難點解析人教版8年級數(shù)學(xué)上冊《全等三角形》專題練習(xí)試題(解析卷)_第1頁
難點解析人教版8年級數(shù)學(xué)上冊《全等三角形》專題練習(xí)試題(解析卷)_第2頁
難點解析人教版8年級數(shù)學(xué)上冊《全等三角形》專題練習(xí)試題(解析卷)_第3頁
難點解析人教版8年級數(shù)學(xué)上冊《全等三角形》專題練習(xí)試題(解析卷)_第4頁
難點解析人教版8年級數(shù)學(xué)上冊《全等三角形》專題練習(xí)試題(解析卷)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《全等三角形》專題練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,連接AC,BD交于點M,連接OM,下列結(jié)論:①△AOC≌△BOD;②AC=BD;③∠AMB=40°;④MO平分∠BMC.其中正確的個數(shù)為()A.4 B.3 C.2 D.12、如圖,△ABC和△EDF中,∠B=∠D=90°,∠A=∠E,點B,F(xiàn),C,D在同一條直線上,再增加一個條件,不能判定△ABC≌△EDF的是(

)A.AB=ED B.AC=EFC.AC∥EF D.BF=DC3、如圖,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,則∠AFE的度數(shù)等于()A.148° B.140° C.135° D.128°4、如圖①,已知,用尺規(guī)作它的角平分線.如圖②,步驟如下:第一步:以B為圓心,以a為半徑畫弧,分別交射線,于點D,E;第二步:分別以D,E為圓心,以b為半徑畫弧,兩弧在內(nèi)部交于點P;第三步;畫射線,射線即為所求.下列敘述不正確的是(

)A. B.作圖的原理是構(gòu)造三角形全等C.由第二步可知, D.的長5、如圖,銳角△ABC的兩條高BD、CE相交于點O,且CE=BD,若∠CBD=20°,則∠A的度數(shù)為()A.20° B.40° C.60° D.70°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在△ABC中,AC=BC,∠ABC=54°,CE平分∠ACB,AD平分∠CAB,CE與AD交于點F,G為△ABC外一點,∠ACD=∠FCG,∠CBG=∠CAF,連接DG.下列結(jié)論:①△ACF≌△BCG;②∠BGC=117°;③S△ACE=S△CFD+S△BCG;④AD=DG+BG.其中結(jié)論正確的是_____________(只需要填寫序號).2、在△ABC中,AB=4,AC=3,AD是△ABC的角平分線,則△ABD與△ACD的面積之比是_____.3、我們定義:一個三角形最小內(nèi)角的角平分線將這個三角形分割得到的兩個三角形它們的面積之比稱為“最小角割比Ω”(),那么三邊長分別為7,24,25的三角形的最小角割比Ω是______.4、已知:如圖,AC=DC,∠1=∠2,請?zhí)砑右粋€已知條件:_____,使ABCDEC.5、如圖,給出下列結(jié)論:①;②;③;④.其中正確的有_______(填寫答案序號).三、解答題(5小題,每小題10分,共計50分)1、已知:如圖,AB=DE,AB∥DE,BE=CF,且點B、E、C、F都在一條直線上,求證:AC∥DF.2、(2019秋?九龍坡區(qū)校級月考)如圖.在四邊形ABCD中,∠B+∠ADC=180°,AB=AD,E、F分別是邊BC、CD延長線上的點,且∠EAF∠BAD,求證:EF=BE﹣FD.3、如圖,點C、F在線段BE上,∠ABC=∠DEF=90°,BC=EF,請只添加一個合適的條件使△ABC≌△DEF.(1)根據(jù)“ASA”,需添加的條件是;根據(jù)“HL”,需添加的條件是;(2)請從(1)中選擇一種,加以證明.4、如圖所示,點M是線段AB上一點,ED是過點M的一條直線,連接AE、BD,過點B作BFAE交ED于F,且EM=FM.