版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河北師大附中7年級數(shù)學下冊第四章三角形綜合練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,若MB=ND,∠MBA=∠NDC,下列條件中不能判定的是()A.AM=CN B. C.AB=CD D.∠M=∠N2、如圖,一扇窗戶打開后,用窗鉤AB可將其固定()A.三角形的穩(wěn)定性B.兩點之間線段最短C.四邊形的不穩(wěn)定性D.三角形兩邊之和大于第三邊3、如圖,,,,,垂足分別為、,且,,則的長是()A.2 B.3 C.5 D.74、如圖,AB=AC,點D、E分別在AB、AC上,補充一個條件后,仍不能判定△ABE≌△ACD的是()A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC5、如圖,在△ABC中,BC邊上的高為()A.AD B.BE C.BF D.CG6、在△ABC中,若AB=3,BC=4,且周長為奇數(shù),則第三邊AC的長可以是()A.1 B.3 C.4 D.57、根據(jù)下列已知條件,能畫出唯一的的是()A., B.,,C.,, D.,,8、如圖,工人師傅在安裝木制門框時,為防止變形,常常釘上兩條斜拉的木條,這樣做的數(shù)學依據(jù)是()A.兩點確定一條直線B.兩點之間,線段最短C.三角形具有穩(wěn)定性D.三角形的任意兩邊之和大于第三邊9、尺規(guī)作圖:作角等于已知角.示意圖如圖所示,則說明的依據(jù)是()A.SSS B.SAS C.ASA D.AAS10、如圖,BD是△ABC的中線,AB=6,BC=4,△ABD和△BCD的周長差為()A.2 B.4 C.6 D.10第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,∠ABD=80°,∠C=38°,則∠D=___度.2、如圖,在△中,已知點分別為的中點,若△的面積為,則陰影部分的面積為_________3、如圖,某同學把一塊三角形的玻璃打碎成了三片,現(xiàn)在他要到玻璃店去配一塊完全一樣形狀的玻璃,那么最省事的辦法是帶____(填序號)去配,這樣做的科學依據(jù)是_______.4、如圖,在△ABC中,∠ACB=90°,AC=8,BC=10,點P從點A出發(fā)沿線段AC以每秒1個單位長度的速度向終點C運動,點Q從點B出發(fā)沿折線BC﹣CA以每秒3個單位長度的速度向終點A運動,P、Q兩點同時出發(fā).分別過P、Q兩點作PE⊥l于E,QF⊥l于F,當△PEC與△QFC全等時,CQ的長為______.5、如圖,,,,則、兩點之間的距離為______.6、已知,如圖,AB=AC,AD=AE,BE與CD相交于點P,則下列結(jié)論:①PC=PB;②∠CAP=∠BAP;③∠PAB=∠B;④共有4對全等三角形;正確的是_____(請?zhí)顚懶蛱枺?、如圖,,,、分別為線段和射線上的一點,若點從點出發(fā)向點運動,同時點從點出發(fā)向點運動,二者速度之比為,運動到某時刻同時停止,在射線上取一點,使與全等,則的長為________.8、如圖,點E,F(xiàn)分別為線段BC,DB上的動點,BE=DF.要使AE+AF最小值,若用作圖方式確定E,F(xiàn),則步驟是_____.9、如圖,在中,平分,于點E,若的面積為,則陰影部分的面積為________.10、如圖,已知,請?zhí)砑右粋€條件,使得,則添加的條件可以為___(只填寫一個即可).三、解答題(6小題,每小題10分,共計60分)1、如圖,在中,,,,BD是的角平分線,點E在AB邊上,.求的周長.2、已知:如圖,AD,BE相交于點O,AB⊥BE,DE⊥AD,垂足分別為B,D,OA=OE.求證:△ABO≌△EDO.3、如圖,已知,,求證:.4、如圖,在△ABC中,D是邊AB上一點,E是邊AC的中點,過點C作交DE的延長線于點F.(1)求證:△ADE≌△CFE;(2)若AB=AC,CE=5,CF=7,求DB的長.5、已知銳角,,于,于F,交于E.求證:ΔBDE≌若BD=8,DC=6,求線段BE的長度.6、如圖,在中,、分別是上的高和中線,,,求的長.-參考答案-一、單選題1、A【分析】根據(jù)兩個三角形全等的判定定理,有AAS、SSS、ASA、SAS四種.逐條驗證.