難點解析滬科版9年級下冊期末測試卷及答案詳解【典優(yōu)】_第1頁
難點解析滬科版9年級下冊期末測試卷及答案詳解【典優(yōu)】_第2頁
難點解析滬科版9年級下冊期末測試卷及答案詳解【典優(yōu)】_第3頁
難點解析滬科版9年級下冊期末測試卷及答案詳解【典優(yōu)】_第4頁
難點解析滬科版9年級下冊期末測試卷及答案詳解【典優(yōu)】_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,該幾何體的左視圖是()A. B. C. D.2、往直徑為78cm的圓柱形容器內(nèi)裝入一些水以后,截面如圖所示,若水面寬,則水的最大深度為()A.36cm B.27cm C.24cm D.15cm3、一個黑色布袋中裝有3個紅球和2個白球,這些球除顏色外其它都相同,從袋子中隨機摸出一個球,這個球是白球的概率是()A. B. C. D.4、如圖,,,,都是上的點,,垂足為,若,則的度數(shù)為()A. B. C. D.5、下列事件為必然事件的是()A.明天要下雨B.a(chǎn)是實數(shù),|a|≥0C.﹣3<﹣4D.打開電視機,正在播放新聞6、下列事件是必然發(fā)生的事件是()A.在地球上,上拋的籃球一定會下落B.明天的氣溫一定比今天高C.中秋節(jié)晚上一定能看到月亮D.某彩票中獎率是1%,買100張彩票一定中獎一張7、一個不透明的盒子里裝有a個除顏色外完全相同的球,其中有6個白球,每次將球充分攪勻后,任意摸出1個球記下顏色然后再放回盒子里,通過如此大量重復試驗,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.4左右,則a的值約為()A.10 B.12 C.15 D.188、小張同學去展覽館看展覽,該展覽館有A、B兩個驗票口(可進可出),另外還有C、D兩個出口(只出不進).則小張從不同的出入口進出的概率是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在平面直角坐標系xOy中,P為x軸正半軸上一點.已知點,,為的外接圓.(1)點M的縱坐標為______;(2)當最大時,點P的坐標為______.2、在平面直角坐標系中,點,圓C與x軸相切于點A,過A作一條直線與圓交于A,B兩點,AB中點為M,則OM的最大值為______.3、如圖,將矩形繞點A順時針旋轉(zhuǎn)到矩形的位置,旋轉(zhuǎn)角為.若,則的大小為________(度).4、《九章算術》是我國古代的數(shù)學名著,書中有這樣的一個問題:“今有勾八步,股十五步,問勾中容圓徑幾何?”.其意思是:“如圖,現(xiàn)有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形所能容納的最大圓的直徑是多少?”答:該直角三角形所能容納的最大圓的直徑是______步.5、已知圓O的圓心到直線l的距離為2,且圓的半徑是方程x2﹣5x+6=0的根,則直線l與圓O的的位置關系是______.6、有五張正面分別標有數(shù)字,,0,1,2的不透明卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中任取一張,將該卡片上的數(shù)字記為,將該卡片放回洗勻后從中再任取一張,將該卡片上的數(shù)字記為,則為非負數(shù)的概率為________.7、兩直角邊分別為6、8,那么的內(nèi)接圓的半徑為____________.三、解答題(7小題,每小題0分,共計0分)1、如圖1,在平面直角坐標系中,二次函數(shù)的圖象經(jīng)過點,過點A作軸,做直線AC平行x軸,點D是二次函數(shù)的圖象與x軸的一個公共點(點D與點O不重合).(1)求點D的橫坐標(用含b的代數(shù)式表示)(2)求的最大值及取得最大值時的二次函數(shù)表達式.(3)在(2)的條件下,如圖2,P為OC的中點,在直線AC上取一點M,連接PM,做點C關于PM的對稱點N,①連接AN,求AN的最小值.②當點N落在拋物線的對稱軸上,求直線MN的函數(shù)表達式.2、如圖1,在中,,,點D為AB邊上一點.