難點詳解華東師大版8年級下冊期末試卷含答案詳解(奪分金卷)_第1頁
難點詳解華東師大版8年級下冊期末試卷含答案詳解(奪分金卷)_第2頁
難點詳解華東師大版8年級下冊期末試卷含答案詳解(奪分金卷)_第3頁
難點詳解華東師大版8年級下冊期末試卷含答案詳解(奪分金卷)_第4頁
難點詳解華東師大版8年級下冊期末試卷含答案詳解(奪分金卷)_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

華東師大版8年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、某校八年級進行了三次數(shù)學測試,甲、乙、丙、丁4名同學三次數(shù)學成績的平均分都是109分,方差分別是,則這4名同學三次數(shù)學成績最穩(wěn)定的是()A.甲 B.乙 C.丙 D.丁2、在菱形ABCD中,對角線AC,BD相交于點O,如果AC=6,BD=8,那么菱形ABCD的面積是()A.6 B.12 C.24 D.483、若實數(shù)、滿足且,則關于的一次函數(shù)的圖像可能是()A. B.C. D.4、若關于x的分式方程產(chǎn)生增根,則m的值為()A. B. C.1 D.25、如圖是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用x,y表示直角三角形的兩直角邊(x>y),則下列四個說法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中說法正確的是()A.②③ B.①②③ C.②④ D.①②④6、在下列圖象中,是的函數(shù)的是()A. B. C. D.7、、兩地相距,甲騎摩托車從地勻速駛向地.當甲行駛小時途徑地時,一輛貨車剛好從地出發(fā)勻速駛向地,當貨車到達地后立即掉頭以原速勻速駛向地.如圖表示兩車與地的距離和甲出發(fā)的時間的函數(shù)關系.則下列說法錯誤的是()A.甲行駛的速度為 B.貨車返回途中與甲相遇后又經(jīng)過甲到地C.甲行駛小時時貨車到達地 D.甲行駛到地需要8、下列各點中,在第二象限的點是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、設,,,且,若,則______.2、如圖,在菱形ABCD中,點M、N分別交于AB、CD上,AM=CN,MN與AC交于點O,連接BO.若∠OBC=62°,則∠DAC為____°.3、請寫出一個過第二象限且與軸交于點的直線表達式___.4、若點在x軸上,則m的值為______.5、如圖,一次函數(shù)的圖像與軸交于點,與正比例函數(shù)的圖像交于點,點的橫坐標為1.5,則滿足的的范圍是______.6、若A(x,4)關于y軸的對稱點是B(﹣3,y),則x=____,y=____.點A關于x軸的對稱點的坐標是____.7、函數(shù)y=(m﹣2)x|m﹣1|+2是一次函數(shù),那么m的值為___.三、解答題(7小題,每小題10分,共計70分)1、先化簡:,再從,,0,1中選一個合適的數(shù)作為的值代入求值.2、已知y與x﹣2成正比例,且當x=1時,y=﹣2(1)求變量y與x的函數(shù)關系式;(2)請在給出的平面直角坐標系中畫出此函數(shù)的圖象;(3)已知點A在函數(shù)y=ax+b的圖象上,請直接寫出關于x的不等式ax+b>2x﹣4的解集.3、在平面直角坐標系xOy中,將點到x軸和y軸的距離的較大值定義為點M的“相對軸距”,記為.即:如果,那么;如果,那么.例如:點的“相對軸距”.(1)點的“相對軸距”______;(2)請在圖1中畫出“相對軸距”與點的“相對軸距”相等的點組成的圖形;(3)已知點,,,點M,N是內(nèi)部(含邊界)的任意兩點.①直接寫出點M與點N的“相對軸距”之比的取值范圍;②將向左平移個單位得到,點與點為內(nèi)部(含邊界)的任意兩點,并且點與點的“相對軸距”之比的取值范圍和點M與點N的“相對軸距”之比的取值范圍相同,請直接寫出k的取值范圍.4、如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于和兩點.