難點詳解京改版數(shù)學9年級上冊期末試題含完整答案詳解【網(wǎng)校專用】_第1頁
難點詳解京改版數(shù)學9年級上冊期末試題含完整答案詳解【網(wǎng)校專用】_第2頁
難點詳解京改版數(shù)學9年級上冊期末試題含完整答案詳解【網(wǎng)校專用】_第3頁
難點詳解京改版數(shù)學9年級上冊期末試題含完整答案詳解【網(wǎng)校專用】_第4頁
難點詳解京改版數(shù)學9年級上冊期末試題含完整答案詳解【網(wǎng)校專用】_第5頁
已閱讀5頁,還剩37頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

京改版數(shù)學9年級上冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、如圖,點D、E分別在△ABC的邊BA、CA的延長線上,且DE∥BC,已知AE=3,AC=6,AD=2,則BD的長為()A.4 B.6 C.7 D.82、二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結論:①;②;③;④(為實數(shù)).其中結論正確的個數(shù)為(

)A.1個 B.2個 C.3個 D.4個3、如圖,ABC是等邊三角形,點D、E分別在BC、AC上,且∠ADE=60°,AB=9,BD=3,則CE的長等于()A.1 B. C. D.24、在中,AC=4,BC=3,則cosA的值等于(

)A. B. C.或 D.或5、已知學校航模組設計制作的火箭升空高度h(m)與飛行時間t(s)滿足函數(shù)表達式h=﹣t2+24t+1,則下列說法中正確的是(

)A.點火后1s和點火后3s的升空高度相同B.點火后24s火箭落于地面C.火箭升空的最大高度為145mD.點火后10s的升空高度為139m6、在正方形網(wǎng)格中,每個小正方形的頂點稱為格點,以格點為頂點的三角形叫做格點三角形.如圖,△ABC是格點三角形,在圖中的6×6正方形網(wǎng)格中作出格點三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格點三角形△ADE只算一個),這樣的格點三角形一共有()A.4個 B.5個 C.6個 D.7個二、多選題(7小題,每小題2分,共計14分)1、如圖,,AD與BC相交于點O,那么在下列比例式中,不正確的是(

)A. B.C. D.2、△ABC和△A′B′C′符合下列條件,其中使△ABC和△A′B′C′相似的是(

)A.∠A=∠A′=45°,∠B=26°,∠B′=109°B.AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3C.∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3D.AB=3,AC=5,BC=7,A′B′=,A′C′=,B′C′=3、已知,⊙的半徑為5,,某條經(jīng)過點的弦的長度為整數(shù),則該弦的長度可能為(

)A.4 B.6 C.8 D.104、下列說法中,不正確的是()A.三點確定一個圓B.三角形有且只有一個外接圓C.圓有且只有一個內接三角形D.相等的圓心角所對的弧相等5、如圖所示,AB為斜坡,D是斜坡AB上一點,斜坡AB的坡度為i,坡角為,于點C,下面正確的有(

)A. B.C. D.6、如圖,拋物線過點,對稱軸是直線.下列結論正確的是(

)A.B.C.若關于x的方程有實數(shù)根,則D.若和是拋物線上的兩點,則當時,7、如圖,在△ABC中,點D在邊AC上,下列條件中,不能判斷△BDC與△ABC相似的是(

