難點詳解人教版8年級數(shù)學上冊《全等三角形》章節(jié)測試試卷(解析版)_第1頁
難點詳解人教版8年級數(shù)學上冊《全等三角形》章節(jié)測試試卷(解析版)_第2頁
難點詳解人教版8年級數(shù)學上冊《全等三角形》章節(jié)測試試卷(解析版)_第3頁
難點詳解人教版8年級數(shù)學上冊《全等三角形》章節(jié)測試試卷(解析版)_第4頁
難點詳解人教版8年級數(shù)學上冊《全等三角形》章節(jié)測試試卷(解析版)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《全等三角形》章節(jié)測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,已知,那么添加下列一個條件后,仍無法判定的是(

)A. B.C. D.2、下列選項中表示兩個全等圖形的是()A.形狀相同的兩個圖形 B.能夠完全重合的兩個圖形C.面積相等的兩個圖形 D.周長相等的兩個圖形3、如圖,在△ABC中,AD是BC邊上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG,連接FG,交DA的延長線于點E,連接BG,CF,則下列結論:①BG=CF;②BG⊥CF;③∠EAF=∠ABC;④EF=EG,其中正確的有(

)A.①②③ B.①②④ C.①③④ D.①②③④4、圖,,,則的對應邊是(

)A. B. C. D.5、如圖,已知,,,是上的兩個點,,,若,,,則的長為(

)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,點B、C、E三點在同一直線上,且AB=AD,AC=AE,BC=DE,若,則∠3=______°.2、如圖,在△ABC中,已知AD是△ABC的角平分線,作DE⊥AB,已知AB=4,AC=2,△ABD的面積是2,則△ADC的面積為___.3、如圖,ADBC,,,連接AC,過點D作于E,過點B作于F.(1)若,則∠ADE為___°(2)寫出線段BF、EF、DE三者間的數(shù)量關系___.4、如圖,已知BE=DC,請?zhí)砑右粋€條件,使得△ABE≌△ACD:_____.5、如圖,在△ABC中,點D、E分別為邊AC、BC上的點,且AD=DE,AB=BE,∠A=70°,則∠CED=______度.三、解答題(5小題,每小題10分,共計50分)1、如圖,已知線段a、b和,用尺規(guī)作一個三角形,使.(要求:不寫已知、求作、作法、只畫圖,保留作圖痕跡)2、如圖,在中,,點D在線段BC上運動(D不與B、C重合),連接AD,作,DE交線段AC于E.(1)點D從B向C運動時,逐漸變__________(填“大”或“小”),但與的度數(shù)和始終是__________度.(2)當DC的長度是多少時,,并說明理由.3、如圖,已知和中,,,,,,線段分別交,于點,.(1)請說明的理由;(2)可以經過圖形的變換得到,請你描述這個變換;(3)求的度數(shù).4、如圖,已知AB=AD,AC=AE,∠BAE=∠DAC.求證:∠C=∠E.5、已知如圖,△ABC中,AB=AC,D、E分別是AC、AB上的點,M、N分別是CE、BD上的點,若MA⊥CE,AN⊥BD,AM=AN.求證:EM=DN.-參考答案-一、單選題1、C【解析】【分析】根據三角形全等的判定方法求解即可.【詳解】解:A、∵,,,∴,選項不符合題意;B、∵,,,∴,選項不符合題意;C、∵由,,,∴無法判定,選項符合題意;D、∵,,,∴,選項不符合題意.故選:C.【考點】此題考查了三角形全等的判定方法,解題的關鍵是熟練掌握三角形全等的判定方法.判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形).2、B【解析】【分析】利用全等圖形的定義分析即可.【詳解】A、形狀相同的兩個圖形,不一定是全等圖形,故此選項錯誤;B、能夠完全重合的兩個圖形,一定是全等圖形,故此選項正確;C、面積相等的兩個圖形,不一定是全等圖形,故此選項錯誤;D、周長相等的兩個圖形,不一定是全等圖形,故此選項錯誤;故選B.【考點】此題主要考查了全等圖形,正確把握全等圖形的定義是解題關鍵.3、D【解析】【分析】證得△CAF≌△GAB(SAS),從而推得①正確;利用△CAF≌△GAB及三角形內角和與對頂角,可判斷②正確;證明△AFM≌△BAD(AAS),得出FM=AD,∠FAM=∠ABD,則③正確,同理△ANG≌△CDA,得出NG=AD,則FM=NG,證明△FME≌△GNE(AAS).可得出結論④正確.【詳解】解:∵∠BAF=∠CAG=90°,∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,又∵AB=AF=AC=AG,∴△CAF≌△GAB(SAS),∴BG=CF,故①正確;∵△FAC≌△BAG,∴∠FCA=∠BGA,又∵BC與AG所交的對頂角相等,∴BG與FC所交角等于∠GAC,即等于90°,∴BG⊥CF,故②正確;過點F作FM⊥AE于點M,過點G作GN⊥AE交AE的延長線于點N,∵∠FMA=∠FAB=∠ADB=90°,∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,∴∠BAD=∠AFM,又∵AF=AB,∴△AFM≌△BAD(AAS),∴FM=AD,∠FAM=∠ABD,故③正確,同理△ANG≌△CDA,∴NG=AD,∴FM=NG,∵FM⊥AE,NG⊥AE,∴∠FME=∠ENG=90°,∵∠AEF=∠NEG,∴△FME≌△GNE(AAS).∴EF=EG.故④正確.故選:D.【考點】本題綜合考查了全等三角形的判定與性質及等腰三角形的三線合一性質與互余、對頂角,三角形內角和等幾何基礎知識.熟練掌握全等三角形的判定與性質是解題的關鍵.4、C【解析】【分析】根據全等三角形中對應角所對的邊是對應邊,可知BC=DA.【詳解】解:∵ABC≌△CDA,∠BAC=∠DCA,∴∠BAC與∠DCA是對應角,∴BC與DA是對應邊(對應角對的邊是對應邊).故選C.【考點】本題考查了全等三角形中對應邊的找法,解題的關鍵是掌握書寫的特點.5、B【解析】【分析】由題意可證可得可求EF的長.【詳解】解:在和中,故選:B.【考點】本題考查了全等三角形的判定和性質,熟練運用全等三角形的判定是本題的關鍵.二、填空題1、47【解析】【分析】根據“邊邊邊”證明,再根據全等三角形的性質可得∠ABC=∠1,∠BAC=∠2,然后利用三角形的一個外角等于與它不相鄰的兩個內角和求出∠3=∠1+∠2,然后求解即可.【詳解】解:在△ABC和△ADE中,,∴(SSS),∴∠ABC=∠1,∠BAC=∠2,∴∠3=∠ABC+∠BAC=∠1+∠2,∵,∴,∴.故答案為:47.【考點】本題主要考查了全等三角形的判定與性質以及三角形的外角等于與它不相鄰的兩個內角和的性質,熟練掌握三角形全等的判定方法是解題關鍵.2、1【解析】【分析】先根據三角形面積公式計算出DE=

