難點解析-京改版數(shù)學9年級上冊期末測試卷附參考答案詳解【黃金題型】_第1頁
難點解析-京改版數(shù)學9年級上冊期末測試卷附參考答案詳解【黃金題型】_第2頁
難點解析-京改版數(shù)學9年級上冊期末測試卷附參考答案詳解【黃金題型】_第3頁
難點解析-京改版數(shù)學9年級上冊期末測試卷附參考答案詳解【黃金題型】_第4頁
難點解析-京改版數(shù)學9年級上冊期末測試卷附參考答案詳解【黃金題型】_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

京改版數(shù)學9年級上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、一個等腰直角三角形的內(nèi)切圓與外接圓的半徑之比為(

)A. B. C. D.2、如圖,在△ABC中,點G為△ABC的重心,過點G作DE∥BC,分別交AB、AC于點D、E,則△ADE與四邊形DBCE的面積比為()A. B. C. D.3、如圖,五邊形是⊙O的內(nèi)接正五邊形,則的度數(shù)為(

)A. B. C. D.4、如果?ABC的各邊長都擴大為原來的3倍,那么銳角A的正弦、余弦值是(

)A.都擴大為原來的3倍 B.都縮小為原來的C.沒有變化 D.不能確定5、在同一坐標系中,二次函數(shù)與一次函數(shù)的圖像可能是(

)A. B.C. D.6、如圖,在中,∠C=90°,設(shè)∠A,∠B,∠C所對的邊分別為a,b,c,則()A.c=bsinB B.b=csinB C.a(chǎn)=btanB D.b=ctanB二、多選題(7小題,每小題2分,共計14分)1、下列命題不正確的是(

)A.三角形的內(nèi)心到三角形三個頂點的距離相等B.三角形的內(nèi)心不一定在三角形的內(nèi)部C.等邊三角形的內(nèi)心,外心重合D.一個圓一定有唯一一個外切三角形2、如圖,AB是的直徑,C是上一點,E是△ABC的內(nèi)心,,延長BE交于點F,連接CF,AF.則下列結(jié)論正確的是(

)A. B.C.△AEF是等腰直角三角形 D.若,則3、已知函數(shù)y=的圖象如圖,以下結(jié)論:其中正確的有(

)A.m<0B.在每個分支上y隨x的增大而增大C.若點A(﹣1,a)、點B(2,b)在圖象上,則a<bD.若點P(x,y)在圖象上,則點P1(﹣x,﹣y)也在圖象上4、如圖,,下列線段比值等于的是(

)A. B. C. D.5、若二次函數(shù)(a是不為0的常數(shù))的圖象與x軸交于A、B兩點.則以下結(jié)論正確的有(

)A.B.當時,y隨x的增大而增大C.無論a取任何不為0的數(shù),該函數(shù)的圖象必經(jīng)過定點D.若線段AB上有且只有5個橫坐標為整數(shù)的點,則a的取值范圍是6、如圖,△ABC中,P為AB上點,在下列四個條件中能確定△APC和△ACB相似的是(

