版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省仙桃市中考數(shù)學(xué)真題分類(勾股定理)匯編章節(jié)測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,設(shè)直角三角形較長(zhǎng)直角邊長(zhǎng)為a,較短直角邊長(zhǎng)為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.62、如圖,在中,,兩直角邊,,現(xiàn)將AC沿AD折疊,使點(diǎn)C落在斜邊AB上的點(diǎn)E處,則CD長(zhǎng)為(
)A. B. C. D.3、勾股定理是人類最偉大的科學(xué)發(fā)現(xiàn)之一,在我國古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出(
)A.直角三角形的面積B.最大正方形的面積C.較小兩個(gè)正方形重疊部分的面積D.最大正方形與直角三角形的面積和4、如圖,在中,,,,為邊上一動(dòng)點(diǎn),于,于,為中點(diǎn),則的最小值為(
).A. B. C. D.5、如圖,正方形的邊長(zhǎng)為10,,,連接,則線段的長(zhǎng)為(
)A. B. C. D.6、我國古代數(shù)學(xué)著作《九章算術(shù)》中有這樣一個(gè)問題:
“今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.水深、葭長(zhǎng)各幾何?”.其大意是:如圖,有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺(丈、尺是長(zhǎng)度單位,1丈=10尺)的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點(diǎn),它的頂端恰好到達(dá)池邊的水面.水的深度與這根蘆葦?shù)拈L(zhǎng)度分別是多少?若設(shè)這跟蘆葦?shù)拈L(zhǎng)度為x尺,根據(jù)題意,所列方程正確的是(
)A.102+(x-1)2=x2 B.102+(x-1)2=(x+1)2C.52+(x-1)2=x2 D.52+(x-1)2=(x+1)27、如圖,長(zhǎng)方形紙片ABCD中,AB=3cm,AD=9cm,將此長(zhǎng)方形紙片折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)H的位置,折痕為EF,則△ABE的面積為(
)A.6cm2 B.8cm2 C.10cm2 D.12cm2第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖1,鄰邊長(zhǎng)為2和6的矩形分割成①,②,③,④四塊后,拼接成如圖2不重疊、無縫隙的正方形,則圖2中的值為___________,圖1中的長(zhǎng)為_______.2、如圖所示,數(shù)軸上點(diǎn)A所表示的數(shù)為_______.3、如圖,在網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1.點(diǎn)A、B,C都在格點(diǎn)上,若BD是△ABC的高,則BD的長(zhǎng)為__________.4、如圖,在△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D.E為線段BD上一點(diǎn),連結(jié)CE,將邊BC沿CE折疊,使點(diǎn)B的對(duì)稱點(diǎn)B'落在CD的延長(zhǎng)線上.若AB=10,BC=8,則△ACE的面積為________.5、我國古代的數(shù)學(xué)名著《九章算術(shù)》中有這樣一道題目“今有立木,系索其末,委地三尺.引索卻行,去本八尺而索盡.問索長(zhǎng)幾何?”譯文為“今有一豎立著的木柱,在木柱的上端系有繩索,繩索從木柱上端順木柱下垂后,堆在地面的部分尚有3尺,牽索沿地面退行,在離木柱根部8尺處時(shí),繩索用盡問繩索長(zhǎng)是多少?”示意圖如下圖所示,設(shè)繩索的長(zhǎng)為尺,根據(jù)題意,可列方程為__________.6、如圖,在高2米,坡角為30°的樓梯表面鋪地毯,地毯的長(zhǎng)至少需______米.7、我國古代數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問題:一根竹子高1丈(1丈=10尺),折斷后頂端落在離竹子底端3尺處,問折斷處離地面的高度為多少尺?