鄭州市七年級數(shù)學下冊相期末壓軸題易錯題試卷及答案_第1頁
鄭州市七年級數(shù)學下冊相期末壓軸題易錯題試卷及答案_第2頁
鄭州市七年級數(shù)學下冊相期末壓軸題易錯題試卷及答案_第3頁
鄭州市七年級數(shù)學下冊相期末壓軸題易錯題試卷及答案_第4頁
鄭州市七年級數(shù)學下冊相期末壓軸題易錯題試卷及答案_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

一、解答題1.在平面直角坐標系中,,滿足.(1)直接寫出、的值:;;(2)如圖1,若點滿足的面積等于6,求的值;(3)設(shè)線段交軸于C,動點E從點C出發(fā),在軸上以每秒1個單位長度的速度向下運動,動點F從點出發(fā),在軸上以每秒2個單位長度的速度向右運動,若它們同時出發(fā),運動時間為秒,問為何值時,有?請求出的值.解析:(1),2;(2)或;(3)或2【分析】(1)由,求出和的值即可;(2)過點作直線軸,延長交于,設(shè)出點坐標,根據(jù)面積關(guān)系求出點坐標,再求出的長度,即可求出值;(3)先根據(jù)求出點坐標,再根據(jù)面積關(guān)系求出值即可.【詳解】解:(1),,,,,故答案為,2;(2)如圖1,過作直線垂直于軸,延長交直線于點,設(shè)的坐標為,過作交直線于點,連接,,,,解得,,,又點滿足的面積等于6,,解得或;(3)如圖2,延長交軸于,過作軸于,過作軸于,,,解得,,,,解得,,,,由題知,當秒時,,,,,,,,解得或2.【點睛】本題是三角形綜合題,考查三角形的面積,熟練掌握直角坐標系的知識,三角形的面積,梯形面積等知識是解題的關(guān)鍵.2.如圖1,在平面直角坐標系中,點O是坐標原點,邊長為2的正方形ABCD(點D與點O重合)和邊長為4的正方形EFGH的邊CO和GH都在x軸上,且點H坐標為(7,0).正方形ABCD以3個單位長度/秒的速度沿著x軸向右運動,記正方形ABCD和正方形EFGH重疊部分的面積為S,假設(shè)運動時間為t秒,且t<4.(1)點F的坐標為;(2)如圖2,正方形ABCD向右運動的同時,動點P在線段FE上,以1個單位長度/秒的速度從F到E運動.連接AP,AE.①求t為何值時,AP所在直線垂直于x軸;②求t為何值時,S=S△APE.解析:(1)(3,4);(2)①t=時,AP所在直線垂直于x軸;②當t為或時,S=S△APE.【分析】(1)根據(jù)直角坐標系得出點F的坐標即可;(2)①根據(jù)AP所在直線垂直于x軸,得出關(guān)于t的方程,解答即可;②分和兩種情況,利用面積公式列出方程即可求解.【詳解】(1)由直角坐標系可得:F坐標為:(3,4);故答案為:(3,4);(2)①要使AP所在直線垂直于x軸.如圖1,只需要Px=Ax,則t+3=3t,解得:,所以即時,AP所在直線垂直于x軸;②由題意知,OH=7,所以當時,點D與點H重合,所以要分以下兩種情況討論:情況一:當時,GD=3t﹣3,PF=t,PE=4﹣t,∵S=S△APE,∴BC×GD=,即:2×(3t﹣3)=,解得:;情況二:當時,如圖2,HD=3t﹣7,PF=t,PE=4﹣t,∵S=S△APE,∴BC×CH=,即:2×[2﹣(3t﹣7)]=,解得:,綜上所述,當t為或時,S=S△APE.【點睛】本題考查了平面直角坐標系中點的移動,一元一次方程的應用等問題,理解題意,分類討論是解題關(guān)鍵.3.如圖1,在平面直角坐標系中,,且滿足,過作軸于.(1)求的面積.(2)若過作交軸于,且分別平分,如圖2,求的度數(shù).(3)在軸上存在點使得和的面積相等,請直接寫出點坐標.解析:(1)4;(2);(2)或.【分析】(1)根據(jù)非負數(shù)的性質(zhì)易得,,然后根據(jù)三角形面積公式計算;(2)過作,根據(jù)平行線性質(zhì)得,且,,所以;然后把代入計算即可;(3)分類討論:設(shè),當在軸正半軸上時,過作軸,軸,軸,利用可得到關(guān)于的方程,再解方程求出;當在軸負半軸上時,運用同樣方法可計算出.【詳解】解:(1),,,,,,,,的面積;(2)解:軸,,,又∵,∴,過作,如圖①,,,,,分別平分,,即:,,;(3)或.解:①當在軸正半軸上時,如圖②,設(shè),過作軸,軸,軸,,,解得,②當在軸負半軸上時,如圖③,解得,綜上所述:或.【點睛】本題考查了平行線的判定與性質(zhì):兩直線平行,內(nèi)錯角相等.也考查了非負數(shù)的性質(zhì)、坐標與圖形性質(zhì)以及三角形面積公式.構(gòu)造矩形求三角形面積是解題關(guān)鍵.4.問題情境:在平面直角坐標系xOy中有不重合的兩點A(x1,y1)和點B(x2,y2),小明在學習中發(fā)現(xiàn),若x1=x2,則AB∥y軸,且線段AB的長度為|y1﹣y2|;若y1=y(tǒng)2,則AB∥x軸,且線段AB的長度為|x1﹣x2|;(應用):(1)若點A(﹣1,1)、B(2,1),則AB∥x軸,AB的長度為.(2)若點C(1,0),且CD∥y軸,且CD=2,則點D的坐標為.