難點(diǎn)解析-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)訓(xùn)練試卷(含答案詳解版)_第1頁
難點(diǎn)解析-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)訓(xùn)練試卷(含答案詳解版)_第2頁
難點(diǎn)解析-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)訓(xùn)練試卷(含答案詳解版)_第3頁
難點(diǎn)解析-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)訓(xùn)練試卷(含答案詳解版)_第4頁
難點(diǎn)解析-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)訓(xùn)練試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,矩形ABCD中,AC交BD于點(diǎn)O,且AB=24,BC=10,將AC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至CE.連接AE,且F、G分別為AE、EC的中點(diǎn),則四邊形OFGC的面積是()A.100 B.144 C.169 D.2252、勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,是數(shù)形結(jié)合的重要紐帶.?dāng)?shù)學(xué)家歐幾里得利用如圖驗(yàn)證了勾股定理:以直角三角形ABC的三條邊為邊長向外作正方形ACHI,正方形ABED,正方形BCGF,連接BI,CD,過點(diǎn)C作CJ⊥DE于點(diǎn)J,交AB于點(diǎn)K.設(shè)正方形ACHI的面積為S1,正方形BCGF的面積為S2,長方形AKJD的面積為S3,長方形KJEB的面積為S4,下列結(jié)論:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)3、如圖,把矩形紙片沿對(duì)角線折疊,若重疊部分為,那么下列說法錯(cuò)誤的是()A.是等腰三角形 B.和全等C.折疊后得到的圖形是軸對(duì)稱圖形 D.折疊后和相等4、如圖,在中,,點(diǎn),分別是,上的點(diǎn),,,點(diǎn),,分別是,,的中點(diǎn),則的長為().A.4 B.10 C.6 D.85、如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB,添加一個(gè)條件,不能使四邊形DBCE成為矩形的是()A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、正方形的一條對(duì)角線長為4,則這個(gè)正方形面積是_________.2、如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AB=6,∠DAC=60°,點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動(dòng),連接DF,以DF為邊作等邊三角形DFE,點(diǎn)E和點(diǎn)A分別位于DF兩側(cè),下列結(jié)論:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④點(diǎn)E運(yùn)動(dòng)的路程是2,其中正確結(jié)論的序號(hào)為_____.3、如圖,直線l1⊥l3,l2⊥l3,垂足分別為P、Q,一塊含有45°的直角三角板的頂點(diǎn)A、B、C分別在直線l1、l2、線段PQ上,點(diǎn)O是斜邊AB的中點(diǎn),若PQ等于,則OQ的長等于_____.4、如圖,在□中,⊥于點(diǎn),⊥于點(diǎn).若,,且的周長為40,則的面積為________.5、如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E為DC的中點(diǎn),若,則菱形的周長為__________.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在每個(gè)小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點(diǎn)A、B、C、D均在小正方形的頂點(diǎn)上.

