SRt△ABD+SRt△CBD,=246.【考點】本題考查的是勾股定理與勾股定理的逆定理的應(yīng)用,掌握以上知識是解題的關(guān)鍵.4、(1)詳見解析;(2)S四邊形ABCD=56【解析】【分析】(1)由等角的余角相等可得∠DAC=∠ABE,再根據(jù)題意可得Rt△BAE≌Rt△ADC,即可證;(2)根據(jù)勾股定理算出AC,由全等可得BE=AC,再算出△ACD的面積和△ABC的面積相加即可.【詳解】解:(1)∵BE⊥AC,∴∠ABE+∠BAE=90°,∵BAD=90°,∴∠BAE+∠DAC=90°,∴∠DAC=∠ABE,又∵AB=AD,∠BEA=∠ACD,∴Rt△BAE≌Rt△ADC(AAS),∴BE=AC.(2)∵AB=AD=10,CD=6,∠ACD=90°,∴,∵Rt△BAE≌Rt△ADC,∴BE=AC=8,∴.【考點】本題考查三角形全等的判定和性質(zhì),三角形面積,關(guān)鍵在于牢記基礎(chǔ)知識并靈活使用.5、【解析】【分析】根據(jù)勾股定理求得的長,再根據(jù)勾股定理的逆定理判定為直角三角形,從而不難求得這塊地的面積.【詳解】解:連接.,,為直角三角形,,這塊地的面積.【考點】本題考查了學(xué)生對勾股定理及其逆定理的理解及運用能力,解題的關(guān)鍵是掌握勾股定理的知識.6、4km【解析】【分析】根據(jù)題意設(shè)出BE的長為xkm,再由勾股定理列出方程求解即可.【詳解】解:設(shè)BE=xkm,則AE=(10﹣x)km,由勾股定理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生化酸堿平衡題目及答案
- 術(shù)后并發(fā)癥溝通的透明度原則
- 術(shù)后切口愈合的個性化治療策略
- 山東大型廣告字施工方案
- 永春縣貨車道路施工方案
- 甲減患者的心理行為護理
- 天潔集團招聘面試題目及答案
- 血糖控制與兒童糖尿病管理
- 二級建造師水池施工方案
- 壓瘡護理的教學(xué)與實踐
- 2025甘肅省水務(wù)投資集團有限公司招聘企業(yè)管理人員筆試考試參考題庫及答案解析
- 美容店退股合同協(xié)議書
- 2025民族出版社專業(yè)技術(shù)人員招聘4人(第二批)考試歷年真題匯編帶答案解析
- 2025年秋蘇科版(新教材)小學(xué)勞動技術(shù)三年級上學(xué)期期末質(zhì)量檢測卷附答案
- 2026年果樹園藝師(中級-操作技能)自測試題及答案
- 廣播電視考試題及答案
- 2025-2026學(xué)年高一化學(xué)上學(xué)期第三次月考卷(人教版必修第一冊)(試卷及全解全析)
- 四川省名校聯(lián)盟2024-2025學(xué)年高二上學(xué)期期末聯(lián)考物理試題含答案2024-2025學(xué)年度上期高二期末聯(lián)考物理試題
- 省“十五五”商務(wù)發(fā)展規(guī)劃研究項目方案投標(biāo)文件(技術(shù)標(biāo))
- 2025年及未來5年市場數(shù)據(jù)中國三角轉(zhuǎn)子發(fā)動機市場發(fā)展前景預(yù)測及投資戰(zhàn)略咨詢報告
- 2025年中職包裝設(shè)計(包裝基礎(chǔ)設(shè)計)試題及答案
評論
0/150
提交評論