)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,小明在距離地面30米的P處測得A處的俯角為15°,B處的俯角為60°.若斜面坡度為1:,則斜坡AB的長是__________米.2、如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,直線DE是⊙O的切線,切點為D,交AC于E,若⊙O半徑為1,BC=4,則圖中陰影部分的面積為_____.3、已知點A(3,a)、B(-1,b)在函數(shù)的圖像上,那么a___b(填“>”或“=”或“<”)4、一個橫斷面是拋物線的渡槽如圖所示,根據(jù)圖中所給的數(shù)據(jù)求出水面的寬度是____cm.5、如圖,點A是反比例函數(shù)y=(x>0)圖象上的一點,AB垂直于x軸,垂足為B,△OAB的面積為6.若點P(a,4)也在此函數(shù)的圖象上,則a=_____.6、已知二次函數(shù)y=x2+bx+c的頂點在x軸上,點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)圖象上,求n的值為____.7、如圖,在平面直角坐標系中,一次函數(shù)的圖像分別交、軸于點、,將直線繞點按順時針方向旋轉,交軸于點,則直線的函數(shù)表達式是__________.四、解答題(6小題,每小題10分,共計60分)1、如圖,在中,,,,為的中點.動點從點出發(fā)以每秒個單位向終點勻速運動(點不與、、重合),過點作的垂線交折線于點.以、為鄰邊構造矩形.設矩形與重疊部分圖形的面積為,點的運動時間為秒.(1)直接寫出的長(用含的代數(shù)式表示);(2)當點落在的邊上時,求的值;(3)當矩形與重疊部分圖形不是矩形時,求與的函數(shù)關系式,并寫出的取值范圍;(4)沿直線將矩形剪開,得到兩個圖形,用這兩個圖形拼成不重疊且無縫隙的圖形恰好是三角形.請直接寫出所有符合條件的的值.2、某種商品每件的進價為10元,若每件按20元的價格銷售,則每月能賣出360件;若每件按30元的價格銷售,則每月能賣出60件.假定每月的銷售件數(shù)y是銷售價格x(單位:元)的一次函數(shù).(1)求y關于x的一次函數(shù)解析式;(2)當銷售價格定為多少元時,每月獲得的利潤最大?并求此最大利潤.3、根據(jù)下列條件,求二次函數(shù)的解析式.(1)圖象經(jīng)過(0,1),(1,﹣2),(2,3)三點;(2)圖象的頂點(2,3),且經(jīng)過點(3,1);4、如圖所示,在銳角中,,,所對的邊分別是a,b,c,求證:.5、如圖所示,拋物線的對稱軸為直線,拋物線與軸交于、兩點,與軸交于點.(1)求拋物線的解析式;(2)連結,在第一象限內的拋物線上,是否存在一點,使的面積最大?最大面積是多少?6、如圖,AB為⊙O直徑,AC為弦,過⊙O外的點D作DE⊥OA于點E,交AC于點F,連接DC并延長交AB的延長線于點H,且∠D=2∠A.(1)求證:DC與⊙O相切;(2)若⊙O半徑為4,,求AC的長.-參考答案-一、單選題1、B【解析】【分析】只需要證明△AED∽△ACB即可求解.【詳解】解∵DE∥BC,∴∠ABC=∠ADE,∠ACB=∠AED∴△AED∽△ACB∴∴∴BD=AD+AB=2+4=6.故選B.【考點】本題主要考查了平行線的性質,相似三角形的性質與判定,解題的關鍵在于能夠熟練掌握相關知識進行求解.2、C【解析】【分析】①由拋物線開口方向得到,對稱軸在軸右側,得到與異號,又拋物線與軸正半軸相交,得到,可得出,選項①錯誤;②把代入中得,所以②正確;③由時對應的函數(shù)值,可得出,得到,由,,,得到,選項③正確;④由對稱軸為直線,即時,有最小值,可得結論,即可得到④正確.【詳解】解:①∵拋物線開口向上,∴,∵拋物線的對稱軸在軸右側,∴,∵拋物線與軸交于負半軸,∴,∴,①錯誤;②當時,,∴,∵,∴,把代入中得,所以②正確;③當時,,∴,∴,∵,,,∴,即,所以③正確;④∵拋物線的對稱軸為直線,∴時,函數(shù)的最小值為,∴,即,所以④正確.