(1)______,_______;(2)結(jié)合圖象直接寫出不等式的解集.5、一輛客車從甲地駛往乙地,同時一輛私家車從乙地駛往甲地(私家車、客車兩車速度不變).圖1是私家車離甲地距離為y(千米)與行駛的時間為x(小時)之間的函數(shù)圖象,圖2是兩車之間的距離s(千米)與行駛的時間x(小時)之間的函數(shù)圖象:(1)求私家車和客車的速度各是多少?(2)點P的坐標為______;c的值為______;(3)直接寫出兩車相距200千米時,兩車出發(fā)的時間x(小時)的值.6、已知:,(1)化簡分式;(2)若關于的分式方程:的解是非負數(shù),求的取值范圍;(3)當取什么整數(shù)時,分式的值為整數(shù).7、疫情期間,樂清市某醫(yī)藥公司計劃購進N95型和一次性成人口罩兩種款式.若購進N95型10箱和一次性成人口罩20箱,需要32500元;若購進N95型30箱和一次性成人口罩40箱,需要87500元.(1)N95型和一次性成人口罩每箱進價分別為多少元?(2)由于疫情嚴峻急需口罩,老板決定再次購進N95型和一次性成人口罩共80箱,口罩工廠對兩種產(chǎn)品進行了價格調(diào)整,N95型的每箱進價比第一次購進時提高了10%,一次性成人口罩的每箱進價按第一次進價的八折;如果藥店此次用于購進N95型和一次性成人口罩兩種型號的總費用不超過115000元,則最多可購進N95型多少箱?(3)若銷售一箱N95型,可獲利500元;銷售一箱一次性成人口罩,可獲利100元,在(2)的條件下,如何進貨可使再次購進的口罩獲得最大的利潤?最大的利潤是多少?-參考答案-一、單選題1、A【解析】【分析】先比較方差的值的大小,根據(jù)方差的意義選取方差的值最小的可得.【詳解】解:∵S甲2=3.6,S乙2=4.6,S丙2=6.3,S丁2=7.3,且平均數(shù)相等,∴S甲2<S乙2<S丙2<S丁2,∴這4名同學3次數(shù)學成績最穩(wěn)定的是甲,故選A.【點睛】本題主要考查方差,解題的關鍵是掌握方差的意義:方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.2、C【解析】【分析】利用菱形的面積公式即可求解.【詳解】解:菱形ABCD的面積===24,故選:C.【點睛】本題考查菱形的面積公式,菱形的面積等于對角線乘積的一半.3、B【解析】【分析】根據(jù)實數(shù)、滿足可知,、互為相反數(shù),再根據(jù),可確定、的符號,進而確定圖象的大致位置.【詳解】解:∴實數(shù)、滿足,∴、互為相反數(shù),∵,∴,,∴∴一次函數(shù)的圖像經(jīng)過二、三、四象限,故選:B.【點睛】本題考查了一次函數(shù)圖象的性質(zhì),解題關鍵是根據(jù)已知條件,確定、的符號.4、B【解析】【分析】首先把所給的分式方程化為整式方程,然后根據(jù)分式方程有增根,得到x?1=0,據(jù)此求出x的值,代入整式方程求出m的值即可.【詳解】解:去分母,得:x-3=m+2(x?1),由分式方程有增根,得到x?1=0,即x=1,把x=1代入整式方程,可得:m=?2.故選:B.【點睛】此題主要考查了分式方程的增根,解答此題的關鍵是要明確:(1)化分式方程為整式方程;(2)把增根代入整式方程即可求得相關字母的值.5、B【解析】【分析】根據(jù)正方形的性質(zhì),直角三角形的性質(zhì),直角三角形面積的計算公式及勾股定理解答即可.【詳解】如圖所示,∵△ABC是直角三角形,∴根據(jù)勾股定理:,故①正確;由圖可知,故②正確;由圖可知,四個直角三角形的面積與小正方形的面積之和為大正方形的面積,列出等式為,即,故③正確;由可得,又∵,兩式相加得:,整理得:,,故④錯誤;故正確的是①②③.故答案選B.【點睛】本題主要考查了勾股定理的應用,正方形性質(zhì),完全平方公式的應用,算術平方根,準確分析判斷是解題的關鍵.6、D【解析】【分析】設在一個變化過程中有兩個變量x與y,對于x的每一個確定的值,y都有唯一的值與其對應,那么就說y是x的函數(shù),x是自變量.