(1)若,則______;(2)如圖2,將線段CD繞著點C逆時針旋轉(zhuǎn)90°得到線段CE,連接AE,求證:;(3)如圖3,過點A作直線CD的垂線AF,垂足為F,連接BF.直接寫出BF的最小值.3、電影《長津湖》以抗美援朝戰(zhàn)爭第二次戰(zhàn)役中的長津湖戰(zhàn)役為背景,講述71年前,中國人民志愿軍赴朝作戰(zhàn),在極寒嚴酷環(huán)境下,東線作戰(zhàn)部隊憑著鋼鐵意志和英勇無畏的戰(zhàn)斗精神一路追擊,奮勇殺敵的真實歷史.為紀念歷史,緬懷先烈,我校團委將電影中的四位歷史英雄人物頭像制成編號為A、B、C、D的四張卡片(除編號和頭像外其余完全相同),活動時學生根據(jù)所抽取的卡片來講述他們在影片中波瀾壯闊、可歌可泣的歷史事跡.規(guī)則如下:先將四張卡片背面朝上,洗勻放好,小強從中隨機抽取一張,然后放回并洗勻,小葉再從中隨機抽取一張.請用列表或畫樹狀圖的方法求小強和小葉抽到的兩張卡片恰好是同一英雄人物的概率.4、隨著“新冠肺炎”疫情防控形勢日漸好轉(zhuǎn),各地開始復工復學,某校復學后成立“防疫志愿者服務隊”,設立四個“服務監(jiān)督崗”:①洗手監(jiān)督崗,②戴口罩監(jiān)督崗,③就餐監(jiān)督崗,④操場活動監(jiān)督崗.李老師和王老師報名參加了志愿者服務工作,學校將報名的志愿者隨機分配到四個監(jiān)督崗.(1)王老師被分配到“就餐監(jiān)督崗”的概率為;(2)用列表法或畫樹狀圖法,求李老師和王老師被分配到同一個監(jiān)督崗的概率.5、如圖,在中,,,將繞著點A順時針旋轉(zhuǎn)得到,連接BD,連接CE并延長交BD于點F.(1)求的度數(shù);(2)若,且,求DF的長.6、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點G,且,過點C作的垂線交的延長線于點H.(1)判斷與⊙的位置關系并說明理由;(2)若,求弧的長.7、如圖,已知弓形的長,弓高,(,并經(jīng)過圓心O).(1)請利用尺規(guī)作圖的方法找到圓心O;(2)求弓形所在的半徑的長.-參考答案-一、單選題1、C【分析】根據(jù)從左邊看得到的圖形是左視圖解答即可.【詳解】解:從左邊看是一個正方形被水平的分成3部分,中間的兩條分線是虛線,故C正確.故選C.【點睛】本題主要考查了簡單組合體的三視圖,掌握三視圖的定義成為解答本題的關鍵.2、C【分析】連接,過點作于點,交于點,先由垂徑定理求出的長,再根據(jù)勾股定理求出的長,進而得出的長即可.【詳解】解:連接,過點作于點,交于點,如圖所示:則,的直徑為,,在中,,,即水的最大深度為,故選:C.【點睛】本題考查了垂徑定理、勾股定理等知識,解題的關鍵是根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關鍵.3、D【分析】根據(jù)隨機事件概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A),進行計算即可.【詳解】解:∵一個黑色布袋中裝有3個紅球和2個白球,這些球除顏色外其它都相同,∴抽到每個球的可能性相同,∴布袋中任意摸出1個球,共有5種可能,摸到白球可能的次數(shù)為2次,摸到白球的概率是,∴P(白球).故選:D.【點睛】本題考查了隨機事件概率的求法,熟練掌握隨機事件概率公式是解題關鍵.4、B【分析】連接OC.根據(jù)確定,,進而計算出,根據(jù)圓心角的性質(zhì)求出,最后根據(jù)圓周角的性質(zhì)即可求出.【詳解】解:如下圖所示,連接OC.∵,∴,.∴.∵.∴.∴∵和分別是所對的圓周角和圓心角,∴.故選:B.【點睛】本題考查垂徑定理,圓心角的性質(zhì),圓周角的性質(zhì),綜合應用這些知識點是解題關鍵.5、B【分析】根據(jù)事情發(fā)生的可能性大小進行判斷,必然事件和不可能事件統(tǒng)稱確定性事件;必然事件:在一定條件下,一定會發(fā)生的事件稱為必然事件;不可能事件:在一定條件下,一定不會發(fā)生的事件稱為不可能事件;隨機事件:在一定條件下,可能發(fā)生也可能不發(fā)生的事件稱為隨機事件.