(1)若AE=5,求BF的長;(2)若∠AEC=90°,∠DBF=∠CAE,求證:CD=FE.5、如圖1,點P、Q分別是邊長為4cm的等邊三角形ABC的邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s.(1)連接AQ、CP交于點M,則在P,Q運動的過程中,證明≌;(2)會發(fā)生變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);(3)P、Q運動幾秒時,是直角三角形?(4)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則變化嗎?若變化說明理由,若不變,則求出它的度數(shù)。-參考答案-一、單選題1、A【解析】【分析】由題意易得∠AOC=∠BOD,然后根據(jù)三角形全等的性質(zhì)及角平分線的判定定理可進行求解.【詳解】解:∵∠AOB=∠COD=40°,∠AOD是公共角,∴∠COD+∠AOD=∠BOA+∠AOD,即∠AOC=∠BOD,∵OA=OB,OC=OD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∠ODB=∠OCA,故①②正確;過點O作OE⊥AC于點E,OF⊥BD于點F,BD與OA相交于點H,如圖所示:∵∠AHM=∠OHB,∠AMB=180°-∠AHM-∠OAC,∠BOA=180°-∠OHB-∠OBD,∴∠AMB=∠BOA=40°,∴∠OEC=∠OFD=90°,∵OC=OD,∠OCA=∠ODB,∴△OEC≌△OFD(AAS),∴OE=OF,∴OM平分∠BMC,故③④正確;所以正確的個數(shù)有4個;故選A.【考點】本題主要考查全等三角形的性質(zhì)與判定及角平分線的判定定理,熟練掌握全等三角形的性質(zhì)與判定及角平分線的判定定理是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)全等三角形的判定方法即可判斷.【詳解】A.AB=ED,可用ASA判定△ABC≌△EDF;

B.AC=EF,可用AAS判定△ABC≌△EDF;

C.AC∥EF,不能用AAA判定△ABC≌△EDF,故錯誤;

D.BF=DC,可用AAS判定△ABC≌△EDF;

故選C.【考點】此題主要考查全等三角形的判定,解題的關(guān)鍵是熟知全等三角形的判定方法.3、A【解析】【分析】根據(jù)已知條件可知△ABC≌△EDB,由全等可得到∠A=∠E,并利用三角形內(nèi)角和可求得∠E,再應(yīng)用外角和求得∠AFE.【詳解】∵BD=BC,BE=CA,∠DBE=∠C,∴△ABC≌△EDB(SAS),∴∠A=∠E,∵∠DBE=62°,∠BDE=75°,∴∠E=180°﹣60°﹣75°=43°,∴∠A=43°,∵∠BDE+∠ADE=180°,∴∠ADE=105°,∴∠AFE=∠ADE+∠A=105°+43°=148°.故選:A.【考點】本題考查了全等三角形的判定和性質(zhì)、三角形外角和、內(nèi)角和定理,難度不大,但要注意數(shù)形結(jié)合思想的運用.4、D【解析】【分析】根據(jù)用尺規(guī)作圖法畫已知角的角平分線的基本步驟判斷即可【詳解】解:A、∵以a為半徑畫弧,∴,故正確B、根據(jù)作圖步驟可知BD=BE,PD=PE,BP=BP,∴△BDP≌△BEP(SSS),故正確C、∵分別以D,E為圓心,以b為半徑畫弧,兩弧在內(nèi)部交于點P,∴,故正確D、分別以D,E為圓心,以b為半徑畫弧,其中,否則兩個圓弧沒有交點,故錯誤故選:D【考點】本題考查用尺規(guī)作圖法畫已知角的角平分線及理論依據(jù),熟練尺規(guī)作圖的基本步驟是關(guān)鍵5、B【解析】【分析】由BD、CE是高,可得∠BDC=∠CEB=90°,可求∠BCD=70°,可證Rt△BEC≌Rt△CDB(HL),得出∠BCD=∠CBE=70°即可.【詳解】解:∵BD、CE是高,∠CBD=20°,∴∠BDC=∠CEB=90°,∴∠BCD=180°﹣90°﹣20°=70°,在Rt△BEC和Rt△CDB中,,∴Rt△BEC≌Rt△CDB(HL),∴∠BCD=∠CBE=70°,∴∠A=180°﹣70°﹣70°=40°.