難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)練習(xí)試題(含答案及解析)_第1頁(yè)
難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)練習(xí)試題(含答案及解析)_第2頁(yè)
難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)練習(xí)試題(含答案及解析)_第3頁(yè)
難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)練習(xí)試題(含答案及解析)_第4頁(yè)
難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)練習(xí)試題(含答案及解析)_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、菱形ABCD的周長(zhǎng)是8cm,∠ABC=60°,那么這個(gè)菱形的對(duì)角線BD的長(zhǎng)是()A.cm B.2cm C.1cm D.2cm2、如圖,在△ABC中,點(diǎn)E,F(xiàn)分別是AB,AC的中點(diǎn).已知∠B=55°,則∠AEF的度數(shù)是()A.75° B.60° C.55° D.40°3、如圖,在矩形ABCD中,點(diǎn)O為對(duì)角線BD的中點(diǎn),過點(diǎn)O作線段EF交AD于F,交BC于E,OB=EB,點(diǎn)G為BD上一點(diǎn),滿足EG⊥FG,若∠DBC=30°,則∠OGE的度數(shù)為()A.30° B.36° C.37.5° D.45°4、如圖,在長(zhǎng)方形ABCD中,AB=6,BC=8,點(diǎn)E是BC邊上一點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在點(diǎn)F處,連接CF,當(dāng)△CEF為直角三角形時(shí),則BE的長(zhǎng)是()A.4 B.3 C.4或8 D.3或65、順次連接對(duì)角線互相垂直的四邊形的各邊中點(diǎn),所形成的新四邊形是()A.菱形 B.矩形 C.正方形 D.三角形第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在矩形ABCD中,對(duì)角線AC,BD相交于O,EF過點(diǎn)O分別交AB,CD于E,F(xiàn),已知AB=8cm,AD=5cm,那么圖中陰影部分面積為_____cm2.2、如圖,正方形ABCD的面積為18,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線AC上有一點(diǎn)P,使PD+PE的和最小,則這個(gè)最小值為_____.3、如圖所示,正方形ABCD的面積為6,△CDE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線BD上有一動(dòng)點(diǎn)K,則KA+KE的最小值為_____________.4、如果一個(gè)矩形較短的邊長(zhǎng)為5cm,兩條對(duì)角線的夾角為60°,則這個(gè)矩形的對(duì)角線長(zhǎng)是_________cm.5、如圖,四邊形和四邊形都是邊長(zhǎng)為4的正方形,點(diǎn)是正方形對(duì)角線的交點(diǎn),正方形繞點(diǎn)旋轉(zhuǎn)過程中分別交,于點(diǎn),,則四邊形的面積為______.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖1,在平面直角坐標(biāo)系中,且;(1)試說(shuō)明是等腰三角形;(2)已知.寫出各點(diǎn)的坐標(biāo):A(,),B(,),C(,).(3)在(2)的條件下,若一動(dòng)點(diǎn)M從點(diǎn)B出發(fā)沿線段BA向點(diǎn)A運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線段AC向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)都停止.①若的一條邊與BC平行,求此時(shí)點(diǎn)M的坐標(biāo);②若點(diǎn)E是邊AC的中點(diǎn),在點(diǎn)M運(yùn)動(dòng)的過程中,能否成為等腰三角形?若能,求出此時(shí)點(diǎn)M的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.2、如圖,將矩形沿折疊,使點(diǎn)落在邊上的點(diǎn)處;再將矩形沿折疊,使點(diǎn)落在點(diǎn)處且過點(diǎn).