根據(jù)函數(shù)的意義即可求出答案.【詳解】解:A、對于x的每一個確定的值,y可能會有兩個值與其對應,不符合函數(shù)的定義,故選項A不符合題意;B、對于x的每一個確定的值,y可能會有多個值與其對應,不符合函數(shù)的定義,故選項B不符合題意;C、對于x的每一個確定的值,y可能會有兩個值與其對應,不符合函數(shù)的定義,故選項C不符合題意;D、對于x的每一個確定的值,y有唯一的值與之對應,符合函數(shù)的定義,故選項D符合題意.故選:D.【點睛】本題主要考查了函數(shù)的定義.解題的關鍵是掌握函數(shù)的定義,在定義中特別要注意,對于x的每一個值,y都有唯一的值與其對應.7、C【解析】【分析】根據(jù)函數(shù)圖象結(jié)合題意,可知兩地的距離為,此時甲行駛了1小時,進而求得甲的速度,即可判斷A、D選項,根據(jù)總路程除以速度即可求得甲行駛到地所需要的時間,根據(jù)貨車行駛的時間和路程結(jié)合圖像可得第小時時貨車與甲相遇,據(jù)此判斷B選項,求得相遇時,甲距離地的距離,進而根據(jù)貨車行駛的路程除以時間即可求得貨車的速度,進而求得貨車到達地所需要的時間.【詳解】解:兩地的距離為,故A選項正確,不符合題意;故D選項正確,不符合題意;根據(jù)貨車行駛的時間和路程結(jié)合圖像可得第小時時貨車與甲相遇,則即貨車返回途中與甲相遇后又經(jīng)過甲到地故B選項正確,相遇時為第4小時,此時甲行駛了,貨車行駛了則貨車的速度為則貨車到達地所需的時間為即第小時故甲行駛小時時貨車到達地故C選項不正確故選C【點睛】本題考查了一次函數(shù)的應用,弄清楚函數(shù)圖象中各拐點的意義是解題的關鍵.8、D【解析】【分析】根據(jù)第二象限內(nèi)的點的橫坐標為負,縱坐標為正判斷即可.【詳解】解:∵第二象限內(nèi)的點的橫坐標為負,縱坐標為正,∴在第二象限,故選:D.【點睛】本題考查了象限內(nèi)點的坐標的特征,解題關鍵是熟記第二象限內(nèi)點的橫坐標為負,縱坐標為正.二、填空題1、【解析】【分析】把變形后,分兩種情況解答即可.【詳解】解:∵,∴ab(x+y)=bx2+ay2,∵,∴,∵,∴(x-a)(x-b)=(y-a)(y-b),∴x=y或x+y=a+b,①當x=y時,由ab(x+y)=bx2+ay2可得x=y=,∵,∴=;②當x+y=a+b時,由ab(x+y)=bx2+ay2可得x=a,y=b,此時原分式的分母為0,無意義,舍去,∴=,故答案為:.【點睛】本題考查了新定義及分式的計算,解題的關鍵是進行分式計算時,要考慮分式的分母是否為0.2、28【解析】【分析】由全等三角形的性質(zhì)可證△AOM≌△CON,可得AO=CO,由等腰三角形的性質(zhì)可得BO⊥AC,即可求解.【詳解】解:∵四邊形ABCD是菱形,∴AB//CD,AB=BC,BC//AD,∴∠MAO=∠NCO,∠BCA=∠CAD.在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴AO=CO,又∵AB=BC,∴BO⊥AC,∴∠BCO=90°﹣∠OBC=28°=∠DAC.故答案為:28.【點睛】本題考查了菱形的性質(zhì),等腰三角形的性質(zhì),全等三角形的判定和性質(zhì),掌握菱形的性質(zhì)是本題的關鍵.3、(答案不唯一)【解析】【分析】因為直線過第二象限,與y軸交于點(0,-3),則b=-3.寫一個滿足題意的直線表達式即可【詳解】解:直線過第二象限,且與軸交于點,,,直線表達式為:.故答案為:(答案不唯一).【點睛】本題考查了一次函數(shù)的圖像和性質(zhì),解題的關鍵是熟記一次函數(shù)的圖像和性質(zhì).4、【解析】【分析】根據(jù)x軸上點的縱坐標為0,即可求解.【詳解】∵點在x軸上,∴,解得:.故答案為:【點睛】本題考查了x軸上點的坐標特征,解決本題的關鍵是熟練掌握坐標軸上的點的坐標的特征:x軸上的點的縱坐標為0.5、##1.5>x>-3【解析】【分析】根據(jù)圖象得出P點橫坐標為1.5,聯(lián)立y=kx-3和y=mx得m=k-2,再聯(lián)立y=kx+6和y=(k-2)x解得x=-3,畫草圖觀察函數(shù)圖象得解集為.