【詳解】解:A、根據(jù)條件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故A選項符合題意;B、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故B選項不符合題意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C選項不符合題意;D、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故D選項不符合題意.故選:A.【點睛】本題重點考查了三角形全等的判定定理,兩個三角形全等共有四個定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本題是一道較為簡單的題目.2、A【分析】由三角形的穩(wěn)定性即可得出答案.【詳解】一扇窗戶打開后,用窗鉤AB可將其固定,故選:A.【點睛】本題考查了三角形的穩(wěn)定性,加上窗鉤AB構(gòu)成了△AOB,而三角形具有穩(wěn)定性是解題的關(guān)鍵.3、B【分析】根據(jù),,可得∠AEC=∠BDC=90°,∠CAE+∠ACE=90°,再由∠BCD=∠CAE,從而證得△ACE≌△CBD,進而得到CE=BD,AE=CD,即可求解.【詳解】解:∵,,∴∠AEC=∠BDC=90°,∠CAE+∠ACE=90°,∵,∴∠BCD+∠ACE=90°,∴∠BCD=∠CAE,∵,∴△ACE≌△CBD,∴CE=BD,AE=CD,∵,,∴DE=CD-CE=AE-BD=5-2=3.故選:B【點睛】本題主要考查了全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定方法是解題的關(guān)鍵.4、C【分析】根據(jù)全等三角形的判定定理進行判斷即可.【詳解】解:根據(jù)題意可知:AB=AC,,若,則根據(jù)可以證明△ABE≌△ACD,故A不符合題意;若AD=AE,則根據(jù)可以證明△ABE≌△ACD,故B不符合題意;若BE=CD,則根據(jù)不可以證明△ABE≌△ACD,故C符合題意;若∠AEB=∠ADC,則根據(jù)可以證明△ABE≌△ACD,故D不符合題意;故選:C.【點睛】本題考查了全等三角形的判定,熟練掌握全等三角形的判定定理是解本題的關(guān)鍵.5、A【分析】根據(jù)三角形的高線的定義解答.【詳解】解:根據(jù)三角形的高的定義,AD為△ABC中BC邊上的高.故選:A.【點睛】本題主要考查了三角形的高的定義:從三角形的一個頂點向它的對邊作垂線,垂足與頂點之間的線段叫做三角形的高,熟記概念是解題的關(guān)鍵.6、C【分析】先求解的取值范圍,再利用周長為奇數(shù),可得為偶數(shù),從而可得答案.【詳解】解:AB=3,BC=4,即△ABC周長為奇數(shù),而為偶數(shù),或或不符合題意,符合題意;故選C【點睛】本題考查的是三角形三邊的關(guān)系,掌握“三角形的任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”是解本題的關(guān)鍵.7、C【分析】利用全等三角形的判定方法以及三角形三邊關(guān)系分別判斷得出即可.【詳解】解:A.∠C=90°,AB=6,不符合全等三角形的判定方法,即不能畫出唯一三角形,故本選項不符合題意;B.,,,不符合全等三角形的判定定理,不能畫出唯一的三角形,故本選項不符合題意;C.,,,符合全等三角形的判定定理ASA,能畫出唯一的三角形,故本選項符合題意;D.3+4<8,不符合三角形的三邊關(guān)系定理,不能畫出三角形,故本選項不符合題意;故選:C.【點睛】此題主要考查了全等三角形的判定以及三角形三邊關(guān)系,正確把握全等三角形的判定方法是解題關(guān)鍵.8、C【分析】根據(jù)三角形具有穩(wěn)定性進行求解即可.【詳解】解:工人師傅在安裝木制門框時,為防止變形,常常釘上兩條斜拉的木條,這樣做的數(shù)學依據(jù)是三角形具有穩(wěn)定性,故選C.【點睛】本題主要考查了三角形的穩(wěn)定性,熟知三角形具有穩(wěn)定性是解題的關(guān)鍵.9、A【分析】利用基本作圖得到OD=OC=OD′=OC′,CD=C′D′,則根據(jù)全等三角形的判定方法可根據(jù)“SSS”可判斷△OCD≌△O′C′D′,然后根據(jù)全等三角形的性質(zhì)得到∠A′OB′=∠AOB.【詳解】解:由作法可得OD=OC=OD′=OC′,CD=C′D′,所以根據(jù)“SSS”可判斷△OCD≌△O′C′D′,所以∠A′OB′=∠AOB.故選:A.【點睛】本題考查了作圖﹣基本作圖和全等三角形的判定與性質(zhì),解題關(guān)鍵是熟練掌握基本作圖和全等三角形的判定定理.10、A【分析】根據(jù)題意可得,,△ABD和△BCD的周長差為線段的差,即可求解.