(1)求證:四邊形是平行四邊形;(2)當(dāng)是多少度時(shí),四邊形為菱形?試說(shuō)明理由.3、如圖,?ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,點(diǎn)F在線段BD上,且DE=BF.求證:AE∥CF.4、如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D.(1)若DE∥AB交AC于點(diǎn)E,證明:△ADE是等腰三角形;(2)若BC=12,DE=5,且E為AC中點(diǎn),求AD的值.5、如圖,在Rt△ABC中,∠ACB=90°,D為AB中點(diǎn),.(1)試判斷四邊形BDCE的形狀,并證明你的結(jié)論;(2)若∠ABC=30°,AB=4,則四邊形BDCE的面積為.-參考答案-一、單選題1、B【解析】【分析】由菱形的性質(zhì)得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再證△ABC是等邊三角形,得AC=AB=2(cm),則OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.【詳解】解:∵菱形ABCD的周長(zhǎng)為8cm,∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,∵∠ABC=60°,∴△ABC是等邊三角形,∴AC=AB=2cm,∴OA=1(cm),在Rt△AOB中,由勾股定理得:OB===(cm),∴BD=2OB=2(cm),故選:B.【點(diǎn)睛】此題考查了菱形的性質(zhì),勾股定理,等邊三角形的性質(zhì)和判定,解題的關(guān)鍵是熟練掌握菱形的性質(zhì),勾股定理,等邊三角形的性質(zhì)和判定方法.2、C【解析】【分析】證EF是△ABC的中位線,得EF∥BC,再由平行線的性質(zhì)即可求解.【詳解】解:∵點(diǎn)E,F(xiàn)分別是AB,AC的中點(diǎn),∴EF是△ABC的中位線,∴EF∥BC,∴∠AEF=∠B=55°,故選:C.【點(diǎn)睛】本題考查了三角形中位線定理以及平行線的性質(zhì);熟練掌握三角形中位線定理,證出EF∥BC是解題的關(guān)鍵.3、C【解析】【分析】根據(jù)矩形和平行線的性質(zhì),得;根據(jù)等腰三角形和三角形內(nèi)角和性質(zhì),得;根據(jù)全等三角形性質(zhì),通過證明,得;根據(jù)直角三角形斜邊中線、等腰三角形、三角形內(nèi)角和性質(zhì),推導(dǎo)得,再根據(jù)余角的性質(zhì)計(jì)算,即可得到答案.【詳解】∵矩形ABCD∴∴∵OB=EB,∴∴∵點(diǎn)O為對(duì)角線BD的中點(diǎn),∴和中∴∴∵EG⊥FG,即∴∴∴故選:C.【點(diǎn)睛】本題考查了矩形、平行線、全等三角形、等腰三角形、三角形內(nèi)角和、直角三角形的知識(shí);解題的關(guān)鍵是熟練掌握矩形、全等三角形、等腰三角形、直角三角形斜邊中線的性質(zhì),從而完成求解.4、D【解析】【分析】當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí)連接,先利用勾股定理計(jì)算出,根據(jù)折疊的性質(zhì)得,而當(dāng)為直角三角形時(shí),只能得到,所以點(diǎn)A、F、C共線,即沿折疊,使點(diǎn)B落在對(duì)角線上的點(diǎn)F處,則,,可計(jì)算出然后利用勾股定理求解即可;②當(dāng)點(diǎn)F落在邊上時(shí).此時(shí)為正方形,由此即可得到答案.【詳解】解:當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí),如圖所示.連接,在中,,,∴,∵△ABE沿折疊,使點(diǎn)B落在點(diǎn)F處,∴,BE=EF,當(dāng)為直角三角形時(shí),只能得到,∴∴點(diǎn)A、F、C共線,即△ABE沿折疊,使點(diǎn)B落在對(duì)角線上的點(diǎn)F處,∴,∴,設(shè)BE=EF=x,則EC=BC-BE=8-x,∵,∴,解得,∴BE=3;②當(dāng)點(diǎn)F落在邊上時(shí),如圖所示,由折疊的性質(zhì)可知AB=AF,BE=EF,∠AEF=∠B=90°,∠FEC=90°,∴為正方形,∴,綜上所述,BE的長(zhǎng)為3或6.故選D.【點(diǎn)睛】本題考查折疊問題:折疊前后兩圖形全等,即對(duì)應(yīng)線段相等;對(duì)應(yīng)角相等.