故選C.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關系:二次項系數(shù)決定拋物線的開口方向和大?。敃r,拋物線向上開口;當時,拋物線向下開口;一次項系數(shù)和二次項系數(shù)共同決定對稱軸的位置:當與同號時,對稱軸在軸左;當與異號時,對稱軸在軸右.常數(shù)項決定拋物線與軸交點:拋物線與軸交于.拋物線與軸交點個數(shù)由判別式確定:時,拋物線與軸有2個交點;時,拋物線與軸有1個交點;時,拋物線與軸沒有交點.3、D【解析】【分析】通過△ABD∽△DCE,可得,即可求解.【詳解】解:∵△ABC是等邊三角形,∴AB=BC=9,∠ABC=∠ACB=60°,∵BD=3,∴CD=6,∵∠ADC=∠ABC+∠BAD=∠ADE+∠CDE,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴,∴∴CE=2,故選:D.【考點】本題考查了三角形的相似,做題的關鍵是△ABD∽△DCE.4、C【解析】【分析】分兩種情況:①AB為斜邊;②AC為斜邊,根據(jù)勾股定理求出AB長,然后根據(jù)余弦定義即可求解.【詳解】由題意,存在兩種情況:①當AB為斜邊時,∠C=90o,∵AC=4,BC=3,∴AB=,∴cosA=;②當AC為斜邊時,∠B=90o,∵AC=4,BC=3,∴AB=,∴cosA=,綜上,cosA的值等于或,故選:C.【考點】本題考查了勾股定理和銳角三角函數(shù)的概念,熟練掌握銳角三角函數(shù)的定義,并注意分類討論是解答本題的關鍵.5、C【解析】【分析】分別求出t=1、3、24、10時h的值可判斷A、B、D三個選項,將解析式配方成頂點式可判斷C選項.【詳解】解:A、當t=1時,h=24;當t=3時,h=64;所以點火后1s和點火后3s的升空高度不相同,此選項錯誤;B、當t=24時,h=1≠0,所以點火后24s火箭離地面的高度為1m,此選項錯誤;C、由h=﹣t2+24t+1=﹣(t-12)2+145知火箭升空的最大高度為145m,此選項正確;D、當t=10時,h=141m,此選項錯誤;故選:C.【考點】本題主要考查二次函數(shù)的應用,解題的關鍵是熟練掌握二次函數(shù)的性質.6、C【解析】【分析】根據(jù)題意,得出ABC的三邊之比,并在直角坐標系中找出與ABC各邊長成比例的相似三角形,并在直角坐標系中無一遺漏地表示出來.【詳解】解:ABC的三邊之比為,如圖所示,可能出現(xiàn)的相似三角形共有以下六種情況:所以使得△ADE∽△ABC的格點三角形一共有6個,故選:C.【考點】本題考察了在直角坐標系中畫出與已知三角形相似的圖形,解題的關鍵在于找出與已知三角形各邊長成比例的三角形,并在直角坐標系中無一遺漏地表示出來.二、多選題1、ABD【解析】【分析】先判斷三角形相似,再根據(jù)相似三角形的對應邊成比例,則可判斷A、B、C的正確性,根據(jù)基本事實,一組平行線被兩條直線所截的對應線段成比例,判斷D的正確性.【詳解】解:∵,∴∠A=∠D,∠B=∠C,∴,∴故A不正確;故B不正確;故C正確;∵,∴即故D不正確;故選:ABD.【考點】本題考查了相似三角形的判定和相似三角形的性質以及基本事實的應用,根據(jù)性質找到對應的邊成比例是解答此題的關鍵.2、ABC【解析】【分析】根據(jù)三角形相似的判定定理逐項排查即可.【詳解】解:A:∵∠A=∠A′=45°,∠B=26°,∠B′=109°,∴∠C=109°,∠C′=26°,∴∠B=∠C,∴△ABC∽△A′C′B′,B:∵AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3,∴,∴△ABC∽△C′A′B′;C:∵∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3,∴AB:B′C′=AC:A′B′=2:3,∴△ABC∽△B′C′A′;D:∵AB=3,AC=5,BC=7,A′B′=,A′C′=