如圖,設(shè)折斷處離地面的高度為x尺,根據(jù)題意,可列出關(guān)于x方程為:__________.8、公元三世紀(jì),我國漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時(shí)給出的“趙爽弦圖”,它由四個(gè)全等的直角三角形與中間的小正方形拼成的一個(gè)大正方形,如果小正方形面積是49,直角三角形中較小銳角θ的正切為,那么大正方形的面積是_____.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,點(diǎn)是正方形內(nèi)一點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,若,求的度數(shù).2、閱讀下面材料:小明遇到這樣一個(gè)問題:∠MBN=30°,點(diǎn)A為射線BM上一點(diǎn),且AB=4,點(diǎn)C為射線BN上動(dòng)點(diǎn),連接AC,以AC為邊在AC右側(cè)作等邊三角形ACD,連接BD.當(dāng)AC⊥BN時(shí),求BD的長(zhǎng).小明發(fā)現(xiàn):以AB為邊在左側(cè)作等邊三角形ABE,連接CE,能得到一對(duì)全等的三角形,再利用∠EBC=90°,從而將問題解決(如圖1).請(qǐng)回答:(1)在圖1中,小明得到的全等三角形是△≌△;BD的長(zhǎng)為.(2)動(dòng)點(diǎn)C在射線BN上運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到AC時(shí),求BD的長(zhǎng);(3)動(dòng)點(diǎn)C在射線BN上運(yùn)動(dòng),求△ABD周長(zhǎng)最小值.3、勾股定理被譽(yù)為“幾何明珠”,在數(shù)學(xué)的發(fā)展歷程中占有舉足輕重的地位.它是初中數(shù)學(xué)中的重要知識(shí)點(diǎn)之一,也是初中學(xué)生以后解決數(shù)學(xué)問題和實(shí)際問題中常常運(yùn)用到的重要知識(shí),因此學(xué)好勾股定理非常重要.學(xué)習(xí)數(shù)學(xué)“不僅要知其然,更要知其所以然”,所以,我們要學(xué)會(huì)勾股定理的各種證明方法.請(qǐng)你利用如圖圖形證明勾股定理:已知:如圖,四邊形ABCD中,BD⊥CD,AE⊥BD于點(diǎn)E,且△ABE≌△BCD.求證:AB2=BE2+AE2.4、如圖,某海岸線MN的方向?yàn)楸逼珫|75°,甲,乙兩船分別向海島C運(yùn)送物資,甲船從港口A處沿北偏東45°方向航行,乙船從港口B處沿北偏東30°方向航行,已知港口B到海島C的距離為30海里,求港口A到海島C的距離.5、如圖,中,,,是邊上一點(diǎn),且,若.求的長(zhǎng).6、如圖,有一架秋千,當(dāng)他靜止時(shí),踏板離地的垂直高度,將他往前推送(水平距離)時(shí),秋千的踏板離地的垂直高度,秋千的繩索始終拉得很直,求繩索的長(zhǎng)度.7、已知,如圖,,C為上一點(diǎn),與相交于點(diǎn)F,連接.,.(1)求證:;(2)已知,,,求的長(zhǎng)度.-參考答案-一、單選題1、C【解析】【詳解】解:如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,即:a2+b2=13,∴2ab=21﹣13=8,∴小正方形的面積為13﹣8=5.故選C.2、A【解析】【分析】先根據(jù)勾股定理求得AB的長(zhǎng),再根據(jù)折疊的性質(zhì)求得AE,BE的長(zhǎng),從而利用勾股定理可求得CD的長(zhǎng).【詳解】解:∵AC=6cm,BC=8cm,∠C=90°,∴AB=(cm),由折疊的性質(zhì)得:AE=AC=6cm,∠AED=∠C=90°,∴BE=10cm?6cm=4cm,∠BED=90°,設(shè)CD=x,則BD=BC?CD=8?x,在Rt△DEB中,BE2+DE2=BD2,即42+x2=(8?x)2,解得:x=3,∴CD=3cm,故選:A.【考點(diǎn)】本題考查了折疊的性質(zhì),勾股定理等知識(shí);熟記折疊性質(zhì)并表示出Rt△DEB的三邊,然后利用勾股定理列出方程是解題的關(guān)鍵.3、C【解析】【分析】根據(jù)勾股定理得到c2=a2+b2,根據(jù)正方形的面積公式、長(zhǎng)方形的面積公式計(jì)算即可.【詳解】設(shè)直角三角形的斜邊長(zhǎng)為c,較長(zhǎng)直角邊為b,較短直角邊為a,由勾股定理得,c2=a2+b2,陰影部分的面積=c2-b2-a(c-b)=a2-ac+ab=a(a+b-c),較小兩個(gè)正方形重疊部分的長(zhǎng)=a-(c-b),寬=a,則較小兩個(gè)正方形重疊部分底面積=a(a+b-c),∴知道圖中陰影部分的面積,則一定能求出較小兩個(gè)正方形重疊部分的面積,故選C.