【詳解】A.明天要下雨,是隨機事件,不符合題意;B.a是實數(shù),|a|≥0,是必然事件,符合題意;C.﹣3<﹣4,是不可能事件,不符合題意D.打開電視機,正在播放新聞,是隨機事件,不符合題意故選B【點睛】本題考查了必然事件,隨機事件,不可能事件,實數(shù)的性質(zhì),有理數(shù)大小比較,掌握相關知識是解題的關鍵.6、A【分析】根據(jù)必然事件的概念(必然事件指在一定條件下一定發(fā)生的事件)可判斷正確答案.【詳解】解:A、在地球上,上拋的籃球一定會下落是必然事件,符合題意;B、明天的氣溫一定比今天的高,是隨機事件,不符合題意;C、中秋節(jié)晚上一定能看到月亮,是隨機事件,不符合題意;D、某彩票中獎率是1%,買100張彩票一定中獎一張,是隨機事件,不符合題意.故選:A.【點睛】本題考查了必然事件的概念,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.關鍵是理解必然事件指在一定條件下一定發(fā)生的事件.7、C【分析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從摸到白球的頻率穩(wěn)定在0.4左右得到比例關系,列出方程求解即可.【詳解】解:由題意可得,,解得,a=15.經(jīng)檢驗,a=15是原方程的解故選:C.【點睛】本題利用了用大量試驗得到的頻率可以估計事件的概率.關鍵是根據(jù)白球的頻率得到相應的等量關系.8、D【分析】先畫樹狀圖得到所有的等可能性的結(jié)果數(shù),然后找到小張從不同的出入口進出的結(jié)果數(shù),最后根據(jù)概率公式求解即可.【詳解】解:列樹狀圖如下所示:由樹狀圖可知一共有8種等可能性的結(jié)果數(shù),其中小張從不同的出入口進出的結(jié)果數(shù)有6種,∴P小張從不同的出入口進出的結(jié)果數(shù),故選D.【點睛】本題主要考查了用列表法或樹狀圖法求解概率,解題的關鍵在于能夠熟練掌握用列表法或樹狀圖法求解概率.二、填空題1、5(4,0)【分析】(1)根據(jù)點M在線段AB的垂直平分線上求解即可;(2)點P在⊙M切點處時,最大,而四邊形OPMD是矩形,由勾股定理求解即可.【詳解】解:(1)∵⊙M為△ABP的外接圓,∴點M在線段AB的垂直平分線上,∵A(0,2),B(0,8),∴點M的縱坐標為:,故答案為:5;(2)過點,,作⊙M與x軸相切,則點M在切點處時,最大,理由:若點是x軸正半軸上異于切點P的任意一點,設交⊙M于點E,連接AE,則∠AEB=∠APB,∵∠AEB是ΔAE的外角,∴∠AEB>∠AB,∵∠APB>∠AB,即點P在切點處時,∠APB最大,∵⊙M經(jīng)過點A(0,2)、B(0,8),∴點M在線段AB的垂直平分線上,即點M在直線y=5上,∵⊙M與x軸相切于點P,MP⊥x軸,從而MP=5,即⊙M的半徑為5,設AB的中點為D,連接MD、AM,如上圖,則MD⊥AB,AD=BD=AB=3,BM=MP=5,而∠POD=90°,∴四邊形OPMD是矩形,從而OP=MD,由勾股定理,得MD=,∴OP=MD=4,∴點P的坐標為(4,0),故答案為:(4,0).【點睛】本題考查了切線的性質(zhì),線段垂直平分線的性質(zhì),矩形的判定及勾股定理,正確作出圖形是解題的關鍵.2、##【分析】如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點,先求出A點坐標,從而可證OM是△ABD的中位線,得到,則當BD最小時,OM也最小,即當B運動到時,BD有最小值,由此求解即可.【詳解】解:如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點∵點C的坐標為(2,2),圓C與x軸相切于點A,∴點A的坐標為(2,0),∴OA=OD=2,即O是AD的中點,又∵M是AB的中點,∴OM是△ABD的中位線,∴,∴當BD最小時,OM也最小,∴當B運動到時,BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案為:.