B′C′=,∴,∴不相似.故選ABC.【考點】本題主要考查了相似三角形的判定,相似三角形的判定方法主要有:①有兩個對應角相等的三角形相似;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.3、CD【解析】【分析】過P作弦AB⊥OP,連接OA,根據(jù)垂徑定理求出AP=BP,根據(jù)勾股定理求出AP,再求出AB,再得出答案即可.【詳解】解:過P作弦AB⊥OP,連接OA,如圖,∵OA=5,OP=3,∴,∵OP⊥AB,OP過圓心O,∴AP=BP=4,即AB=4+4=8,∴過P點長度為整數(shù)的弦有4條,①過P點最短的弦的長度是8,②過P點最長的弦的長度是10,③還有兩條弦,長度是9,故答案為:CD.【考點】本題考查了勾股定理和垂徑定理,能熟記垂徑定理是解此題的關鍵.4、ACD【解析】【分析】根據(jù)不共線三點確定一個圓即可判斷A,B,C選項,根據(jù)同圓或等圓中,相等的圓心角所對的弧相等即可判斷D選項【詳解】不共線三點確定一個圓,故A選項不正確,B選項正確;一個圓上可以找出無數(shù)個不共線的三個點,即可構成無數(shù)個三角形,這些三角形都是這個圓的內接三角形圓有無數(shù)個內接三角形;故C選項不正確;同圓或等圓中,相等的圓心角所對的弧相等,故D選項不正確.故選ACD.【考點】本題考查了圓的內接三角形的定義,不共線三點確定一個圓,同圓或等圓中,相等的圓心角所對的弧相等,理解圓的相關性質是解題的關鍵.5、BCD【解析】【分析】根據(jù)坡度的定義解答即可.【詳解】交于點,交于點,,,,,,∴BCD正確.故選:BCD.【考點】本題考查了解直角三角形的應用-坡度坡角問題,熟記坡度的定義是解題的關鍵.6、D【解析】【詳解】解:A.∵拋物線開口向下,∴a<0,∵對稱軸在y軸左側,∴a、b同號,∴b<0,∵拋物線與y軸交點在正半軸上,∴c>0,∴abc>0,故此選項不符合題意;B.∵(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b),∵拋物線過點,對稱軸是直線,∴拋物線與x軸另一交點為(2,0),∴當x=2時,y=ax2+bx+c=4a+c+2b=0,∴(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b)=0,∴(4a+c)2=4b2,故此選項不符合題意;C.∵-=-1,∴b=2a,∵當x=2時,y=ax2+bx+c=4a+c+2b=0,∴4a+c+4a=0,∴c=-8a,∵關于x的方程有實數(shù)根,∴Δ=b2-4a(c-m)≥0,∴(2a)2-4a(-8a-m)≥0,∵a<0,∴9a+m≤0,故此選項不符合題意;D.∵|x1+1|=|x1-(-1)|,|x2+1|=|x2-(-1)|,又∵|x1+1|>|x2+1|,∴點(x1,y1)到對稱軸的距離大于點(x2,y2)到對稱軸的距離,∴y1<y2,故此選項符合題意;故選:D.【考點】本題考查二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)的性質,二次函數(shù)與一元二次方程的聯(lián)系,熟練掌握二次函數(shù)圖象性質是解題的關鍵.7、ABD【解析】【分析】根據(jù)三角形相似的判斷方法逐個判斷即可.【詳解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合題意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合題意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故選項不符合題意;D、BD2=CD·DA,不能判定△BDC與△ABC,符合題意;故選:ABD.【考點】此題考查了三角形相似的判定方法,解題的關鍵是熟練掌握三角形相似的判定方法.三、填空題1、【解析】【分析】首先根據(jù)題意得出∠ABF=30°,進而得出∠PBA=90°,∠BAP=45°,再利用銳角三角函數(shù)關系求出即可.【詳解】解:如圖所示:過點A作AF⊥BC于點F,∵斜面坡度為1:,∴tan∠ABF=,∴∠ABF=30°,∵在距離地面30米的P處測得A處的俯角為15°,B處的俯角為60°,∴∠HPB=30°,∠APB=45°,∴∠HBP=60°,∴∠PBA=90°,∠BAP=45°,∴PB=AB,∵PH=30m,sin60°=,解得:PB=,故AB=m,故答案為:.