【考點(diǎn)】本題考查的是勾股定理,如果直角三角形的兩條直角邊長(zhǎng)分別是a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.4、D【解析】【分析】先根據(jù)矩形的判定得出AEPF是矩形,再根據(jù)矩形的性質(zhì)得出EF,AP互相平分,且EF=AP,再根據(jù)垂線段最短的性質(zhì)就可以得出AP⊥BC時(shí),AP的值最小,即AM的值最小,根據(jù)面積關(guān)系建立等式求出其解即可.【詳解】解:如圖,連接AP,∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四邊形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交點(diǎn)就是M點(diǎn).∵當(dāng)AP的值最小時(shí),AM的值就最小,∴當(dāng)AP⊥BC時(shí),AP的值最小,即AM的值最?。逜P?BC=AB?AC,∴AP?BC=AB?AC,∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=,∴AM=.故選:D.【考點(diǎn)】本題考查了矩形的性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,三角形的面積公式的運(yùn)用,垂線段最短的性質(zhì)的運(yùn)用,解題的關(guān)鍵是求出AP的最小值.5、B【解析】【分析】延長(zhǎng)DH交AG于點(diǎn)E,利用SSS證出△AGB≌△CHD,然后利用ASA證出△ADE≌△DCH,根據(jù)全等三角形的性質(zhì)求出EG、HE和∠HEG,最后利用勾股定理即可求出HG.【詳解】解:延長(zhǎng)DH交AG于點(diǎn)E∵四邊形ABCD為正方形∴AD=DC=BA=10,∠ADC=∠BAD=90°在△AGB和△CHD中∴△AGB≌△CHD∴∠BAG=∠DCH∵∠BAG+∠DAE=90°∴∠DCH+∠DAE=90°∴CH2+DH2=82+62=100=DC2∴△CHD為直角三角形,∠CHD=90°∴∠DCH+∠CDH=90°∴∠DAE=∠CDH,∵∠CDH+∠ADE=90°∴∠ADE=∠DCH在△ADE和△DCH中∴△ADE≌△DCH∴AE=DH=6,DE=CH=8,∠AED=∠DHC=90°∴EG=AG-AE=2,HE=DE-DH=2,∠GEH=180°-∠AED=90°在Rt△GEH中,GH=故選B.【考點(diǎn)】此題考查是正方形的性質(zhì)、全等三角形的判定及性質(zhì)和勾股定理,掌握正方形的性質(zhì)、全等三角形的判定及性質(zhì)和利用勾股定理解直角三角形是解決此題的關(guān)鍵.6、C【解析】【分析】設(shè)這跟蘆葦?shù)拈L(zhǎng)度為x尺,根據(jù)勾股定理,即可求解.【詳解】解:設(shè)這跟蘆葦?shù)拈L(zhǎng)度為x尺,根據(jù)題意得:52+(x-1)2=x2故選:C【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用,明確題意,準(zhǔn)確構(gòu)造直角三角形是解題的關(guān)鍵.7、A【解析】【分析】根據(jù)折疊的條件可得:,在中,利用勾股定理就可以求解.【詳解】將此長(zhǎng)方形折疊,使點(diǎn)與點(diǎn)重合,,,根據(jù)勾股定理得:,解得:..故選:A.【考點(diǎn)】本題考查了利用勾股定理解直角三角形,掌握直角三角形兩直角邊的平方和等于斜邊的平方是解題的關(guān)鍵.二、填空題1、
【解析】【分析】由等積法解得正方形的邊長(zhǎng),再利用勾股定理解得圖④的直角邊FH的長(zhǎng),在圖2中,利用正弦的定義解得,接著利用勾股定理解得,據(jù)此解得的值,最后利用解答即可.【詳解】解:矩形的面積為:2×6=12正方形的邊長(zhǎng)如圖1,如圖2,設(shè)或(舍去)故答案為:,.【考點(diǎn)】本題考查正方形與矩形、圖形的拼接,涉及勾股定理、正弦、余弦等知識(shí),是重要考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.2、【解析】【分析】根據(jù)數(shù)軸上點(diǎn)的特點(diǎn)和相關(guān)線段的長(zhǎng),結(jié)合勾股定理求出斜邊長(zhǎng),即可求出-1和A之間的線段的長(zhǎng),即可知A所表示的數(shù).【詳解】圖中直角三角形的兩直角邊為1,2,所以斜邊長(zhǎng)為,那么-1和A之間的距離為,那么數(shù)軸上點(diǎn)A所表示的數(shù)為:.故答案為:.