(拓展):我們規(guī)定:平面直角坐標系中任意不重合的兩點M(x1,y1),N(x2,y2)之間的折線距離為d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:圖1中,點M(﹣1,1)與點N(1,﹣2)之間的折線距離為d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解決下列問題:(1)如圖1,已知E(2,0),若F(﹣1,﹣2),則d(E,F(xiàn));(2)如圖2,已知E(2,0),H(1,t),若d(E,H)=3,則t=.(3)如圖3,已知P(3,3),點Q在x軸上,且三角形OPQ的面積為3,則d(P,Q)=.解析:【應用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)=5;(2)2或﹣2;(3)4或8.【分析】(應用)(1)根據(jù)若y1=y(tǒng)2,則AB∥x軸,且線段AB的長度為|x1?x2|,代入數(shù)據(jù)即可得出結(jié)論;(2)由CD∥y軸,可設(shè)點D的坐標為(1,m),根據(jù)CD=2,可得|0﹣m|=2,故可求出m,即可求解;(拓展)(1)根據(jù)兩點之間的折線距離公式,代入數(shù)據(jù)即可得出結(jié)論;(2)根據(jù)兩點之間的折線距離公式結(jié)合d(E,H)=3,即可得出關(guān)于t的含絕對值符號的一元一次方程,解之即可得出結(jié)論;(3)由點Q在x軸上,可設(shè)點Q的坐標為(x,0),根據(jù)三角形的面積公式結(jié)合三角形OPQ的面積為3即可求出x的值,再利用兩點之間的折線距離公式即可得出結(jié)論;【詳解】(應用):(1)AB的長度為|﹣1﹣2|=3.故答案為:3.(2)由CD∥y軸,可設(shè)點D的坐標為(1,m),∵CD=2,∴|0﹣m|=2,解得:m=±2,∴點D的坐標為(1,2)或(1,﹣2).故答案為:(1,2)或(1,﹣2).(拓展):(1)d(E,F(xiàn))=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案為:=5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.故答案為:2或﹣2.(3)由點Q在x軸上,可設(shè)點Q的坐標為(x,0),∵三角形OPQ的面積為3,∴|x|×3=3,解得:x=±2.當點Q的坐標為(2,0)時,d(P,Q)=|3﹣2|+|3﹣0|=4;當點Q的坐標為(﹣2,0)時,d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8.故答案為:4或8.【點睛】本題是三角形綜合題目,考查了新定義、兩點間的距離公式、三角形面積等知識,讀懂題意并熟練運用兩點間的距離及兩點之間的折線距離公式是解題的關(guān)鍵.5.在平面直角坐標系中,點A,B的坐標分別為(﹣1,0),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到點A,B的對應點C,D,連接AC,BD.(1)求點C,D的坐標及四邊形ABDC的面積S四邊形ABDC;(2)在y軸上是否存在一點P,連接PA,PB,使S△PAB=S四邊形ABDC?若存在這樣一點,求出點P的坐標;若不存在,試說明理由;(3)點P是直線BD上一個動點,連接PC、PO,當點P在直線BD上運動時,請直接寫出∠OPC與∠PCD、∠POB的數(shù)量關(guān)系解析:(1)C(0,2),D(4,2),S四邊形ABDC=8;(2)存在,P(0,4)或(0,﹣4);(3)點p在線段BD上,∠OPC=∠PCD+∠POB;點P在BD延長線上,∠OPC=∠POB-∠PCD;點P在DB延長線上運動時,∠OPC=∠PCD-∠POB.【解析】【分析】(1)根據(jù)點平移的規(guī)律易得點C的坐標為(0,2),點D的坐標為(4,2);四邊形ABDC的面積=2×(3+1)=8;(2)存在.設(shè)點P到AB的距離為h,則S△PAB=×AB×h,根據(jù)S△PAB=S四邊形ABDC,列方程求h的值,確定P點坐標.(3)分類討論:當點P在線段BD上,作PM∥AB,根據(jù)平行線的性質(zhì)由MP∥AB得∠2=∠POB,由CD∥AB得到CD∥MF,則∠1=∠PCD,所以∠OPC=∠POB+∠PCD;同樣得到當點P在線段DB的延長線上,∠OPC=∠PCD-∠POB;當點P在線段BD的延長線上,得到∠OPC=∠POB-∠PCD.【詳解】(1)依題意,得C(0,2),D(4,2),∴S四邊形ABDC=AB×OC=4×2=8;(2)在y軸上是存在一點P,使S△PAB=S四邊形ABDC.理由如下:設(shè)點P到AB的距離為h,S△PAB=×AB×h=2h,由S△PAB=S四邊形ABDC,得2h=8,解得h=4,∴P(0,4)或(0,-4).(3)當點P在線段BD上,作PM∥AB,如圖1,∵MP∥AB,∴∠2=∠POB,∵CD∥AB,∴CD∥MP,∴∠1=∠PCD,∴∠OPC=∠1+∠2=∠POB+∠PCD;當點P在線段DB的延長線上,作PN∥AB,如圖2,∵PN∥AB,∴∠NPO=∠POB,∵CD∥AB,∴CD∥PN,∴∠NPC=∠FCD,∴∠OPC=∠NPC-∠NPO=∠FCD-∠POB;同樣得到當點P在線段BD的延長線上,得到∠OPC=∠POB-∠PCD.【點睛】本題考查了坐標與圖形性質(zhì):利用點的坐標得到線段的長和線段與坐標軸的關(guān)系.