【考點】此題主要考查了解直角三角形的應用,正確得出PB=AB是解題關鍵.2、【解析】【分析】連接OD、OE、AD,AD交OE于F,如圖,根據(jù)切線的性質得到∠BAC=90°,利用余弦的定義可計算出∠B=60°,則根據(jù)圓周角定理得到∠ADB=90°,∠AOD=120°,于是可計算出BD=1,AD=,接著證明△ADE為等邊三角形,求出OF=,根據(jù)扇形的面積公式,利用S陰影部分=S四邊形OAED﹣S扇形AOD=S△ADE+S△AOD﹣S扇形AOD進行計算.【詳解】解:連接OD、OE、AD,AD交OE于F,如圖,∵AC是⊙O的切線,切點為A,∴AB⊥AC,∴∠BAC=90°,在Rt△ABC中,cosB===,∴∠B=60°,∴∠AOD=2∠B=120°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-∠B=90°-60°=30°,在Rt△ADB中,BD=AB=1,∴AD=BDtan60°=BD=,∵直線DE、EA都是⊙O的切線,∴EA=ED,∠DAE=90°-∠BAD=90°-30°=60°,∴△ADE為等邊三角形,而OA=OD,∴OE垂直平分AD,∴∠AFO=90°,在Rt△AOF中,∠OAF=30°,∴OF=OA=,∴S陰影部分=S四邊形OAED﹣S扇形AOD,=S△ADE+S△AOD﹣S扇形AOD,=×()2+××﹣,=.故答案為.【考點】本題考查圓的切線,圓周角定理,扇形面積公式,銳角三角函數(shù)求角,30°角直角三角形的性質,掌握和運用圓的切線,圓周角定理,扇形面積公式,銳角三角函數(shù)求角,30°角直角三角形的性質是解題關鍵.3、<【解析】【分析】把點A(3,a),B(-1,b)代入函數(shù)上求出a、b的值,再進行比較即可.【詳解】把點A(3,a)代入函數(shù)可得,a=-1;把點B(-1,b)代入函數(shù)可得,b=3;∵3>-1,即a<b.故答案為:<.【考點】本題比較簡單,考查了反比例函數(shù)圖象上點的坐標特點,即反比例函數(shù)圖象上點的坐標一定適合此函數(shù)的解析式.4、2【解析】【分析】首先建立平面直角坐標系,然后根據(jù)圖中數(shù)據(jù)確定點A和點B的坐標,從而利用待定系數(shù)法確定二次函數(shù)的解析式,然后求得C、D兩點的坐標,從而求得水面的寬度.【詳解】如圖建立直角坐標系.則點A的坐標為(-2,8),點B的坐標為(2,8),設拋物線的解析式為y=ax2,代入點A的坐標得8=4a,解得:a=2,所以拋物線的解析式為y=2x2,令y=6得:6=2x2,解得:x=±,所以CD=-(-)=2(cm).故答案為:2.【考點】本題考查了二次函數(shù)的應用,解題的關鍵是從實際問題中整理出二次函數(shù)模型,并建立正確的平面直角坐標系.5、3【解析】【分析】根據(jù)反比例函數(shù)的幾何意義,可得,從而得到,再將點P(a,4)代入解析式,即可求解.【詳解】解:∵點A是反比例函數(shù)y=(x>0)圖象上的一點,AB垂直于x軸,∴,∵△OAB的面積為6.∴,即,∴反比例函數(shù)的解析式為,∵點P(a,4)也在此函數(shù)的圖象上,∴,解得:.故答案為:3【考點】本題主要考查了反比例函數(shù)的幾何意義,反比例函數(shù)的圖象和性質,熟練掌握反比例函數(shù)的幾何意義,反比例函數(shù)的圖象和性質,利用數(shù)形結合思想解答是解題的關鍵.6、4【解析】【分析】由A、B坐標可得對稱軸,由頂點在x軸上可得,求得b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A的坐標代入即可求得n的值.【詳解】解:∵點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)y=x2+bx+c圖象上,∴,∴b=﹣2(m+1),∵二次函數(shù)y=x2+bx+c的頂點在x軸上,∴,∴b2﹣4c=0,∴[﹣2(m+1)]2﹣4c=0,∴c=(m+1)2,∴y=x2﹣2(m+1)x+(m+1)2,把A的坐標代入得,n=(m﹣1)2﹣2(m+1)(m﹣1)+(m+1)2=4,故答案為:4.