【點睛】本題主要考查了坐標與圖形,一點到圓上一點的距離得到最小值,兩點距離公式,三角形中位線定理,把求出OM的最小值轉(zhuǎn)換成求BD的最小值是解題的關鍵.3、20【分析】先利用旋轉(zhuǎn)的性質(zhì)得到∠ADC=∠D=90°,∠DAD′=α,再利用四邊形內(nèi)角和計算出∠BAD‘=70°,然后利用互余計算出∠DAD′,從而得到α的值.【詳解】∵矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,即α=20°.故答案為20.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.4、6【分析】依題意,直角三角形性質(zhì),結(jié)合題意能夠容納的最大為內(nèi)切圓,結(jié)合內(nèi)切圓半徑,利用等積法求解即可;【詳解】設直角三角形中能容納最大圓的半徑為:;依據(jù)直角三角形的性質(zhì):可得斜邊長為:依據(jù)直角三角形面積公式:,即為;內(nèi)切圓半徑面積公式:,即為;所以,可得:,所以直徑為:;故填:6;【點睛】本題主要考查直角三角形及其內(nèi)切圓的性質(zhì),重點在理解題意和利用內(nèi)切圓半徑求解面積;5、相切或相交【詳解】首先求出方程的根,再利用半徑長度,由點O到直線l的距離為d,若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離,從而得出答案.【分析】解:∵x2﹣5x+6=0,(x﹣2)(x﹣3)=0,解得:x1=2,x2=3,∵圓的半徑是方程x2﹣5x+6=0的根,即圓的半徑為2或3,∴當半徑為2時,直線l與圓O的的位置關系是相切,當半徑為3時,直線l與圓O的的位置關系是相交,綜上所述,直線l與圓O的的位置關系是相切或相交.故答案為:相切或相交.【點睛】本題考查的是直線與圓的位置關系,因式分解法解一元二次方程,解決此類問題可通過比較圓心到直線距離d與圓的半徑大小關系完成判定.6、【分析】求出為負數(shù)的事件個數(shù),進而得出為非負數(shù)的事件個數(shù),然后求解即可.【詳解】解:兩次取卡片共有種可能的事件;兩次取得卡片數(shù)字乘積為負數(shù)的事件為等8種可能的事件∴為非負數(shù)共有種∴為非負數(shù)的概率為故答案為:.【點睛】本題考查了列舉法求隨機事件的概率.解題的關鍵在于求出事件的個數(shù).7、5【分析】直角三角形外接圓的直徑是斜邊的長.【詳解】解:由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直徑,∴這個三角形的外接圓直徑是10,∴這個三角形的外接圓半徑長為5,故答案為:5.【點睛】本題考查了三角形的外接圓與外心,知道直角三角形外接圓的直徑是斜邊的長是關鍵;外心是三邊垂直平分線的交點,外心到三個頂點的距離相等.三、解答題1、(1)2b;(2)4;;(3)①.②y=x+或.【分析】(1)令y=0,解方程即可;(2)設w=,根據(jù)OD=2b,BD=4-2b,構(gòu)造二次函數(shù)求解即可;(3)①點N在以P為圓心,以2為半徑的圓上運動,當P、N、A同側(cè)且共線時,AN最小,用勾股定理計算即可.②分點M在對稱軸的左側(cè)和右側(cè),兩種情形求解.(1)令y=0,得,解得x=0或x=2b,∵b>0,∴x=0舍去,∴點D的橫坐標為2b.(2)設w=,∵點D的橫坐標為2b,A(4,m),∴OD=2b,BD=4-2b,∴w==2b(4-2b)=,∵-4<0,∴當b=1時,w有最大值,最大值為4,此時拋物線的解析式為.(3)①∵點A(4,m)在拋物線上,∴m==4,∴OC=4,∵P為OC的中點,∴OP=PC=2,∵點C關于PM的對稱點N,∴OP=PC=PN=2,∴點N在以P為圓心,以2為半徑的圓上運動,如圖所示,當P、N、A同側(cè)且共線時,AN最小,∵AC=4,PC=2,∴PA=,∴AN的最小值為PA-PN=.