)A.∠ACP=∠B B.∠APC=∠ACB C.∠CAP=∠BAC D.7、如圖,已知等邊三角形ABC的邊長為2,DE是它的中位線.則下面四個結(jié)論中正確的有()A.DE=1 B.AB邊上的高為C.△CDE∽△CAB D.△CDE的面積與△CAB面積之比為1:4第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、已知關(guān)于的一元二次方程,有下列結(jié)論:①當時,方程有兩個不相等的實根;②當時,方程不可能有兩個異號的實根;③當時,方程的兩個實根不可能都小于1;④當時,方程的兩個實根一個大于3,另一個小于3.以上4個結(jié)論中,正確的個數(shù)為_________.2、如圖是二次函數(shù)和一次函數(shù)y2=kx+t的圖象,當y1≥y2時,x的取值范圍是_____.3、一個橫斷面是拋物線的渡槽如圖所示,根據(jù)圖中所給的數(shù)據(jù)求出水面的寬度是____cm.4、若,則________.5、三角形ABC中,,,,則邊的長為_______.6、我們用符號表示不大于的最大整數(shù).例如:,.那么:(1)當時,的取值范圍是______;(2)當時,函數(shù)的圖象始終在函數(shù)的圖象下方.則實數(shù)的范圍是______.7、定義:由a,b構(gòu)造的二次函數(shù)叫做一次函數(shù)y=ax+b的“滋生函數(shù)”,一次函數(shù)y=ax+b叫做二次函數(shù)的“本源函數(shù)”(a,b為常數(shù),且).若一次函數(shù)y=ax+b的“滋生函數(shù)”是,那么二次函數(shù)的“本源函數(shù)”是______.四、解答題(6小題,每小題10分,共計60分)1、已知圖中的曲線是反比例函數(shù)y=(m為常數(shù))圖象的一支.(1)根據(jù)圖象位置,求m的取值范圍;(2)若該函數(shù)的圖象任取一點A,過A點作x軸的垂線,垂足為B,當△OAB的面積為4時,求m的值.2、如圖,在平面直角坐標系中,O為坐標原點,點A坐標為(3,0),四邊形OABC為平行四邊形,反比例函數(shù)y=(x>0)的圖象經(jīng)過點C,與邊AB交于點D,若OC=2,tan∠AOC=1.(1)求反比例函數(shù)解析式;(2)點P(a,0)是x軸上一動點,求|PC-PD|最大時a的值;(3)連接CA,在反比例函數(shù)圖象上是否存在點M,平面內(nèi)是否存在點N,使得四邊形CAMN為矩形,若存在,請直接寫出點M的坐標;若不存在,請說明理由.3、如圖,為了測量一棟樓的高度,小明同學先在操場上處放一面鏡子,向后退到處,恰好在鏡子中看到樓的頂部;再將鏡子放到處,然后后退到處,恰好再次在鏡子中看到樓的頂部(在同一條直線上),測得,如果小明眼睛距地面高度,為,試確定樓的高度.4、如圖所示,在銳角中,,,所對的邊分別是a,b,c,求證:.5、計算:(1)(2)6、如圖,直角三角形中,,為中點,將繞點旋轉(zhuǎn)得到.一動點從出發(fā),以每秒1的速度沿的路線勻速運動,過點作直線,使.(1)當點運動2秒時,另一動點也從出發(fā)沿的路線運動,且在上以每秒1的速度勻速運動,在上以每秒2的速度勻速運動,過作直線使,設(shè)點的運動時間為秒,直線與截四邊形所得圖形的面積為,求關(guān)于的函數(shù)關(guān)系式,并求出的最大值.(2)當點開始運動的同時,另一動點從處出發(fā)沿的路線運動,且在上以每秒的速度勻速運動,在上以每秒2的速度勻度運動,是否存在這樣的,使為等腰三角形?若存在,直接寫出點運動的時間的值,若不存在請說明理由.-參考答案-一、單選題1、D【解析】【分析】設(shè)等腰直角三角形的直角邊是1,則其斜邊是.根據(jù)直角三角形的內(nèi)切圓半徑是兩條直角邊的和與斜邊的差的一半,得其內(nèi)切圓半徑是;其外接圓半徑是斜邊的一半,得其外接圓半徑是.所以它們的比為=.【詳解】解:設(shè)等腰直角三角形的直角邊是1,則其斜邊是;∵內(nèi)切圓半徑是,外接圓半徑是,∴所以它們的比為=.故選:D.