也考查了平行線的性質(zhì)和分類討論的思想.6.如圖,在平面直角坐標系中,,CD//x軸,CD=AB.(1)求點D的坐標:(2)四邊形OCDB的面積四邊形OCDB;(3)在y軸上是否存在點P,使△PAB=四邊形OCDB;若存在,求出點P的坐標,若不存在,請說明理由.解析:(1)(2)7(3)點的坐標為或【詳解】試題分析:⑴抓住∥軸,可以推出縱坐標相等,而是橫坐標之差的絕對值,以此可以求出點的坐標,根據(jù)圖示要舍去一種情況.⑵四邊形是梯形,根據(jù)點的坐標可以求出此梯形的上、下底和高,面積可求.⑶存在性問題可以先假設(shè)存在,在假設(shè)的基礎(chǔ)上以△=四邊形為等量關(guān)系建立方程,以此來探討在軸上是否存在著符合條件的點.試題解析:⑴.∵∥軸,∴縱坐標相等;∵∴點的縱坐標也為2.設(shè)點的坐標為,則.又,且,∴,解得:.由于點在第一象限,所以,所以的坐標為.⑵.∵∥軸,且∴∴四邊形=.⑶.假設(shè)在軸上存在點,使△=四邊形.設(shè)的坐標為,則,而∴△=.∵△=四邊形,四邊形∴,解得;.均符合題意.∴在軸上存在點,使△=四邊形.點的坐標為或.7.已知直線AB//CD,點P、Q分別在AB、CD上,如圖所示,射線PB按逆時針方向以每秒12°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時針方向每秒3°旋轉(zhuǎn)至QD停止,此時射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時開始旋轉(zhuǎn),當旋轉(zhuǎn)時間10秒時,PB'與QC'的位置關(guān)系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開始轉(zhuǎn)動,當射線PB旋轉(zhuǎn)的時間為多少秒時,PB′//QC′.解析:(1)PB′⊥QC′;(2)當射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時,∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進而得結(jié)論;(2)分三種情況:①當0<t≤15時,②當15<t≤30時,③當30<t<45時,根據(jù)平行線的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時間.【詳解】解:(1)如圖1,當旋轉(zhuǎn)時間30秒時,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當0<t≤15時,如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當15<t≤30時,如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當30<t≤45時,如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′.【點睛】本題主要考查了平行線的性質(zhì),第(1)題關(guān)鍵是作平行線,第(2)題關(guān)鍵是分情況討論,運用方程思想解決幾何問題.8.如圖1,MN∥PQ,點C、B分別在直線MN、PQ上,點A在直線MN、PQ之間.(1)求證:∠CAB=∠MCA+∠PBA;(2)如圖2,CD∥AB,點E在PQ上,∠ECN=∠CAB,求證:∠MCA=∠DCE;(3)如圖3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度數(shù).解析:(1)證明見解析;(2)證明見解析;(3)120°.【分析】(1)過點A作AD∥MN,根據(jù)兩直線平行,內(nèi)錯角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根據(jù)角的和差等量代換即可得解;(2)由兩直線平行,同旁內(nèi)角互補得到∴、∠CAB+∠ACD=180°,由鄰補角定義得到∠ECM+∠ECN=180°,再等量代換即可得解;(3)由平行線的性質(zhì)得到,∠FAB=120°﹣∠GCA,再由角平分線的定義及平行線的性質(zhì)得到∠GCA﹣∠ABF=60°,最后根據(jù)三角形的內(nèi)角和是180°即可求解.【詳解】解:(1)證明:如圖1,過點A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如圖2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【點睛】本題主要考查了平行線的性質(zhì),線段、角、相交線與平行線,準確的推導是解決本題的關(guān)鍵.9.已知,AB∥CD.點M在AB上,點N在CD上.(1)如圖1中,∠BME、∠E、∠END的數(shù)量關(guān)系為:;(不需要證明)如圖2中,∠BMF、∠F、∠FND的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度數(shù);(3)如圖4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,則∠FEQ的大小是否發(fā)生變化,若變化,請說明理由,若不變化,求出∠FEQ的度數(shù).