【詳解】解:根據(jù)題意可得,△ABD的周長為,△BCD的周長為△ABD和△BCD的周長差為故選:A【點睛】本題考查了三角形中線的性質(zhì)及三角形周長的計算,熟練掌握三角形中線的性質(zhì)是解答本題的關(guān)鍵.二、填空題1、【分析】由三角形的外角的性質(zhì)可得代入數(shù)據(jù)即可得到答案.【詳解】解:故答案為:【點睛】本題考查的是三角形的外角的性質(zhì),掌握“三角形的外角等于與它不相鄰的兩個內(nèi)角之和”是解本題的關(guān)鍵.2、1【分析】根據(jù)三角形的中線把三角形分成兩個面積相等的三角形解答.【詳解】解:∵點E是AD的中點,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×4=2cm2,∴S△BCE=S△ABC=×4=2cm2,∵點F是CE的中點,∴S△BEF=S△BCE=×2=1cm2.故答案為:1.【點睛】本題考查了三角形的面積,主要利用了三角形的中線把三角形分成兩個面積相等的三角形,原理為等底等高的三角形的面積相等.3、③ASA【分析】由題意已知三角形破損部分的邊角,得到原來三角形的邊角,根據(jù)三角形全等的判定方法進行分析即可.【詳解】解:第一塊和第二塊只保留了原三角形的一個角和部分邊,根據(jù)這兩塊中的任一塊均不能配一塊與原來完全一樣的;第三塊不僅保留了原來三角形的兩個角還保留了一邊,則可以根據(jù)ASA來配一塊一樣的玻璃.故答案為:③;ASA.【點睛】本題主要考查全等三角形的判定方法的實際應(yīng)用,要求學生將所學的知識運用于實際生活中,要認真觀察圖形,根據(jù)已知選擇方法.4、7或3.5【分析】分兩種情況:(1)當P在AC上,Q在BC上時;(2)當P在AC上,Q在AC上時,即P、Q重合時;【詳解】解:當P在AC上,Q在BC上時,∵∠ACB=90°,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠PEC=∠CFQ=90°,∴∠EPC+∠PCE=90°,∴∠EPC=∠QCF,∵△PEC與△QFC全等,∴此時是△PCE≌△CQF,∴PC=CQ,∴8-t=10-3t,解得t=1,∴CQ=10-3t=7;當P在AC上,Q在AC上時,即P、Q重合時,則CQ=PC,由題意得,8-t=3t-10,解得t=4.5,∴CQ=3t-10=3.5,綜上,當△PEC與△QFC全等時,滿足條件的CQ的長為7或3.5,故答案為:7或3.5.【點睛】本題主要考查了全等三角形的性質(zhì),根據(jù)題意得出關(guān)于的方程是解題的關(guān)鍵.5、55【分析】根據(jù)題意首先證明△AOB和△DOC全等,再根據(jù)全等三角形對應(yīng)邊相等即可得出答案.【詳解】解:,,,即,在和中,,≌,.故答案為:.【點睛】本題主要考查全等三角形的應(yīng)用以及兩點之間的距離,解題的關(guān)鍵是掌握全等三角形對應(yīng)邊相等.6、①②④【分析】先證△AEB≌△ADC(SAS),再證△EPC≌△DPB(AAS),可判斷①;可證△APC≌△APB(SSS),判定斷②;利用特殊等腰三角形可得可判斷③,根據(jù)全等三角形個數(shù)可判斷④即可【詳解】解:在△AEB和△ADC中,,∴△AEB≌△ADC(SAS),∴∠B=∠C,∵EC=AC-AE=AB-AD=DB,在△EPC和△DPB中,∴△EPC≌△DPB(AAS),∴PC=PB,故①正確;在△APC和△APB中,∴△APC≌△APB(SSS),∴∠CAP=∠BAP,故②正確;當AP=PB時,∠PAB=∠B,當AP≠PB時,∠PAB≠∠B,故③不正確;在△EAP和△DAP中,∴△EAP≌△DAP(SAS),共有4對全等三角形,故④正確故答案為:①②④【點睛】本題考查三角形全等判定與性質(zhì),掌握全等三角形的判定方法與性質(zhì)是解題關(guān)鍵.7、2或6或2【分析】設(shè)BE=t,則BF=2t,使△AEG與△BEF全等,由∠A=∠B=90°可知,分兩種情況:情況一:當BE=AG,BF=AE時,列方程解得t,可得AG;情況二:當BE=AE,BF=AG時,列方程解得t,可得AG.【詳解】解:設(shè)BE=t,則BF=2t,AE=6-t,因為∠A=∠B=90°,使△AEG與△BEF全等,可分兩種情況:情況一:當BE=AG,BF=AE時,∵BF=AE,AB=6,∴2t=6-t,解得:t=2,∴AG=BE=t=2;情況二:當BE=AE,BF=AG時,∵BE=AE,AB=6,∴t=6-t,解得:t=3,∴AG=BF=2t=2×3=6,綜上所述,AG=2或AG=6.