【考點】本題考查三角形的內(nèi)切圓與外接圓的知識,解題的關(guān)鍵是熟記直角三角形外接圓的半徑和內(nèi)切圓的半徑公式:直角三角形的內(nèi)切圓半徑等于兩條直角邊的和與斜邊的差的一半;直角三角形外接圓的半徑是斜邊的一半.2、A【解析】【分析】連接AG并延長交BC于H,如圖,利用三角形重心的性質(zhì)得到AG=2GH,再證明△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)得到==,然后根據(jù)比例的性質(zhì)得到△ADE與四邊形DBCE的面積比.【詳解】解:連接AG并延長交BC于H,如圖,∵點G為△ABC的重心,∴AG=2GH,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==()2=,∴△ADE與四邊形DBCE的面積比=.故選:A.【考點】本題考查了三角形的重心與相似三角形的性質(zhì)與判定.重心到頂點的距離與重心到對邊中點的距離之比為2∶1.3、D【解析】【分析】先根據(jù)正五邊形的內(nèi)角和求出每個內(nèi)角,再根據(jù)等邊對等角得出∠ABE=∠AEB,然后利用三角形內(nèi)角和求出∠ABE=即可.【詳解】解:∵五邊形是⊙O的內(nèi)接正五邊形,∴∠A=∠ABC=,AB=AE,∴∠ABE=∠AEB,∴∠ABE=,∴.故選:D.【考點】本題考查圓內(nèi)接正五邊形的性質(zhì),等腰三角形性質(zhì),三角形內(nèi)角和公式,角的和差計算,掌握圓內(nèi)接正五邊形的性質(zhì),等腰三角形性質(zhì),三角形內(nèi)角和公式,角的和差計算是解題關(guān)鍵.4、C【解析】【分析】根據(jù)相似三角形的判定定理、正弦、余弦的概念解答.【詳解】三角形各邊長度都擴大為原來的3倍,∴得到的三角形與原三角形相似,∴銳角A的大小不變,∴銳角A的正弦、余弦值不變,故選:C.【考點】三角形的形狀沒有改變,邊的比值沒有發(fā)生變化.5、C【解析】【分析】直線與拋物線聯(lián)立解方程組,若有解,則圖象有交點,若無解,則圖象無交點;根據(jù)二次函數(shù)的對稱軸在y左側(cè),a,b同號,對稱軸在y軸右側(cè)a,b異號,以及當a大于0時開口向上,當a小于0時開口向下,來分析二次函數(shù);同時在假定二次函數(shù)圖象正確的前提下,根據(jù)一次函數(shù)的一次項系數(shù)為正,圖象從左向右逐漸上升,一次項系數(shù)為負,圖象從左向右逐漸下降;一次函數(shù)的常數(shù)項為正,交y軸于正半軸,常數(shù)項為負,交y軸于負半軸.如此分析下來,二次函數(shù)與一次函數(shù)無矛盾者為正確答案.【詳解】解:由方程組得ax2=?a,∵a≠0∴x2=?1,該方程無實數(shù)根,故二次函數(shù)與一次函數(shù)圖象無交點,排除B.A:二次函數(shù)開口向上,說明a>0,對稱軸在y軸右側(cè),則b<0;但是一次函數(shù)b為一次項系數(shù),圖象顯示從左向右上升,b>0,兩者矛盾,故A錯;C:二次函數(shù)開口向上,說明a>0,對稱軸在y軸右側(cè),則b<0;b為一次函數(shù)的一次項系數(shù),圖象顯示從左向右下降,b<0,兩者相符,故C正確;D:二次函數(shù)的圖象應(yīng)過原點,此選項不符,故D錯.故選C.【考點】本題考查的是同一坐標系中二次函數(shù)與一次函數(shù)的圖象問題,必須明確二次函數(shù)的開口方向與a的正負的關(guān)系,a,b的符號與對稱軸的位置關(guān)系,并結(jié)合一次函數(shù)的相關(guān)性質(zhì)進行分析,本題中等難度偏上.6、B【解析】【分析】根據(jù)三角函數(shù)的定義進行判斷,即可解決問題.【詳解】∵中,,、、所對的邊分別為a、b、c∴,即,則A選項不成立,B選項成立,即,則C、D選項均不成立故選:B.【考點】本題考查了三角函數(shù)的定義,熟記定義是解題關(guān)鍵.二、多選題1、ABD【解析】【分析】根據(jù)三角形內(nèi)心的定義和圓的外切三角形的定義判斷即可.