解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不變,30°【分析】(1)過E作EH∥AB,易得EH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;過F作FH∥AB,易得FH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,進而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進而可求解.【詳解】解:(1)過E作EH∥AB,如圖1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如圖2,過F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作平行線的輔助線是解題的關(guān)鍵.10.點A,C,E在直線l上,點B不在直線l上,把線段AB沿直線l向右平移得到線段CD.(1)如圖1,若點E在線段AC上,求證:B+D=BED;(2)若點E不在線段AC上,試猜想并證明B,D,BED之間的等量關(guān)系;(3)在(1)的條件下,如圖2所示,過點B作PB//ED,在直線BP,ED之間有點M,使得ABE=EBM,CDE=EDM,同時點F使得ABE=nEBF,CDE=nEDF,其中n≥1,設(shè)BMD=m,利用(1)中的結(jié)論求BFD的度數(shù)(用含m,n的代數(shù)式表示).解析:(1)見解析;(2)當點E在CA的延長線上時,∠BED=∠D-∠B;當點E在AC的延長線上時,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如圖1中,過點E作ET∥AB.利用平行線的性質(zhì)解決問題.(2)分兩種情形:如圖2-1中,當點E在CA的延長線上時,如圖2-2中,當點E在AC的延長線上時,構(gòu)造平行線,利用平行線的性質(zhì)求解即可.(3)利用(1)中結(jié)論,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解決問題即可.【詳解】解:(1)證明:如圖1中,過點E作ET∥AB.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如圖2-1中,當點E在CA的延長線上時,過點E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如圖2-2中,當點E在AC的延長線上時,過點E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如圖,設(shè)∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD=∠ABM+∠CDM,∴m=2x+2y,∴x+y=m,∵∠BFD=∠ABF+∠CDF,∠ABE=n∠EBF,∠CDE=n∠EDF,∴∠BFD===.【點睛】本題屬于幾何變換綜合題,考查了平行線的性質(zhì),角平分線的定義等知識,解題的關(guān)鍵是學會條件常用輔助線,構(gòu)造平行線解決問題,屬于中考??碱}型.11.綜合與實踐背景閱讀:在同一平面內(nèi),兩條不重合的直線的位置關(guān)系有相交、平行,若兩條不重合的直線只有一個公共點,我們就說這兩條直線相交,若兩條直線不相交,我們就說這兩條直線互相平行兩條直線的位置關(guān)系的性質(zhì)和判定是幾何的重要知識,是初中階段幾何合情推理的基礎(chǔ).已知:AM∥CN,點B為平面內(nèi)一點,AB⊥BC于B.問題解決:(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系;(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,則∠EBC=.解析:(1);(2)見解析;(3)105°【分析】(1)通過平行線性質(zhì)和直角三角形內(nèi)角關(guān)系即可求解.(2)過點B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解.(3)利用(2)的結(jié)論,結(jié)合角平分線性質(zhì)即可求解.【詳解】解:(1)如圖1,設(shè)AM與BC交于點O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案為:∠A+∠C=90°;(2)證明:如圖2,過點B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如圖3,過點B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設(shè)∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案為:105°.【點睛】本題考查平行線性質(zhì),畫輔助線,找到角的和差倍分關(guān)系是求解本題的關(guān)鍵.12.