(1)在方格紙中畫出以AB為對(duì)角線的正方形AEBF,點(diǎn)E、F在小正方形的頂點(diǎn)上;(2)在方格紙中畫出以CD為斜邊的等腰直角三角形CDM,連接BM,并直接寫出BM的長.2、如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對(duì)角線AC的三等分點(diǎn),連接BE,DF.證明BE=DF.3、在Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥AB,交BC于點(diǎn)E,連接AE,取AE的中點(diǎn)P,連接DP,CP.(1)觀察猜想:如圖(1),DP與CP之間的數(shù)量關(guān)系是,DP與CP之間的位置關(guān)系是.(2)類比探究:將圖(1)中的△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)45°,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)就圖(2)的情形給出證明;若不成立,請(qǐng)說明理由.(3)問題解決:若BC=3BD=3,將圖(1)中的△BDE繞點(diǎn)B在平面內(nèi)自由旋轉(zhuǎn),當(dāng)BE⊥AB時(shí),請(qǐng)直接寫出線段CP的長.4、如圖,將長方形ABCD沿著對(duì)角線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)E.(1)試判斷△BDE的形狀,并說明理由;(2)若AB=6,BC=18,求△BDE的面積.5、已知:如圖,在四邊形中,,.求證:(1)BECD;(2)四邊形是矩形.-參考答案-一、單選題1、C【解析】【分析】先根據(jù)矩形的性質(zhì)、三角形中位線定理可得,再根據(jù)平行四邊形的判定可得四邊形為平行四邊形,然后根據(jù)旋轉(zhuǎn)的性質(zhì)可得,從而可得,最后根據(jù)正方形的判定可得四邊形為正方形,由此即可得.【詳解】解:四邊形為矩形,,,分別為的中點(diǎn),,,四邊形為平行四邊形,又繞點(diǎn)順時(shí)針旋轉(zhuǎn),,,平行四邊形為正方形,四邊形的面積是,故選:C.【點(diǎn)睛】本題考查了矩形的性質(zhì)、正方形的判定與性質(zhì)、三角形中位線定理等知識(shí)點(diǎn),熟練掌握正方形的判定與性質(zhì)是解題關(guān)鍵.2、C【解析】【分析】根據(jù)SAS證△ABI≌△ADC即可得證①正確,過點(diǎn)B作BM⊥IA,交IA的延長線于點(diǎn)M,根據(jù)邊的關(guān)系得出S△ABI=S1,即可得出②正確,過點(diǎn)C作CN⊥DA交DA的延長線于點(diǎn)N,證S1=S3即可得證③正確,利用勾股定理可得出S1+S2=S3+S4,即能判斷④不正確.【詳解】解:①∵四邊形ACHI和四邊形ABED都是正方形,∴AI=AC,AB=AD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB,即∠IAB=∠CAD,在△ABI和△ADC中,,∴△ABI≌△ADC(SAS),∴BI=CD,故①正確;②過點(diǎn)B作BM⊥IA,交IA的延長線于點(diǎn)M,∴∠BMA=90°,∵四邊形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四邊形AMBC是矩形,∴BM=AC,∵S△ABI=AI?BM=AI?AC=AC2=S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=S1,即2S△ACD=S1,故②正確;③過點(diǎn)C作CN⊥DA交DA的延長線于點(diǎn)N,∴∠CNA=90°,∵四邊形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD?AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四邊形AKCN是矩形,∴CN=AK,∴S△ACD=AD?CN=AD?AK=S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正確;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,∴,故④錯(cuò)誤;綜上,共有3個(gè)正確的結(jié)論,故選:C.【點(diǎn)睛】本題主要考查勾股定理,正方形的性質(zhì),矩形性質(zhì),全等三角形的判定和性質(zhì)等知識(shí),熟練掌握勾股定理和全等三角形的判定和性質(zhì)是解題的關(guān)鍵.3、D【解析】【分析】根據(jù)題意結(jié)合圖形可以證明EB=ED,進(jìn)而證明△ABE≌△CDE;此時(shí)可以判斷選項(xiàng)A、B、D是成立的,問題即可解決.【詳解】解:由題意得:△BCD≌△BFD,∴DC=DF,∠C=∠F=90°;∠CBD=∠FBD,又∵四邊形ABCD為矩形,∴∠A=∠F=90°,DE∥BF,AB=DF,∴∠EDB=∠FBD,DC=AB,∴∠EDB=∠CBD,∴EB=ED,△EBD為等腰三角形;在△ABE與△CDE中,∵,∴△ABE≌△CDE(HL);又∵△EBD為等腰三角形,∴折疊后得到的圖形是軸對(duì)稱圖形;綜上所述,選項(xiàng)A、B、C成立,∴不能證明D是正確的,故說法錯(cuò)誤的是D,故選:D.【點(diǎn)睛】本題主要考查了翻折變換及其應(yīng)用問題;解題的關(guān)鍵是靈活運(yùn)用翻折變換的性質(zhì),找出圖中隱含的等量關(guān)系;借助矩形的性質(zhì)、全等三角形的判定等幾何知識(shí)來分析、判斷、推理或解答.4、B【解析】【分析】根據(jù)三角形中位線定理得到PD=BF=6,PD∥BC,根據(jù)平行線的性質(zhì)得到∠PDA=∠CBA,同理得到∠PDQ=90°,根據(jù)勾股定理計(jì)算,得到答案.