【詳解】解:A、三角形的內(nèi)心是三個內(nèi)角平分線的交點,內(nèi)心到三角形三邊的距離相等,錯誤,該選項符合題意;B、三角形的內(nèi)心是三個內(nèi)角平分線的交點,三角形的內(nèi)心一定在三角形的內(nèi)部,錯誤,該選項符合題意;C、等邊三角形的內(nèi)心,外心重合,正確,該選項不符合題意;D、經(jīng)過圓上的三點作圓的切線,三條切線相交,即可得到圓的一個外切三角形,所以一個圓有無數(shù)個外切三角形,錯誤,該選項符合題意;故選:ABD.【考點】本題主要考查了內(nèi)心和外心以及命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的定義與定理.2、BCD【解析】【分析】由圓周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的內(nèi)心可得∠EAB+∠EBA=45°,從而得出∠AEF=45°,進一步得到△ABC是等腰直角三角形,再由垂徑定理得EF=EB,從而可得AE=EB,由中位線定理得AE=2OE=2,最后求出.【詳解】∵AB為直徑,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的內(nèi)心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故選項B正確,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故選項C正確,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故選項A錯誤,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故選項D正確,故選:BCD【考點】本題主要考查了垂徑定理,圓周角定理,中位線定理,三角形內(nèi)心性質(zhì),等腰直角三角形,等知識,證明△ABC是等腰直角三角形是解題的關(guān)鍵.3、ABD【解析】【分析】利用反比例函數(shù)的性質(zhì)及反比例函數(shù)的圖象上的點的坐標特征逐項判定即可.【詳解】解:①根據(jù)反比例函數(shù)的圖象的兩個分支分別位于二、四象限,可得m<0,故①正確;②在每個分支上y隨x的增大而增大,故②正確;③若點A(﹣1,a)、點B(2,b)在圖象上,則a>b,故③錯誤;④若點P(x,y)在圖象上,則點P1(﹣x,﹣y)也在圖象上,正確.故選:ABD.【考點】本題主要考查了反比例函數(shù)的性質(zhì)及反比例函數(shù)的圖象上的點的坐標特征,掌握反比例函數(shù)的圖象上的點的坐標特征成為解答本題的關(guān)鍵.4、CD【解析】【分析】根據(jù)余弦等于鄰邊比斜邊,可得答案.【詳解】在中,在中,故選:C、D.【考點】本題考查了解直角三角形,掌握直角三角形的邊角之間的關(guān)系是解題的關(guān)鍵.5、ACD【解析】【分析】求得頂點坐標,根據(jù)題意即可判斷①正確;根據(jù)二次函數(shù)的性質(zhì)即可判斷②錯誤;二次函數(shù)是不為0的常數(shù))的頂點,即可判斷③錯誤;根據(jù)題意時,時,即可判斷④正確.【詳解】解:二次函數(shù),頂點為,在軸的下方,∵函數(shù)的圖象與軸交于、兩點,拋物線開口向上,,故①正確;時,隨的增大而增大,故②錯誤;由題意可知當,二次函數(shù)是不為0的常數(shù))的圖象一定經(jīng)過點,故③正確;線段上有且只有5個橫坐標為整數(shù)的點,且對稱軸為直線,∴當時,,當時,,,解得,故④正確;故選:ACD.【考點】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點的坐標特征,能夠理解題意,利用二次函數(shù)的性質(zhì)解答是解題的關(guān)鍵.6、ABD【解析】【分析】根據(jù)有兩組角對應(yīng)相等的兩個三角形相似可對A、B、C進行判斷;根據(jù)兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似可對D進行判斷.