故答案為:2或6.【點睛】本題主要考查了全等三角形的性質(zhì),利用分類討論思想是解答此題的關(guān)鍵.8、①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點【分析】按照①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點的步驟作圖即可得.【詳解】解:步驟是①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點;如圖,點即為所求.故答案為:①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點.【點睛】本題考查了作一個角等于已知角、兩點之間線段最短、作線段、全等三角形的判定與性質(zhì)等知識點,熟練掌握尺規(guī)作圖的方法是解題關(guān)鍵.9、6【分析】證點E為AD的中點,可得△ACE與△ACD的面積之比,同理可得△ABE和△ABD的面積之比,即可解答出.【詳解】解:如圖,平分,于點E,∴,,∵,∴≌∴,∴S△ACE:S△ACD=1:2,同理可得,S△ABE:S△ABD=1:2,∵S△ABC=12,∴陰影部分的面積為S△ACE+S△ABE=S△ABC=×12=6.故答案為6.【點睛】本題主要考查了全等三角形的判定與性質(zhì)及三角形面積的等積變換,解題關(guān)鍵是明確三角形的中線將三角形分成面積相等的兩部分.10、或【分析】根據(jù)全等三角形的判定方法即可解決問題.【詳解】解:由題意,,根據(jù),可以添加,使得,根據(jù),可以添加,使得.故答案為:或【點睛】本題主要考查了全等三角形的判定,熟練掌握全等三角形的判定方法——邊角邊、角邊角、角角邊、邊邊邊是解題的關(guān)鍵.三、解答題1、【分析】由題意結(jié)合角平分線性質(zhì)和全等三角形判定得出,進而依據(jù)的周長進行求解即可.【詳解】解:∵,,,∴,∵BD是的角平分線,∴,在和中,,∴,∴,∵,∴的周長.【點睛】本題考查全等三角形的判定與性質(zhì)以及角平分線性質(zhì),熟練掌握利用全等三角形的判定與性質(zhì)以及角平分線性質(zhì)進行邊的等量替換是解題的關(guān)鍵.2、見解析【分析】利用AAS即可證明△ABO≌△EDO.【詳解】證明:∵AB⊥BE,DE⊥AD,∴∠B=∠D=90°.在△ABO和△EDO中,∴△ABO≌△EDO.【點睛】本題考查了全等三角形的判定,熟練掌握三角形全等的判定方法是解題的關(guān)鍵.3、見解析【分析】先證明,然后利用AAS證明△BAC≌△EAF即可得到BC=EF.【詳解】解:∵,∴,即,在△BAC和△EAF中,,∴△B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年度寧國市事業(yè)單位統(tǒng)一公開招聘工作人員16名參考考試題庫及答案解析
- 2026年江西生物科技職業(yè)學院高職單招職業(yè)適應(yīng)性測試備考試題及答案詳細解析
- 2026年貴州食品工程職業(yè)學院單招綜合素質(zhì)考試備考試題含詳細答案解析
- 2026年武漢城市職業(yè)學院單招綜合素質(zhì)考試參考題庫含詳細答案解析
- 2026年河南檢察職業(yè)學院單招綜合素質(zhì)筆試備考題庫含詳細答案解析
- 2026年江蘇商貿(mào)職業(yè)學院單招職業(yè)技能考試備考題庫含詳細答案解析
- 2026年云南現(xiàn)代職業(yè)技術(shù)學院單招職業(yè)技能考試模擬試題含詳細答案解析
- 2026年廣西自然資源職業(yè)技術(shù)學院單招職業(yè)技能考試備考試題含詳細答案解析
- 2026年棗莊科技職業(yè)學院單招綜合素質(zhì)筆試備考題庫含詳細答案解析
- 2026年湖南汽車工程職業(yè)學院單招職業(yè)技能考試備考試題含詳細答案解析
- 《人民調(diào)解員培訓(xùn)》課件
- 出租車春節(jié)應(yīng)急預(yù)案
- 華羅庚數(shù)學課本六年級
- DB12-T885-2019-植物提取物中原花青素的測定紫外-可見分光光度法-天津市
- 董氏奇穴針灸學(楊維杰)
- 日間手術(shù)病人術(shù)前的護理
- 1000張隱患辨識圖
- 智能水務(wù)管理基礎(chǔ)知識單選題100道及答案
- 《職業(yè)院校與本科高校對口貫通分段培養(yǎng)協(xié)議書》
- 危巖帶治理工程初步設(shè)計計算書
- 精神病學考試重點第七版
評論
0/150
提交評論