如圖1,把一塊含30°的直角三角板ABC的BC邊放置于長方形直尺DEFG的EF邊上.(1)根據(jù)圖1填空:∠1=°,∠2=°;(2)現(xiàn)把三角板繞B點逆時針旋轉(zhuǎn)n°.①如圖2,當n=25°,且點C恰好落在DG邊上時,求∠1、∠2的度數(shù);②當0°<n<180°時,是否會存在三角板某一邊所在的直線與直尺(有四條邊)某一邊所在的直線垂直?如果存在,請直接寫出所有n的值和對應的那兩條垂線;如果不存在,請說明理由.解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②見解析【分析】(1)根據(jù)鄰補角的定義和平行線的性質(zhì)解答;(2)①根據(jù)鄰補角的定義求出∠ABE,再根據(jù)兩直線平行,同位角相等可得∠1=∠ABE,根據(jù)兩直線平行,同旁內(nèi)角互補求出∠BCG,然后根據(jù)周角等于360°計算即可得到∠2;②結(jié)合圖形,分AB、BC、AC三條邊與直尺垂直討論求解.【詳解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案為:120,90;(2)①如圖2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②當n=30°時,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);當n=90°時,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);當n=120°時,∴AB⊥DE(GF).【點睛】本題考查了平行線角的計算,垂線的定義,主要利用了平行線的性質(zhì),直角三角形的性質(zhì),讀懂題目信息并準確識圖是解題的關(guān)鍵.13.已知,.點在上,點在上.(1)如圖1中,、、的數(shù)量關(guān)系為:;(不需要證明);如圖2中,、、的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,平分,平分,且,求的度數(shù);(3)如圖4中,,平分,平分,且,則的大小是否發(fā)生變化,若變化,請說明理由,若不變化,求出么的度數(shù).解析:(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.【分析】(1)過E作EHAB,易得EHABCD,根據(jù)平行線的性質(zhì)可求解;過F作FHAB,易得FHABCD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF?∠FND=180°,可求解∠BMF=60°,進而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進而可求解.【詳解】解:(1)過E作EHAB,如圖1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN?∠END.如圖2,過F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK?∠KFN=∠BMF?∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF?∠FND=180°,∴2∠BME+2∠END+∠BMF?∠FND=180°,即2∠BMF+∠FND+∠BMF?∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN?∠NEQ=(∠BME+∠END)?∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作輔助線是解題的關(guān)鍵.14.問題情境:(1)如圖1,,,.求度數(shù).小穎同學的解題思路是:如圖2,過點作,請你接著完成解答.問題遷移:(2)如圖3,,點在射線上運動,當點在、兩點之間運動時,,.試判斷、、之間有何數(shù)量關(guān)系?(提示:過點作),請說明理由;(3)在(2)的條件下,如果點在、兩點外側(cè)運動時(點與點、、三點不重合),請你猜想、、之間的數(shù)量關(guān)系并證明.解析:(1)見解析;(2),理由見解析;(3)①當在延長線時(點不與點重合),;②當在之間時(點不與點,重合),.理由見解析【分析】(1)過P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=113°;(2)過過作交于,,推出,根據(jù)平行線的性質(zhì)得出,即可得出答案;(3)畫出圖形(分兩種情況:①點P在BA的延長線上,②當在之間時(點不與點,重合)),根據(jù)平行線的性質(zhì)即可得出答案.【詳解】解:(1)過作,,,,,,,,;(2),理由如下:如圖3,過作交于,,,,,,,又;(3)①當在延長線時(點不與點重合),;理由:如圖4,過作交于,,,,,,,,又,;②當在之間時(點不與點,重合),.理由:如圖5,過作交于,,,,,,,,又.【點睛】本題考查了平行線的性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論