【考點(diǎn)】本題考查實(shí)數(shù)與數(shù)軸之間的對(duì)應(yīng)關(guān)系以及勾股定理,利用勾股定理求出直角三角形的斜邊的長(zhǎng)是解答本題的關(guān)鍵.3、##【解析】【分析】根據(jù)勾股定理計(jì)算AC的長(zhǎng),利用面積差可得三角形ABC的面積,由三角形的面積公式即可得到結(jié)論.【詳解】】解:由勾股定理得:AC=,∵S△ABC=3×4-×1×2-×3×2-×2×4=4,∴AC?BD=4,∴×2BD=4,∴BD=,故答案為:.【考點(diǎn)】本題考查了勾股定理,三角形的面積的計(jì)算,掌握勾股定理是解題的關(guān)鍵.4、【解析】【分析】求出AC=6,面積法求出CD=,在Rt△BCD中,用勾股定理得BD=,即可得B'D=B'C-CD=,設(shè)BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,用勾股定理可得BE=4,即可得到答案.【詳解】解:∵∠ACB=90°,AB=10,BC=8,∴AC==6,∵CD⊥AB,∴2S△ABC=AB?CD=AC?BC,∴CD==,在Rt△BCD中,BD=,∵將邊BC沿CE折疊,使點(diǎn)B的對(duì)稱點(diǎn)B'落在CD的延長(zhǎng)線上,∴B'C=BC=8,BE=B'E,∴B'D=B'C-CD=8-=,設(shè)BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,B'D2+DE2=B'E2,∴()2+(-x)2=x2,解得x=4,∴BE=4,∴AE=AB-BE=6,∴△ACE的面積為AE?CD=×6×=,故答案為:.【考點(diǎn)】本題考查直角三角形中的折疊問題,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練運(yùn)用勾股定理.5、x2?(x?3)2=82【解析】【分析】設(shè)繩索長(zhǎng)為x尺,根據(jù)勾股定理列出方程解答即可.【詳解】解:設(shè)繩索長(zhǎng)為x尺,根據(jù)題意得:x2?(x?3)2=82,故答案為:x2?(x?3)2=82.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出相應(yīng)方程是解題的關(guān)鍵.6、2+2【解析】【分析】地毯的豎直的線段加起來等于BC,水平的線段相加正好等于AC,即地毯的總長(zhǎng)度至少為(AC+BC).【詳解】在Rt△ABC中,∠A=30°,BC=2m,∠C=90°,∴AB=2BC=4m,∴AC=m,∴AC+BC=2+2(m).故答案為2+2.【考點(diǎn)】本題主要考查勾股定理的應(yīng)用,解此題的關(guān)鍵在于準(zhǔn)確理解題中地毯的長(zhǎng)度為水平與豎直的線段的和.7、【解析】【分析】設(shè)折斷處離地面的高度為x尺,根據(jù)勾股定理列出方程即可【詳解】解:設(shè)折斷處離地面的高度為x尺,根據(jù)題意可得:故答案為:【考點(diǎn)】本題考查了勾股定理的應(yīng)用,掌握勾股定理是解題的關(guān)鍵.8、169.【解析】【分析】由題意知小正方形的邊長(zhǎng)為7.設(shè)直角三角形中較小邊長(zhǎng)為a,較長(zhǎng)的邊為b,運(yùn)用正切函數(shù)定義求解.【詳解】解:由題意知,小正方形的邊長(zhǎng)為7,設(shè)直角三角形中較小邊長(zhǎng)為a,較長(zhǎng)的邊為b,則tanθ=短邊:長(zhǎng)邊=a:b=5:12.所以b=a,①又以為b=a+7,②聯(lián)立①②,得a=5,b=12.所以大正方形的面積是:a2+b2=25+144=169.故答案是:169.【考點(diǎn)】本題主要考查了解直角三角形、勾股定理的證明和正方形的面積,掌握解直角三角形、勾股定理的證明和正方形的面積是解題的關(guān)鍵.三、解答題1、【解析】【分析】連接EE`,如圖,根據(jù)旋轉(zhuǎn)的性質(zhì)得BE=BE'=2,AE=CE'=1,∠EBE`=90°,則可判斷△BEE`為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得EE`=BE=2,∠BE`E=45°,在△CEE'中,由于CE`+EE'=CE,根據(jù)勾股定理的逆定理得到△CEE`為直角三角形,即∠EE`C=90°,然后利用∠BE'C=∠BE'E+∠CE'E求解【詳解】連接EE`,如圖,∵△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△CBE`∴BE=BE'=2,AE=CE'=1,∠EBE'=90°∴△BEE'為等腰直角三角形∴EE'=BE=2,∠BE'E=45°在△CEE`中,CE=3,CE'=1,EE'=2,∵1+(2)=3∴CE+EE'=CE∴△CEE'為直角三角形∴∠EE'C=90°∴∠BE'C=∠BE'E+∠CE'E=135°【考點(diǎn)】此題考查了等腰直角三角形,勾股定理的逆定理,正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì),利用勾股定理證明三角形是直角三角形是解題關(guān)鍵2、(1)ABD,ACE,;(2)BD的長(zhǎng)為;(3)+4.