【詳解】解:∵∠ACP=∠B,∠A公共角,∴△APC∽△ACB,故選項A正確,符合題意;∵∠APC=∠ACB,∠A公共角,∴△APC∽△ACB,故選項B正確,符合題意;∵∠CAP=∠BAC,只有一組角相等,∴不能判斷△APC和△ACB相似,故選項C錯誤,不符合題意;∵,∠A是夾角,∴△APC∽△ACB,故選項D正確,符合題意.故答案為:ABD.【考點】本題考查了相似三角形的判定:兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似;有兩組角對應(yīng)相等的兩個三角形相似.7、ABCD【解析】【分析】根據(jù)圖形,利用三角形中位線定理,可得DE=1,A成立;AB邊上的高,可利用勾股定理求出等于,B成立;DE是△CAB的中位線,可得DE∥AB,利用平行線分線段成比例定理的推論,可得△CDE∽△CAB,C成立;由△CDE∽△CAB,且相似比等于1:2,那么它們的面積比等于相似比的平方,就等于1:4,D也成立.【詳解】解:∵DE是它的中位線,∴DE=AB=1,故A正確,∴DE∥AB,∴△CDE∽△CAB,故C正確,∴S△CDE:S△CAB=DE2:AB2=1:4,故D正確,∵等邊三角形的高=,故B正確.故選ABCD.【考點】本題利用了:1、三角形中位線的性質(zhì);2、相似三角形的判定:一條直線與三角形一邊平行,則它所截得三角形與原三角形相似;3、相似三角形的面積等于對應(yīng)邊的比的平方;4、等邊三角形的高=邊長×sin60°.三、填空題1、①③④【解析】【分析】由根的判別式,根與系數(shù)的關(guān)系進行判斷,即可得到答案.【詳解】解:根據(jù)題意,∵一元二次方程,∴;∴當,即時,方程有兩個不相等的實根;故①正確;當,解得:,方程有兩個同號的實數(shù)根,則當時,方程可能有兩個異號的實根;故②錯誤;拋物線的對稱軸為:,則當時,方程的兩個實根不可能都小于1;故③正確;由,則,解得:或;故④正確;∴正確的結(jié)論有①③④;故答案為:①③④.【考點】本題考查了二次函數(shù)的性質(zhì),一元二次方程根的判別式,根與系數(shù)的關(guān)系,解題的關(guān)鍵是掌握所學的知識進行解題.2、﹣1≤x≤2【解析】【分析】根據(jù)圖象可以直接回答,使得y1≥y2的自變量x的取值范圍就是直線y1=kx+m落在二次函數(shù)y2=ax2+bx+c的圖象上方的部分對應(yīng)的自變量x的取值范圍.【詳解】根據(jù)圖象可得出:當y1≥y2時,x的取值范圍是:﹣1≤x≤2.故答案為:﹣1≤x≤2.【考點】本題考查了二次函數(shù)的性質(zhì).本題采用了“數(shù)形結(jié)合”的數(shù)學思想,使問題變得更形象、直觀,降低了題的難度.3、2【解析】【分析】首先建立平面直角坐標系,然后根據(jù)圖中數(shù)據(jù)確定點A和點B的坐標,從而利用待定系數(shù)法確定二次函數(shù)的解析式,然后求得C、D兩點的坐標,從而求得水面的寬度.【詳解】如圖建立直角坐標系.則點A的坐標為(-2,8),點B的坐標為(2,8),設(shè)拋物線的解析式為y=ax2,代入點A的坐標得8=4a,解得:a=2,所以拋物線的解析式為y=2x2,令y=6得:6=2x2,解得:x=±,所以CD=-(-)=2(cm).故答案為:2.【考點】本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是從實際問題中整理出二次函數(shù)模型,并建立正確的平面直角坐標系.4、【解析】【分析】設(shè),,代入求解即可.【詳解】由可設(shè),,k是非零整數(shù),則.故答案為:.【考點】本題主要考查了比例的基本性質(zhì),準確利用性質(zhì)變形是解題的關(guān)鍵.5、2【解析】【分析】根據(jù)正切定義得到,則可設(shè)AB=x,BC=2x,利用勾股定理計算出AC=x,所以x=,解得x=1,然后計算2x即可得到BC的長.【詳解】解:如圖,∵∠B=90°,∴,設(shè)AB=x,則BC=2x,∴,∴x=,解得x=1,∴BC=2x=2.故答案為:2.【考點】本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.6、