故選:B.【考點】本題考查三角形高的定義,三角形全等判定與性質(zhì),三角形內(nèi)角和公式,掌握三角形高的定義,三角形全等判定與性質(zhì),三角形內(nèi)角和公式是解題關(guān)鍵.二、填空題1、①②④【解析】【分析】根據(jù)條件求得∠BAC=∠ABC=54°,∠ACB=72°,∠ACE=∠BCE=36°,∠CAF=∠BAF=27°,利用ASA證明△ACF≌△BCG,再根據(jù)SAS證明△CDF≌△CDG,據(jù)此即可推斷各選項的正確性.【詳解】解:在△ABC中,AC=BC,∠ABC=54°,∴∠BAC=∠ABC=54°,∠ACB=180°-54°-54°=72°,∵AC=BC,CE平分∠ACB,AD平分∠CAB,∴∠ACE=∠BCE=∠ACB=36°,∠CAF=∠BAF=∠BAC=27°,∵∠ACD=∠FCG=72°,∴∠BCG=∠FCG-36°=36°,在△ACF和△BCG中,,∴△ACF≌△BCG(ASA);故①正確;∴∠BGC=∠AFC=180°-36°-27°=117°,故②正確;∴CF=CG,AF=BG,在△CDF和△CDG中,,∴△CDF≌△CDG(SAS),∴DF=DG,∴AD=DF+AF=DG+BG,故④正確;∵S△CFD+S△BCG=S△CFD+S△ACF=S△ACD,而S△ACE不等于S△ACD,故③不正確;綜上,正確的是①②④,故答案為:①②④.【考點】本題考查了全等三角形的判定和性質(zhì),三角形內(nèi)角和定理,角平分線的定義,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,2、4:3【解析】【分析】根據(jù)角平分線的性質(zhì),可得出△ABD的邊AB上的高與△ACD的AC上的高相等,估計三角形的面積公式,即可得出△ABD與△ACD的面積之比等于對應(yīng)邊之比.【詳解】∵AD是△ABC的角平分線,∴設(shè)△ABD的邊AB上的高與△ACD的AC上的高分別為h1,h2,∴h1=h2,∴△ABD與△ACD的面積之比=AB:AC=4:3,故答案為4:3.3、.【解析】【分析】根據(jù)題意作出圖形,然后根據(jù)角平分線的性質(zhì)得到,再根據(jù)三角形的面積和最小角割比Ω的定義計算即可.【詳解】解:如圖示,,,,則,根據(jù)題意,作的角平分線交于點,過點,作交于點,過點,作交于點,則∵,,則()故答案是:.【考點】本題考查了三角形角平分線的性質(zhì)和三角形的面積計算,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.4、【解析】【分析】已知給出了∠1=∠2,可得三角形中一對應(yīng)角相等,又有一邊對應(yīng)相等,根據(jù)邊角邊判定定理,補充BC=AC可得ABCDEC答案可得.【詳解】解:∵∠1=∠2,∴∠BCA=∠ECD,又AC=DC,添加BC=CE,∴ABCDEC(SAS).故答案為:BC=EC.【考點】此題考查了三角形全等的判定方法;判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.解題的關(guān)鍵是添加時注意:AAA、SSA不能判定兩個三角形全等,不能添加,根據(jù)已知結(jié)合圖形及判定方法選擇條件.5、①③④【解析】【分析】利用AAS可證明△ABE≌△ACF,可得AC=AB,∠BAE=∠CAF,利用角的和差關(guān)系可得∠EAM=∠FAN,可得③正確,利用ASA可證明△AEM≌△AFN,可得EM=FN,AM=AN,可得①③正確;根據(jù)線段的和差關(guān)系可得CM=BN,利用AAS可證明△CDM≌△BDN,可得CD=DB,可得②錯誤;利用ASA可證明△ACN≌△ABM,可得④正確;綜上即可得答案.