也考查了矩形的性質(zhì),正方形的性質(zhì)與判定以及勾股定理.解題的關(guān)鍵是要注意本題有兩種情況,需要分類討論,避免漏解.5、B【解析】【分析】先畫出圖形,再根據(jù)三角形中位線定理得到所得四邊形的對(duì)邊平行且相等,那么其必為平行四邊形,然后根據(jù)鄰邊互相垂直得出四邊形是矩形.【詳解】解:如圖,∵、、、分別是、、、的中點(diǎn),∴,,,∴四邊形是平行四邊形,∵,∴,∴平行四邊形是矩形,又與不一定相等,與不一定相等,矩形不一定是正方形,故選:B.【點(diǎn)睛】本題考查了三角形中位線定理、矩形的判定等知識(shí)點(diǎn),熟練掌握三角形中位線定理是解題關(guān)鍵.二、填空題1、10【解析】【分析】利用矩形性質(zhì),求證,將陰影部分的面積轉(zhuǎn)為的面積,最后利用中線平分三角形的面積,求出的面積,即可得到陰影部分的面積.【詳解】解:四邊形為矩形,,,,,在與中,,陰影部分的面積最后轉(zhuǎn)化為了的面積,中,,平分,陰影部分的面積:,故答案為:10.【點(diǎn)睛】本題主要是考查了矩形的性質(zhì)以全等三角形的判定與性質(zhì)以及中線平分三角形面積,熟練利用矩形性質(zhì),證明三角形全等,將陰影部分面積轉(zhuǎn)化為其他圖形的面積,這是解決本題的關(guān)鍵.2、【解析】【分析】由正方形的對(duì)稱性可知,PB=PD,當(dāng)B、P、E共線時(shí)PD+PE最小,求出BE即可.【詳解】解:∵正方形中B與D關(guān)于AC對(duì)稱,∴PB=PD,∴PD+PE=PB+PE=BE,此時(shí)PD+PE最小,∵正方形ABCD的面積為18,△ABE是等邊三角形,∴BE=3,∴PD+PE最小值是3,故答案為:3.【點(diǎn)睛】本題考查軸對(duì)稱求最短距離,熟練掌握正方形的性質(zhì)是解題的關(guān)鍵.3、【解析】【分析】根據(jù)正方形的性質(zhì)可知C、A關(guān)于BD對(duì)稱,推出CK=AK,推出EK+AK≥CE,根據(jù)等邊三角形性質(zhì)推出CE=CD,根據(jù)正方形面積公式求出CD即可.【詳解】解:∵四邊形ABCD是正方形,∴C、A關(guān)于BD對(duì)稱,即C關(guān)于BD的對(duì)稱點(diǎn)是A,如圖,連接CK,則CK=AK,∴EK+CK≥CE,∵△CDE是等邊三角形,∴CE=CD,∵正方形ABCD的面積為6,∴CD=,∴KA+KE的最小值為,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),軸對(duì)稱-最短路徑問題,等邊三角形的性質(zhì)等知識(shí)點(diǎn)的應(yīng)用,解此題的關(guān)鍵是確定K的位置和求出KA+KE的最小值是CE.4、10【解析】【分析】如圖,由題意得:四邊形為矩形,證明是等邊三角形,結(jié)合矩形的性質(zhì)可得答案.【詳解】解:如圖,由題意得:四邊形為矩形,是等邊三角形,故答案為:【點(diǎn)睛】本題考查的是等邊三角形的判定與性質(zhì),矩形的性質(zhì),掌握“矩形的對(duì)角線相等且互相平分”是解本題的關(guān)鍵.5、4【解析】【分析】過點(diǎn)O作OG⊥AB,垂足為G,過點(diǎn)O作OH⊥BC,垂足為H,把四邊形的面積轉(zhuǎn)化為正方形OGBH的面積,等于正方形ABCD面積的.【詳解】如圖,過點(diǎn)O作OG⊥AB,垂足為G,過點(diǎn)O作OH⊥BC,垂足為H,∵四邊形ABCD的對(duì)角線交點(diǎn)為O,∴OA=OC,∠ABC=90°,AB=BC,∴OG∥BC,OH∥AB,∴四邊形OGBH是矩形,OG=OH=,∠GOH=90°,∴=4,∵∠FOH+∠FOG=90°,∠EOG+∠FOG=90°,∴∠FOH=∠EOG,∵∠OGE=∠OHF=90°,OG=OH,∴△OGE≌△OHF,∴,∴,∴=4,故答案為:4.【點(diǎn)睛】本題考查了正方形的性質(zhì),三角形的全等與性質(zhì),補(bǔ)形法計(jì)算面積,熟練掌握正方形的性質(zhì),靈活運(yùn)用補(bǔ)形法計(jì)算面積是解題的關(guān)鍵.三、解答題1、(1)見解析;(2)12,0;-8,0;0,16;(3)①當(dāng)M的坐標(biāo)為(2,0)或(4,0)時(shí),△OMN的一條邊與BC平行;②當(dāng)M的坐標(biāo)為(0,10)或(12,0)或(,0)時(shí),,△MOE是等腰三角形.