【詳解】∵P是y=mx和y=kx-3的交點,點P的橫坐標為1.5,∴解得m=k-2聯(lián)立y=mx和y=kx+6得解得x=-3即函數(shù)y=mx和y=kx+6交點P’的橫坐標為-3,觀察函數(shù)圖像得,滿足kx?3<mx<kx+6的x的范圍為:故答案為:【點睛】本題主要考查對一次函數(shù)與一元一次不等式的理解和掌握,解題的關鍵在于將不等式kx?3<mx<kx+6解集轉(zhuǎn)化為直線y=mx與直線y=kx-3,直線y=kx+6相交的橫坐標x的范圍.6、34(3,﹣4)【解析】【分析】根據(jù)點關于x軸對稱則橫坐標不變縱坐標互為相反數(shù),關于y軸對稱則縱坐標不變橫坐標互為相反數(shù)即可求解.【詳解】解:∵A(x,4)關于y軸的對稱點是B(-3,y),∴x=3,y=4,∴A點坐標為(3,4),∴點A關于x軸的對稱點的坐標是(3,-4).故答案為:3;4;(3,-4).【點睛】本題考查了點關于坐標軸對稱的特點:點關于x軸對稱則橫坐標不變縱坐標互為相反數(shù),關于y軸對稱則縱坐標不變橫坐標互為相反數(shù),由此即可求解.7、0【解析】【分析】根據(jù)一次函數(shù)的定義,列出關于m的方程和不等式進行求解即可.【詳解】解:由題意得,|m-1|=1且m-2≠0,解得:m=2或m=0且m≠2,∴m=0.故答案為:0.【點睛】本題主要考查了一次函數(shù),一次函數(shù)y=kx+b的條件是:k、b為常數(shù),k≠0,自變量次數(shù)為1.三、解答題1、,,原式值為【解析】【分析】先計算括號中的異分母分式減法,同時將除法化為乘法,再計算乘法,將合適的a值代入.【詳解】解:原式,當,0,1時,原式?jīng)]有意義,舍去,當時,原式.【點睛】此題考查了分式的化簡求值,解題的關鍵是掌握分式混合運算法則、運算順序以及分式有意義的條件確定未知數(shù)的值.2、(1)y=2x﹣4(2)見解析(3)x<3【解析】【分析】(1)設y=k(x﹣2)(k為常數(shù),k≠0),把x=1,y=﹣2代入得:﹣2=k(1﹣2),求出k=2即可;(2)列表描點連線即可;(3)先確定A點的坐標是(3,2),把A點的橫坐標代入y=2x﹣4求出函數(shù)值=2,即點A也在函數(shù)y=2x﹣4的圖象上,點A是函數(shù)y=ax+b和函數(shù)y=2x﹣4的交點,然后利用圖像法求不等式的解集即可.(1)解:∵y與x﹣2成正比例,∴設y=k(x﹣2)(k為常數(shù),k≠0),把x=1,y=﹣2代入得:﹣2=k(1﹣2),解得:k=2,即y=k(x﹣2)=2(x﹣2)=2x﹣4,所以變量y與x的函數(shù)關系式是y=2x﹣4;(2)列表x02y-40描點(0,-4),(2,0),連線得y=2x﹣4的圖象;(3)從圖象可知:A點的坐標是(3,2),把A點的橫坐標x=3代入y=2x﹣4時,y=2,即點A也在函數(shù)y=2x﹣4的圖象上,即點A是函數(shù)y=ax+b和函數(shù)y=2x﹣4的交點,∴關于x的不等式ax+b>2x﹣4反應在函數(shù)圖像函數(shù)y=ax+b在函數(shù)y=2x﹣4圖像上方,交點A的左側(cè),所以關于x的不等式ax+b>2x﹣4的解集是x<3,故答案為:x<3.【點睛】本題考查待定系數(shù)法求函數(shù)解析式,描點法畫函數(shù)圖像,用圖像法求不等式的解集,掌握待定系數(shù)法求函數(shù)解析式,描點法畫函數(shù)圖像,用圖像法求不等式的解集是解題關鍵.3、(1)2;(2)見詳解;(3)①13≤【解析】【分析】(1)根據(jù)題意正確寫出答案即可;(2)根據(jù)題意畫出圖形即可;(3)①正確畫出圖形,根據(jù)題意分別求出,dN的最大值和最小值,代入即可求解;②根據(jù)題意確定點A'(1?k,1)在兩點(-1,1),(1,1)確定的線段上運動,列不等式?1≤1?k≤1即可求解.