【詳解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵點(diǎn)P,D分別是AF,AB的中點(diǎn),∴PD=BF=6,PD//BC,∴∠PDA=∠CBA,同理,QD=AE=8,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ==10,故選:B.【點(diǎn)睛】本題考查的是三角形中位線定理、勾股定理,掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關(guān)鍵.5、B【解析】【分析】先證明四邊形BCED為平行四邊形,再根據(jù)矩形的判定進(jìn)行解答.【詳解】解:∵四邊形ABCD為平行四邊形,∴AD∥BC,且AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四邊形BCED為平行四邊形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴□DBCE為矩形,故本選項(xiàng)不符合題意;B、∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四邊形DBCE不能為矩形,故本選項(xiàng)符合題意;C、∵∠ADB=90°,∴∠EDB=90°,∴□DBCE為矩形,故本選項(xiàng)不符合題意;D、∵CE⊥DE,∴∠CED=90°,∴□DBCE為矩形,故本選項(xiàng)不符合題意.故選:B.【點(diǎn)睛】本題考查了平行四邊形的判定和性質(zhì)、矩形的判定等知識(shí),判定四邊形BCED為平行四邊形是解題的關(guān)鍵.二、填空題1、8【解析】【分析】正方形邊長相等設(shè)為,對(duì)角線長已知,利用勾股定理求解邊長的平方,即為正方形的面積.【詳解】解:設(shè)邊長為,對(duì)角線為故答案為:.【點(diǎn)睛】本題考察了正方形的性質(zhì)以及勾股定理.解題的關(guān)鍵在于求解正方形的邊長.2、①②③④【解析】【分析】①根據(jù)∠DAC=60°,OD=OA,得出△OAD為等邊三角形,再由△DFE為等邊三角形,得∠DOA=∠DEF=60°,再利用角的等量代換,即可得出結(jié)論①正確;②連接OE,利用SAS證明△DAF≌△DOE,再證明△ODE≌△OCE,即可得出結(jié)論②正確;③通過等量代換即可得出結(jié)論③正確;④延長OE至,使=OD,連接,通過△DAF≌△DOE,∠DOE=60°,可分析得出點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動(dòng)時(shí),點(diǎn)E從點(diǎn)O沿線段運(yùn)動(dòng)到,從而得出結(jié)論④正確;【詳解】解:①設(shè)與的交點(diǎn)為如圖所示:∵∠DAC=60°,OD=OA,∴△OAD為等邊三角形,∴∠DOA=∠DAO=∠ADO=60°,∵△DFE為等邊三角形,∴∠DEF=60°,∴∠DOA=∠DEF=60°,∴,∴故結(jié)論①正確;②如圖,連接OE,在△DAF和△DOE中,,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE=∠DOE,在△ODE和△OCE中,,∴△ODE≌△OCE(SAS),∴ED=EC,∠OCE=∠ODE,故結(jié)論②正確;③∵∠ODE=∠ADF,∴∠ADF=∠OCE,即∠ADF=∠ECF,故結(jié)論③正確;④如圖,延長OE至,使=OD,連接,∵△DAF≌△DOE,∠DOE=60°,∴點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動(dòng)時(shí),點(diǎn)E從點(diǎn)O沿線段運(yùn)動(dòng)到,∵∴設(shè),則∴在中,即解得:∴=OD=AD=,∴點(diǎn)E運(yùn)動(dòng)的路程是,故結(jié)論④正確;故答案為:①②③④.【點(diǎn)睛】本題主要考查了幾何綜合,其中涉及到了等邊三角形判定及性質(zhì),相似三角形的判定及性質(zhì),全等三角形的性質(zhì)及判定,三角函數(shù)的比值關(guān)系,矩形的性質(zhì)等知識(shí)點(diǎn),熟悉掌握幾何圖形的性質(zhì)合理做出輔助線是解題的關(guān)鍵.3、【解析】【分析】由“AAS”可證△ACP≌△CBQ,可得AP=CQ,PC=BQ,由“AAS”可證△APO≌△BHO,可得AP=BH,OP=OH,由等腰直角三角形的性質(zhì)和直角三角形的性質(zhì)可求解.【詳解】解:如圖,連接PO,并延長交l2于點(diǎn)H,∵l1⊥l3,l2⊥l3,∴l(xiāng)1∥l3,∠APC=∠BQC=∠ACB=90°,∴∠PAC+∠ACP=90°=∠ACP+∠BCQ,∴∠PAC=∠BCQ,在△ACP和△CBQ中,,∴△ACP≌△CBQ(AAS),∴AP=CQ,PC=BQ,∴PC+CQ=AP+BQ=PQ=,∵AP∥BQ,∴∠OAP=∠OBH,∵點(diǎn)O是斜邊AB的中點(diǎn),∴AO=BO,在△APO和△BHO中,,∴△APO≌△BHO(AAS),∴AP=BH,OP=OH,∴BH+BQ=AP+BQ=PQ,∴PQ=QH=,∵∠PQH=90°,∴PH=PQ=12,∵OP=OH,∠PQH=90°,∴OQ=PH=6.