1,再根據角平分線的性質得到點D到AB和AC的距離相等,然后利用三角形的面積公式計算△ADC的面積.【詳解】DE⊥AB,S△ABD

DE

×

AB

=

2,

DE==1,AD是△ABC的角平分線,點D到AB和AC的距離相等,點D到AC的距離為1,S△ADC

=×2×1=

1.故答案為:1.【考點】本題考查了角平分線的性質:角的平分線上的點到角的兩邊的距離相等,屬于基礎題,熟練掌握角平分線的性質是解題的關鍵.3、

30

【解析】【分析】(1)根據直角三角形兩銳角互余進行倒角即可求解;(2)根據ASA證明≌,即可求解.【詳解】解:(1)∵,且ADBC,,∴,∴,∴,∴;故答案為:30;(2)在和中,,∴≌,∴,,∵,∴.故答案為:【考點】本題考查直角三角形兩銳角互余、全等三角形的判定與性質等內容,根據已知條件進行倒角是解題的關鍵.4、∠B=∠C【解析】【分析】根據全等三角形的判定方法解答即可.【詳解】解:∵BE=DC,∠A=∠A,∴根據AAS,可以添加∠B=∠C,使得△ABE≌△ACD,故答案為:∠B=∠C.【考點】本題考查全等三角形的判定,解題的關鍵是熟練掌握全等三角形的判定方法,屬于中考常考題型.5、110【解析】【分析】根據SSS證△ABD≌△EBD,得∠BED=∠A=70°,進而得出∠CED.【詳解】解:∵AD=DE,AB=BE又BD=BD∴△ABD≌△EBD(SSS)∴∠BED=∠A=70°∴∠CED=180°-∠BED=180°-70°=110°故本題答案為110.【考點】本題通過考查全等三角形的判定和性質,進而得出結論.三、解答題1、見解析【解析】【分析】先作,再以為圓心,分別以線段a、b長為半徑,畫弧與射線、交于點,即可.【詳解】解:先作,再以為圓心,分別以線段a、b長為半徑,畫弧與射線、交于點,連接,即為所求,如圖所示:【考點】本題考查了復雜作圖,利用了作一個角等于已知角,作線段等于已知線段,是基本作圖,需熟練掌握.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.2、(1)?。?40(2)當DC=2時,△ABD≌△DCE,理由見解析【解析】【分析】(1)利用三角形的內角和即可得出結論;(2)當DC=2時,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(1)在△ABD中,∠B+∠BAD+∠ADB=180°,設∠BAD=x°,∠BDA=y°,∴40°+x+y=180°,∴y=140-x(0<x<100),當點D從點B向C運動時,x增大,∴y減小,+=180°-故答案為:小,140;(2)當DC=2時,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,∴△ABD≌△DCE(AAS);【考點】此題主要考查學生對等腰三角形的判定與性質,全等三角形的判定與性質,三角形外角的性質等知識點的理解和掌握,三角形的內角和公式,解本題的關鍵是分類討論.3、(1)見解析;(2)通過觀察可知繞點順時針旋轉,可以得到;(3)【解析】【分析】(1)先利用已知條件∠B=∠E,AB=AE,BC=EF,利用SAS可證△ABC≌△AEF,那么就有∠C=∠F,∠BAC=∠EAF,那么∠BAC-∠PAF=∠EAF-∠PAF,即有∠BAE=∠CAF=25°;(2)通過觀察可知△ABC繞點A順時針旋轉25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,而∠AMB是△ACM的外角,根據三角形外角的性質可求∠AMB.【詳解】解:(1)∵,,,∴,∴,,∴,∴;(2)通過觀察可知繞點順時針旋轉,可以得到;(3)由(1)知,,∴.【考點】本題利用了全等三角形的判定、性質,三角形外角的性質,等式的性質等.4、見解析.【解析】【分析】由∠BAE=∠DAC可得到∠BAC=∠DAE,再根據“SAS”可判斷△ABC≌△ADE,根據全等的性質即可得到∠C=∠E.【詳解】∵∠BAE=∠DAC,∴∠BAE﹣∠CAE=∠DAC﹣∠CAE,即∠BAC=∠DAE,在△ABC和△ADE中,∵∴△ABC≌△ADE(SAS),∴∠C=∠E.【考點】本題考查了全等三角形的判定與性質:判斷三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對應角相等,對應邊相等.5、見解析.【解析】【分析】首先由已知

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論