【分析】(1)設(shè),,,則,由勾股定理求出,即可得出結(jié)論;(2)由的面積求出m的值,從而得到、、的長(zhǎng),即可得到A、B、C的坐標(biāo);(3)①分當(dāng)時(shí),;當(dāng)時(shí),;得出方程,解方程即可;②由直角三角形的性質(zhì)得出,根據(jù)題意得出為等腰三角形,有3種可能:如果;如果;如果;分別得出方程,解方程即可.【詳解】解:(1)證明:設(shè),,,則,在中,,,∴是等腰三角形;(2)∵,,∴,∴,,,.∴A點(diǎn)坐標(biāo)為(12,0),B點(diǎn)坐標(biāo)為(-8,0),C點(diǎn)坐標(biāo)為(0,16),故答案為:12,0;-8,0;0,16;(3)①如圖3-1所示,當(dāng)MN∥BC時(shí),∵AB=AC,∴∠ABC=∠ACB,∵M(jìn)N∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴∠AMN=∠ANM,∴AM=AN,∴AM=BM,∴M為AB的中點(diǎn),∵,∴,∴,∴點(diǎn)M的坐標(biāo)為(2,0);如圖3-2所示,當(dāng)ON∥BC時(shí),同理可得,∴,∴M點(diǎn)的坐標(biāo)為(4,0);∴綜上所述,當(dāng)M的坐標(biāo)為(2,0)或(4,0)時(shí),△OMN的一條邊與BC平行;

②如圖3-3所示,當(dāng)OM=OE時(shí),∵E是AC的中點(diǎn),∠AOC=90°,,∴,∴此時(shí)M的坐標(biāo)為(0,10);如圖3-4所示,當(dāng)時(shí),∴此時(shí)M點(diǎn)與A點(diǎn)重合,∴M點(diǎn)的坐標(biāo)為(12,0);如圖3-5所示,當(dāng)OM=ME時(shí),過點(diǎn)E作EF⊥x軸于F,∵OE=AE,EF⊥OA,∴,∴,設(shè),則,∵,∴,解得,∴M點(diǎn)的坐標(biāo)為(,0);綜上所述,當(dāng)M的坐標(biāo)為(0,10)或(12,0)或(,0)時(shí),,△MOE是等腰三角形.【點(diǎn)睛】本題主要考查了坐標(biāo)與圖形,勾股定理,等腰三角形的性質(zhì)與判定,直角三角形斜邊上的直線,三角形面積等等,解題的關(guān)鍵在于能夠利用數(shù)形結(jié)合和分類討論的思想求解.2、(1)見解析;(2)當(dāng)∠B1FE=60°時(shí),四邊形EFGB為菱形,理由見解析【分析】(1)由題意,,結(jié)合,得,同理可得,即,結(jié)合,依據(jù)平行四邊形的判定定理即可證明四邊形BEFG是平行四邊形;(2)根據(jù)菱形的性質(zhì)可得,結(jié)合(1)中結(jié)論得出為等邊三角形,依據(jù)等邊三角形的性質(zhì)及(1)中結(jié)論即可求出角的大?。驹斀狻孔C明:(1)∵,∴.又∵,∴.∴.同理可得:.∴,又∵,∴四邊形BEFG是平行四邊形;(2)當(dāng)時(shí),四邊形EFGB為菱形.理由如下:∵四邊形BEFG是菱形,∴,由(1)得:,∴,∴為等邊三角形,∴,∴.【點(diǎn)睛】題目主要考查平行四邊形和菱形的判定定理和性質(zhì),矩形的折疊問題,等邊三角形的性質(zhì),熟練掌握特殊四邊形的判定和性質(zhì)是解題關(guān)鍵.3、見解析【分析】首先根據(jù)平行四邊形的性質(zhì)推出AD=CB,AD∥BC,得到∠ADE=∠CBF,從而證明△ADE≌△CBF,得到∠AED=∠CFB,即可證明結(jié)論.【詳解】證:∵四邊形ABCD是平行四邊形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴∠AED=∠CFB,∴AE∥CF.【點(diǎn)睛】本題考查平行四邊形的性質(zhì),以及全等三角形的判定與性質(zhì)等,掌握平行四邊形的基本性質(zhì),準(zhǔn)確證明全等三角形并利用其性質(zhì)是解題關(guān)鍵.4、(1)見解析;(2)8【分析】(1)根據(jù)“三線合一”性質(zhì)先推出∠BAD=∠CAD,再結(jié)合平行線的性質(zhì)推出∠BAD=∠ADE,從而得到∠ADE=∠EAD,即可根據(jù)“等角對(duì)等邊”證明;(2)根據(jù)題意結(jié)合中位線

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論