【詳解】在△ABE和△ACF中,,∴△ABE≌△ACF,∴AB=AC,∠BAE=∠CAF,∴∠BAE-∠BAC=∠CAF-∠BAC,即∠FAN=∠EAM,故③正確,在△AEM和△AFN中,,∴△AEM≌△AFN,∴EM=FN,AM=AN,故①正確,∴AC-AM=AB-AN,即CM=BN,在△CDM和△BDN中,,∴CD=DB,故②錯誤,在△CAN和△ABM中,,∴△ACN≌△ABM,故④正確,綜上所述:正確的結(jié)論有①③④,故答案為:①③④【考點】本題考查全等三角形的判定與性質(zhì),判定兩個三角形全等的方法有:SSS、SAS、AAS、ASA、HL,注意:SSA、AAA不能判定三角形確定,當(dāng)利用SAS證明時,角必須是兩邊的夾角;熟練掌握全等三角形的判定定理是解題關(guān)鍵.三、解答題1、詳見解析【解析】【分析】首先利用平行線的性質(zhì)∠B=∠DEF,再利用SAS得出△ABC≌△DEF,得出∠ACB=∠F,根據(jù)平行線的判定即可得到結(jié)論.【詳解】證明:∵AB∥DE,∴∠B=∠DEC,又∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠F,∴AC∥DF.【考點】本題考查了平行線的性質(zhì)以及全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定方法是解題關(guān)鍵.2、詳見解析【解析】【分析】在BE上截取BG,使BG=DF,連接AG.根據(jù)SAS證明△ABG≌△ADF得到AG=AF,∠BAG=∠DAF,根據(jù)∠EAF∠BAD,可知∠GAE=∠EAF,可證明△AEG≌△AEF,EG=EF,那么EF=GE=BE﹣BG=BE﹣DF.【詳解】證明:在BE上截取BG,使BG=DF,連接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.在△ABG和△ADF中,,∴△ABG≌△ADF(SAS),∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF∠BAD.∴∠GAE=∠EAF.在△AEG和△AEF中,,∴△AEG≌△AEF(SAS).∴EG=EF,∵EG=BE﹣BG∴EF=BE﹣FD.【考點】此題主要考查全等三角形的判定與性質(zhì),解題的關(guān)鍵是根據(jù)已知條件作出輔助線求解.3、(1)∠ACB=∠DFE,AC=DF;(2)選擇添加條件AC=DE,證明見解析.【解析】【分析】(1)根據(jù)題意添加條件即可;(2)選擇添加條件AC=DE,根據(jù)“HL”證明即可.【詳解】(1)根據(jù)“ASA”,需添加的條件是∠ACB=∠DFE,根據(jù)“HL”,需添加的條件是AC=DF,故答案為:∠ACB=∠DFE,AC=DF;(2)選擇添加條件AC=DE證明,證明:∵∠ABC=∠DEF=90°,∴在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).【考點】本題考查了全等三角形的判定,熟知全等三角形的判定定理是解題關(guān)鍵,證明三角形全等時注意條件的對應(yīng).4、(1)BF=5;(2)見解析.【解析】【分析】(1)證明△AEM≌△BFM即可;(2)證明△AEC≌△BFD,得到EC=FD,利用等式性質(zhì),得到CD=FE.【詳解】(1)∵BFAE,∴∠MFB=∠MEA,∠MBF=∠MAE,∵EM=FM,∴△AEM≌△BFM,∴AE=BF,∵AE=5,∴BF=5;(2)∵BFAE,∴∠MFB=∠MEA,∵∠AEC=90°,∴∠MFB=90°,∴∠BFD=90°,∴∠BFD=∠AEC,∵∠DBF=∠CAE,AE=BF,∴△AEC≌△BFD,∴EC=FD,∴EF+FC=FC+CD,∴CD=FE.【考點】本題考查了平行線的性質(zhì),三角形全等的判定和性質(zhì),等式的性質(zhì),熟練掌握平行線性質(zhì),靈活進行三角形全等的判定是解題的關(guān)鍵.5、(1)見解析;(2)∠CMQ=60°,不變;(3)當(dāng)?shù)诿牖虻诿霑r,△PBQ為直角三角形;(4)∠CMQ=120°,不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論