故答案為:6【點(diǎn)睛】本題主要考查了全等三角形的判定和性質(zhì),等腰三角形和直角三角形的性質(zhì),熟練掌握全等三角形的判定和性質(zhì)定理,等腰三角形和直角三角形的性質(zhì)定理是解題的關(guān)鍵.4、48【解析】【分析】根據(jù)題意可得:,再由平行四邊形的面積公式整理可得:,根據(jù)兩個(gè)等式可得:,代入平行四邊形面積公式即可得.【詳解】解:∵?ABCD的周長:,∴,∵于E,于F,,,∴,整理得:,∴,∴,∴?ABCD的面積:,故答案為:48.【點(diǎn)睛】題目主要考查平行四邊形的性質(zhì)及運(yùn)用方程思想進(jìn)行求解線段長,理解題意,熟練運(yùn)用平行四邊形的性質(zhì)及其面積公式是解題關(guān)鍵.5、16【解析】【分析】由菱形的性質(zhì)和三角形中位線定理即可得菱形的邊長,從而可求得菱形的周長.【詳解】∵四邊形ABCD是菱形,且對(duì)角線相交于點(diǎn)O∴點(diǎn)O是AC的中點(diǎn)∵E為DC的中點(diǎn)∴OE為△CAD的中位線∴AD=2OE=2×2=4∴菱形的周長為:4×4=16故答案為:16【點(diǎn)睛】本題考查了菱形的性質(zhì)及三角形中位線定理、菱形周長等知識(shí),掌握這些知識(shí)是解答本題的關(guān)鍵.三、解答題1、(1)見詳解;(2)見詳解.【分析】(1)根據(jù)勾股定理求出AB的長,以AB為對(duì)角線的正方形AEBF,根據(jù)正方形的性質(zhì)求出正方形邊長AE=,根據(jù)勾股定理構(gòu)造直角三角形橫1豎3,或橫3豎1,利用點(diǎn)A平移找到點(diǎn)E,點(diǎn)F即可完成求解;(2)根據(jù)勾股定理求出CD的長,△CDM為等腰直角三角形,設(shè)CM=DM=x,再利用勾股定理,根據(jù)勾股定理構(gòu)造橫1豎2,或橫2豎1直角三角形,利用點(diǎn)C平移得到點(diǎn)M,即可得到答案.【詳解】(1)根據(jù)勾股定理AB=,∵以AB為對(duì)角線的正方形AEBF,∴S正方形=,∵正方形AEBF的邊長為AE,∴AE2=10,∴AE=,根據(jù)勾股定理可知構(gòu)造橫1豎3或橫3豎1的直角三角形作線段AE、AF,點(diǎn)A向下平移1格,再向左平移3格得點(diǎn)E,點(diǎn)A向右平移1格,再向下平移3格得點(diǎn)F,∴連結(jié)AE,BE,BF,AF,則正方形ABEF作圖如下:(2)根據(jù)勾股定理,∵△CDM為等腰直角三角形,設(shè)CM=DM=x,根據(jù)勾股定理,即,解得,∴CM=DM=,根據(jù)勾股定理構(gòu)造橫1豎2,或橫2豎1直角三角形作線段CM、DM,點(diǎn)C向右移動(dòng)2格,再向上移動(dòng)1格得點(diǎn)M,連結(jié)CM,DM,則△CDM為所求如圖.

【點(diǎn)睛】本題考查了正方形性質(zhì)、正方形面積,邊長,等腰直角三角形、腰長,勾股定理,一元二次方程,平移;解題的關(guān)鍵是熟練掌握正方形性質(zhì)、等腰直角三角形性質(zhì),勾股定理,一元二次方程,平移,從而完成求解.2、見詳解【分析】由題意易得AB=CD,AB∥CD,AE=CF,則有∠BAE=∠DCF,進(jìn)而問題可求證.【詳解】證明:∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,∵E,F(xiàn)是對(duì)角線AC的三等分點(diǎn),∴AE=CF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴BE=DF.【點(diǎn)睛】本題主要考查平行四邊形的性質(zhì)及全等三角形的性質(zhì)與判定,熟練掌握平行四邊形的性質(zhì)及全等三角形的性質(zhì)與判定是解題的關(guān)鍵.3、(1)PD=PC,PD⊥PC;(2)成立,見解析;(3)2或4【分析】(1)根據(jù)直角三角形斜邊中線的性質(zhì),可得,根據(jù)角之間的關(guān)系即可,即可求解;(2)過點(diǎn)P作PT⊥AB交BC的延長線于T,交AC于點(diǎn)O,根據(jù)全等三角形的判定與性質(zhì)求解即可;(3)分兩種情況,當(dāng)點(diǎn)E在BC的上方時(shí)和當(dāng)點(diǎn)E在BC的下方時(shí),過點(diǎn)P作PQ⊥BC于Q,利用等腰直角三角形的性質(zhì)求得,即可求解.【詳解】解:(1)∵∠ACB=90°,AC=BC,∴,∵,∴,∵點(diǎn)P為AE的中點(diǎn),∴,∴,,∴,∴故答案為:,.(2)結(jié)論成立.理由如下:過點(diǎn)P作PT⊥AB交BC的延長線于T,交AC于點(diǎn)O.則∴,∴,,由勾股定理可得:∴∴∴∵點(diǎn)P為AE的中點(diǎn),∴∴在中,,∴,∴∴∴,∴∴,∴.(3)如圖3﹣1中,當(dāng)點(diǎn)E在BC的上方時(shí),過點(diǎn)P作PQ⊥BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論