②當點N落在拋物線的對稱軸上,且M在對稱軸的左側(cè),如圖所示,設對稱軸與AC交于點H,交x軸于點Q,過點P作PG⊥HN,垂足為G,則QG=2,∵PC=PN=2,PG=1,∴NG=,∴HN=2-,點N(1,2+),設CM=a,則MN=a,MH=1-a,∴,解得a=4-2,∴點M(4-2,4),設直線MN的解析式為y=kx+b,∴,解得,∴直線MN的解析式為y=x+;當點N落在拋物線的對稱軸上,且M在對稱軸的右側(cè),如圖所示,設對稱軸與AC交于點T,交x軸于點R,過點P作PK⊥TN,垂足為K,則KT=KR=2,∵PC=PN=2,PK=1,∴KR=,∴NR=2-,點N(1,2-),TN=2+設CM=b,則MN=b,MT=a-1,∴,解得b=4+2,∴點M(4+2,4),設直線MN的解析式為y=mx+q,∴,解得,∴直線MN的解析式為y=x+;綜上所述,直線MN的解析式為y=x+或y=x+.【點睛】本題考查了拋物線與x軸的交點,二次函數(shù)的最值,圓的基本性質(zhì),待定系數(shù)法確定一次函數(shù)的解析式,軸對稱的性質(zhì),勾股定理,熟練掌握圓的性質(zhì),拋物線的性質(zhì),靈活運用對稱的思想和勾股定理是解題的關鍵.2、(1)5(2)證明見解析(3)【分析】(1)過C作CM⊥AB于M,根據(jù)等腰三角形的性質(zhì)求出CM和DM,再根據(jù)勾股定理計算即可;(2)連BE,先證明,即可得到直角三角形ABE,利用勾股定理證明即可;(3)取AC中點N,連接FN、BN,根據(jù)三角形BFN中三邊關系判斷即可.(1)過C作CM⊥AB于M,∵,∴∵∴∴在Rt中(2)連接BE,∵,,,∴,∴∴,∴在Rt中∴∴(3)取AC中點N,連接FN、BN,∵,,∴∵AF垂直CD∴∵AC中點N,∴∴∵三角形BFN中∴∴當B、F、N三點共線時BF最小,最小值為.【點睛】本題考查等腰直角三角形的常用輔助線以及直角三角形斜邊上的中線,解題的關鍵是根據(jù)等腰直角三角形作斜邊垂線或者構(gòu)造“手拉手模型”.3、【分析】根據(jù)題意列出樹狀圖,根據(jù)概率公式即可求解.【詳解】由題意做樹狀圖如下:故小強和小葉抽到的兩張卡片恰好是同一英雄人物的概率為.【點睛】此題考查了用列表法或樹狀圖法求概率,解題時要注意此題是放回試驗還是不放回試驗,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.4、(1);(2)李老師和王老師被分配到同一個監(jiān)督崗的概率為.【分析】(1)直接利用概率公式計算;(2)畫樹狀圖展示所有16種等可能的結(jié)果,找出李老師和王老師被分配到同一個監(jiān)督崗的結(jié)果數(shù),然后根據(jù)概率公式計算.【詳解】解:(1)因為設立了四個“服務監(jiān)督崗”:“洗手監(jiān)督崗”,“戴口罩監(jiān)督崗”,“戴口罩監(jiān)督崗”,“就餐監(jiān)督崗”而“操場活動監(jiān)督崗”是其中之一,∴王老師被分配到“就餐監(jiān)督崗”的概率=;故答案為:;(2)畫樹狀圖為:由樹狀圖可知共有16種等可能的結(jié)果,其中李老師和王老師被分配到同一個監(jiān)督崗的結(jié)果數(shù)為4,∴李老師和王老師被分配到同一個監(jiān)督崗的概率==.【點睛】本題考查了列舉法求解概率,列表法與樹狀圖法求解概率:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.5、(1)45°;(2)【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得,,,,通過等量代換及三角形內(nèi)角和得,根據(jù)四點共圓即可求得;(2)連接EB,先證明出,根據(jù)全等三角形的性質(zhì)得,在中利用勾股定理,即可求得.【詳解】解:(1)由旋轉(zhuǎn)可知:,,,,∴,,.由三角形內(nèi)角和定理得,∴點A,D,F(xiàn),E共圓.∴.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論