(1)解:點到x軸和y軸的距離的較大值定義為點M的“相對軸距”,點2;(2)解:∵P?2,1與點的“相對軸距”相等的點的橫縱坐標的最大值為2,依題意得到的圖形是正方形,如圖,(3)解:①如圖,當點在三角形邊界上時,有最大的“相對軸距”和最小的“相對軸距”,當d(M)取小值,d(N)取最大值時,d(M)d(N)有最小值,這時點M與點A重合,點N與點B重合,∵d(M)的最小值為1,d(N)的最大值為3時,d(M)d(N)的最小值為,當d(M)取最大值,d(N)取最小值時,d(M)d(N)有最大值,這時這時點M與點B重合,點N與點A∵d(M)的最大值為3,d(N)的最小值為1時,d(M)d(N)13≤d②點與點為內(nèi)部(含邊界)的任意兩點,并且點與點的“相對軸距”之比的取值范圍和點M與點N的“相對軸距”之比的取值范圍相同,如圖,依題意,點A'的坐標為(1?k,1),點A'在兩點(1,1),(-1,1)確定的線段上,∴1≤1?k≤?1,∴0<k≤2.【點睛】本題考查了坐標平面內(nèi)點的坐標特征,點到坐標軸的距離,點的平移,解一元一次不等式,正確理解題意是解決問題的關鍵.4、(1),(2)或【解析】【分析】(1)把A(-1,m),B(n,-1)分別代入反比例函數(shù)解析式可求出m、n;(2)確定A點坐標為(-1,2),B點坐標為(2,-1),然后根據(jù)圖象即可求得.(1)把A(-1,m),B(n,-1)分別代入得-m=-2,-n=-2,解得m=2,n=2,故答案為:2,2(2)∵m=2,n=2,∴A點坐標為(-1,2),B點坐標為(2,-1),根據(jù)圖象可得,不等式的解集為或.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題:反比例函數(shù)與一次函數(shù)圖象的交點坐標滿足兩函數(shù)解析式.也考查了待定系數(shù)法求函數(shù)解析式.5、(1)私家車的速度為100千米/時,客車的速度為60千米/時;(2)6,360;10;(3)x1=5【解析】【分析】(1)根據(jù)函數(shù)圖象即可求出私家車的車速,再設客車的速度為x,根據(jù)題意列出一元一次方程,故可求解;(2)根據(jù)P點的含義為私家車已經(jīng)到達,c小時時客車達到目的地,即可求解;(3)分兩車相遇后與相遇前相距200km分別列出方程,故可求解.【詳解】(1)解:私家車:600÷6=100(千米/時)設客車的速度為x千米/時,依題意可得600=(100+x)×15解得x=60經(jīng)檢驗,符合題意,故私家車的速度為100千米/時,客車的速度為60千米/時;答:私家車的速度為100千米/時,客車的速度為60千米/時.(2)P點的含義為私家車已經(jīng)到達時,兩車的距離由題意可得私家車達到目的地所需時間為6小時此時客車行駛的路程為6×60=360故此時兩車相距360km∴點P的坐標為6,360;客車到達目的地時所需時間為600÷60=10h∴C的值為10故答案為:6,360;10;(3)當兩車相遇后相距200km,設此時時間為x1,依題意可得(100+60)x1=600+200解得x1當兩車相遇前相距200km,設此時時間為x2,依題意可得(100+60)x2=600-200解得x2綜上,當兩車相距200千米時,兩車出發(fā)的時間x(小時)的值為x1=5;【點睛】此題主要考查函數(shù)的實際應用,解題的關鍵是熟知根據(jù)題意找到數(shù)量關系列方程求解.6、(1)x(2)m≥?12(3)當時,分式的值為;當時,分式的值為0;當時,分式的值為;當x=4時,分式的值為0【解析】【分析】(1)將分式的分子、分母分解因式,將除法化為乘法,約分計算即可;(2)將A、B的值代入解方程,根據(jù)解是非負數(shù),得到25(3)將A利用完全平方公式及整式加減法添括號法則變形為x?3?3x?1,由值為整數(shù)得到(1)解:A===x(2)解:由題意:A+B=x2x2x=2∵解是非負數(shù),∴2∴m≥?1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論