或【解析】【分析】(1)首先利用的整數(shù)定義根據(jù)不等式確定其整數(shù)取值范圍,繼而利用取整函數(shù)定義精確求解x取值范圍.(2)本題可根據(jù)題意構(gòu)造新函數(shù),采取自變量分類討論的方式判別新函數(shù)的正負,繼而根據(jù)函數(shù)性質(zhì)反求參數(shù).【詳解】(1)因為表示整數(shù),故當時,的可能取值為0,1,2.當取0時,;當取1時,;當=2時,.故綜上當時,x的取值范圍為:.(2)令,,,由題意可知:,.①當時,=,,在該區(qū)間函數(shù)單調(diào)遞增,故當時,,得.②當時,=0,不符合題意.③當時,=1,,在該區(qū)間內(nèi)函數(shù)單調(diào)遞減,故當取值趨近于2時,,得,當時,,因為,故,符合題意.故綜上:或.【考點】本題考查函數(shù)的新定義取整函數(shù),需要有較強的題意理解能力,分類討論方法在此類型題目極為常見,根據(jù)不同區(qū)間函數(shù)單調(diào)性求解參數(shù)為常規(guī)題型,需要利用轉(zhuǎn)化思想將非常規(guī)題型轉(zhuǎn)化為常見題型.7、【解析】【分析】由“滋生函數(shù)”和“本源函數(shù)”的定義,運用待定系數(shù)法求出函數(shù)的本源函數(shù).【詳解】解:由題意得解得∴函數(shù)的本源函數(shù)是.故答案為:.【考點】本題考查新定義運算下的一次函數(shù)和二次函數(shù)的應(yīng)用,解題關(guān)鍵是充分理解新定義“本源函數(shù)”.四、解答題1、(1)m>5;(2)m=13.【解析】【分析】(1)由反比例函數(shù)圖象位于第一象限得到m﹣5大于0,即可求出m的范圍;(2)根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出(m﹣5)=4,解得即可.【詳解】解:(1)∵這個反比例函數(shù)的圖象分布在第一、第三象限,∴m﹣5>0,解得m>5;(2)∵S△OAB=|k|,△OAB的面積為4,∴(m﹣5)=4,∴m=13.【考點】此題考查了反比例函數(shù)系數(shù)k的幾何意義,反比例函數(shù)的圖象與性質(zhì),根據(jù)系數(shù)k的幾何意義得出(m?5)=4是解題的關(guān)鍵.2、(1)(2)|PC?PD|最大時a的值為6(3)存在,點M的坐標為(,)【解析】【分析】(1)先確定出OE=CE=2,即可得出點C坐標,最后用待定系數(shù)法即可得出結(jié)論;(2)先求出OC解析式,由平行四邊形的性質(zhì)可得BC=OA=3,BC∥OA,AB∥OC,利用待定系數(shù)法可求AB解析式,求出點D的坐標,再根據(jù)三角形關(guān)系可得出當點P,C,D三點共線時,|PC-PD|最大,求出直線CD的解析式,令y=0即可求解;(3)若四邊形CAMN為矩形,則△CAM是直角三角形且AC為一條直角邊,根據(jù)直角頂點需要分兩種情況,畫出圖形分別求解即可.(1)解:如圖1,過點C作CE⊥x軸于E,∴∠CEO=90°,∵tan∠AOC=1,∴∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵點C在反比例函數(shù)圖象上,∴k=2×2=4,∴反比例函數(shù)解析式為y=;(2)解:∵點C(2,2),點O(0,0),∴OC解析式為:y=x,∵四邊形OABC是平行四邊形,點A坐標為(3,0),∴BC=OA=3,BC∥OA,AB∥OC,∴點B(5,2),∴設(shè)AB解析式為:y=x+b,∴2=5+b,∴b=-3,∴AB解析式為:y=x-3,聯(lián)立方程組可得:,∴或(舍去),∴點D(4,1);在△PCD中,|PC-PD|<CD,則當點P,C,D三點共線時,|PC-PD|=CD,此時,|PC-PD|取得最大值,由(1)知C(2,2),D(4,1),設(shè)直線CD的解析式為:y=mx+n,∴,解得,∴直線CD的解析式為:y=x+3,令y=0,即x+3=0,得x=6,∴|PC-PD|最大時a的值為6;(3)(3)存在,理由如下:若四邊形CAMN為矩形,則△CAM是直角三角形,則①當點A為直角頂點時,如圖2,過點A作AC的垂線與y=交于點M,分別過點C,M作x軸的垂線,垂足分別為點F,G,由“一線三等角”模型可得△AFC∽△MGA,則AF:MG=CF:AG,∵C(2,2),A(3,0),∴OF=CF=2,AF=1,∴1:MG=2:AG,即MG:AG=1:2,設(shè)MG=t,則AG=2t,∴M(2t+3,t),∵點M在反比例函數(shù)y=的圖象上,則t(2t+3)=4,解得t=,(負值舍去),∴M(,);②當點C為直角頂點時,這種情況不成立;綜上,點M的坐標為(,).【考點】本題考查了反比例函數(shù)綜合問題,涉及矩形的判定與性質(zhì),相似三角形的性質(zhì)與判定.第一問的關(guān)鍵是求出點C的坐標,第二問的關(guān)鍵是知道當點P,C,D三點共線時,|PC-PD|取得最大值,第三問的關(guān)鍵是利用矩形的內(nèi)角是直角進行分類討論,利用相似三角形的性質(zhì)建立等式.3、32米【解析】【分析】設(shè)關(guān)于的對稱點為,根據(jù)光線的反射可知,延長、相交于點,連接并延長交于點,先根據(jù)鏡面反射的基本性質(zhì),得出,再運用相似三角形對應(yīng)邊成比例即可解答.【詳解】設(shè)關(guān)于的對稱點為,根據(jù)光線的反射可知,延長、相交于點,連接并延長交于點,由題意可知且、∴∴∴即:∴∴答:樓的高度為米.【考點】本題考查了相似三角形的應(yīng)用、鏡面反射的基本性質(zhì),準確作出輔助線是關(guān)鍵.4、見解析【解析】【分析】方法1:過點A作于點D,根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論