【考點】本題考查了二次函數(shù)的性質,二次函數(shù)的頂點坐標,表示出b、c的值是解題的關鍵.7、【解析】【分析】先根據(jù)一次函數(shù)求得、坐標,再過作的垂線,構造直角三角形,根據(jù)勾股定理和正余弦公式求得的長度,得到點坐標,從而得到直線的函數(shù)表達式.【詳解】因為一次函數(shù)的圖像分別交、軸于點、,則,,則.過作于點,因為,所以由勾股定理得,設,則,根據(jù)等面積可得:,即,解得.則,即,所以直線的函數(shù)表達式是.【考點】本題綜合考察了一次函數(shù)的求解、勾股定理、正余弦公式,以及根據(jù)一次函數(shù)的解求一次函數(shù)的表達式,要學會通過作輔助線得到特殊三角形,以便求解.四、解答題1、(1),;(2);(3);(4)或.【解析】【分析】(1)根據(jù)P點的運動速度和BD的長度即可出結果;(2)畫出圖象,根據(jù)三角形的相似求出各個線段長,即可解決;(3)分情況討論,矩形與重疊部分面積即為矩形面積減去△ABC外部的小三角形面積,通過三角函數(shù)計算出各邊長求面積即可;(4)要想使被直線分割成的兩部分能拼成不重疊且無縫隙的圖形恰好是三角形,則需要被分割的是兩個至少有一條相等邊長的直角三角形,或者直線正好過正方形一條邊的中點,分情況畫圖求解即可.【詳解】解:(1)∵,為的中點,∴,P從B運動到點D所需時間為1s,由題意可知,;(2)如圖所示,由題意得,∴,∵,,,∴,∴,由四邊形是矩形可知,∠QPD=∠MDP=90°,PQ=DM,即∠APQ=∠BDM=90°,∵∠B=∠B,∠BDM=∠ACB=90°,∴△MDB∽△ACB,∴,即,∴,即∵∠A=∠A,∠APQ=∠ACB=90°,∴△APQ∽△ACB,∴,即,解得;(3)當時,如圖,DM交BC于點F,由矩形可知PD∥QM,∴∠FQM=∠B=30°,此時,∴,∴,解得,,同理,,解得,,,當時,如圖,DM交BC于點F,QM交BC于E,,由題意可知∠A=60°,,∴,即,,得,∴,∵,∴,,,∴,綜上所述:;(4)如圖所示,當Q與C重合時,滿足條件,由前面解題過程可知此時,當PQ=DM時,此時直線CD正好過QM的中點,滿足條件,此時,當直線CD正好過PQ的中點G時,滿足條件,如圖,由前面計算可知,則,,解得,綜上所述,或.【考點】本題考查了動點問題,熟練掌握三角函數(shù),矩形的性質是解題的關鍵.2、(1)(2)價格為21元時,才能使每月獲得最大利潤,最大利潤為3630元【解析】【分析】(1)設,把,和,代入求出k、b的值,從而得出答案;(2)根據(jù)總利潤=每件利潤×每月銷售量列出函數(shù)解析式,配方成頂點式,利用二次函數(shù)的性質求解可得答案.(1)解:設,把,和,代入可得,解得,則;(2)解:每月獲得利潤.∵,∴當時,P有最大值,最大值為3630.答:當價格為21元時,才能使每月獲得最大利潤,最大利潤為3630元.【考點】本題主要考查了一次函數(shù)解析式的求法和二次函數(shù)的應用,解題的關鍵是理解題意找到其中蘊含的相等關系,并據(jù)此得出函數(shù)解析式及二次函數(shù)的性質,然后再利用二次函數(shù)求最值.3、(1)y=4x2﹣7x+1;(2)y=﹣2(x﹣2)2+3.【解析】【分析】(1)先設出拋物線的解析式為y=ax2+bx+c,再將點(0,1),(1,?2),(2,3)代入解析式中,即可求得拋物線的解析式;(2)由于已知拋物線的頂點坐標,則可設頂點式y(tǒng)=a(x?2)2+3,然后把(3,1)代入求出a的值即可.【詳解】解:(1)設出拋物線的解析式為y=ax2+bx+c,將(0,1),(1,﹣2),(2,3)代入解析式,得:,解得:,∴拋物線解析式為:y=4x2﹣7x+1;(2)設拋物線解析式為y=a(x﹣2)2+3,把(3,1)代入得:a(3﹣2)2+3=1,解得a=﹣2,所以拋物線解析式為y=﹣2(x﹣2)2+3.【考點】本題考查了待定系數(shù)法求二次函數(shù)的解析式:一般地,當已知拋物線上三點時,常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當已知拋物線的頂點或對稱軸時,常設其解析式為頂點式來求解;當已知拋物線與x軸有兩個交點時,可選擇設其解析式為交點式來求解.4、見解析【解析】【分析】方法1:過點A作于點D,根據(jù),可得,由此可得,由此可得結論;方法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論