【解析】【分析】(1)根據(jù)SAS可證△ABD≌△ACE,得出BD=CE,利用勾股定理求出CE即可得出BD的長(zhǎng)度;(2)作AH⊥BC于點(diǎn)H,以AB為邊在左側(cè)作等邊△ABE,連接CE,求出BH,HC即BC的長(zhǎng)度,再利用勾股定理即可求出CE的長(zhǎng)度,由(1)知BD=CE,據(jù)此得解;(3)作AH⊥BC于點(diǎn)H,以AB為邊在左側(cè)作等邊△ABE,延長(zhǎng)EB至F,使BF=EB,連接AF交BN于C',連接EC',此時(shí)BD+AC'有最小值即為AF,此時(shí)△ABD周長(zhǎng)=AF+AB最小,求出AF即可.(1)解:∵△ACD和△ABE是等邊三角形,∴∠EAB=∠DAC=60°,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△ABD和△AEC中,,∴△ABD≌△ACE(SAS),∴BD=CE,∵AB=4,∠MBN=30°,∴AC=2,∴BC=,∴BD=CE=,故答案為:ABD,ACE,;(2)解:如下圖,作AH⊥BC于點(diǎn)H,以AB為邊在左側(cè)作等邊△ABE,連接CE,∵AB=4,∠MAN=30°,∴AH=2,BH=,∵AC=,∴HC=,∴BC=BH+HC=+=,∴CE=,由(1)可知BD=CE,∴此時(shí)BD的長(zhǎng)為;(3)解:如圖,以AB為邊在左側(cè)作等邊△ABE,延長(zhǎng)EB至F,使BF=EB,連接AF交BN于C',連接EC',∵EC'=FC'=BD,∴此時(shí)BD+AC'有最小值即為AF,∴此時(shí)△ABD周長(zhǎng)=AD+BD+AB=AF+AB最小,作AG⊥BE于G,∴AG∥BN,∴∠BAG=30°,∴BG=AB=2,AG=,∴GF=BG+BF=2+4=6,由勾股定理得AF=,∴此時(shí)△ABD周長(zhǎng)為:+4.【考點(diǎn)】本題主要考查全等三角形的判定和性質(zhì),勾股定理等,作出合適的輔助線,構(gòu)造出全等三角形是解題的關(guān)鍵.3、證明見解析【解析】【分析】連接AC,根據(jù)四邊形ABCD面積的兩種不同表示形式,結(jié)合全等三角形的性質(zhì)即可求解.【詳解】解:連接AC,∵△ABE≌△BCD,∴AB=BC,AE=BD,BE=CD,∠BAE=∠CBD,∵∠ABE+∠BAE=90°,∴∠ABE+∠CBE=90°,∴∠ABC=90°,∴S四邊形ABCD=,又∵S四邊形ABCD=,,∴AB2=AE2+BD?BE-BE?DE,∴AB2=AE2+(BD-DE)?BE,即AB2=BE2+AE2.【考點(diǎn)】本題考查了勾股定理的證明,解題時(shí),利用了全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)奧數(shù)遇難題目及答案
- 連合競(jìng)價(jià)交易制度
- 自動(dòng)駕駛系統(tǒng)架構(gòu)分析
- 試論我國合同法中的顯失公平制度
- 行政處罰告知結(jié)果反饋時(shí)效制度
- 2025年理想汽車數(shù)據(jù)工程師筆試及答案
- 2025年浙江省直屬事業(yè)單位考試及答案
- 2025年江西投資集團(tuán)社招筆試題及答案
- 2025年新鞍控股有限公司筆試及答案
- 2025年寇店鎮(zhèn)事業(yè)單位招聘考試及答案
- 全文版曼娜回憶錄
- GB/T 1965-2023多孔陶瓷室溫彎曲強(qiáng)度試驗(yàn)方法
- 六年級(jí)語文非連續(xù)性文本專項(xiàng)訓(xùn)練
- 體育單招核心1700單詞
- 梨樹溝礦區(qū)金礦2022年度礦山地質(zhì)環(huán)境治理計(jì)劃書
- 師德規(guī)范關(guān)愛學(xué)生
- 太陽能光伏發(fā)電裝置的開發(fā)與推廣商業(yè)計(jì)劃書
- 海水淡化用閥門
- GB/T 36377-2018計(jì)量器具識(shí)別編碼
- GB/T 26332.3-2015光學(xué)和光子學(xué)光學(xué)薄膜第3部分:環(huán)境適應(yīng)性
- GB/T 17626.4-2008電磁兼容試驗(yàn)和測(cè)量技術(shù)電快速瞬變脈沖群抗擾度試驗(yàn)
評(píng)論
0/150
提交評(píng)論