版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
京改版數(shù)學9年級上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、一次函數(shù)與二次函數(shù)在同一坐標系中的圖象大致為()A. B.C. D.2、若y=(m+1)是二次函數(shù),則m=
(
)A.-1 B.7 C.-1或7 D.以上都不對3、若為銳角,,則等于(
)A. B. C. D.4、下列說法中不正確的是()A.任意兩個等邊三角形相似 B.有一個銳角是40°的兩個直角三角形相似C.有一個角是30°的兩個等腰三角形相似 D.任意兩個正方形相似5、如圖,Rt△ABC中,,,,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿AB向B點運動,設E點的運動時間為t秒,連接DE,當以B、D、E為頂點的三角形與△ABC相似時,t的值為()A.2或3.5 B.2或3.2 C.2或3.4 D.3.2或3.46、反比例函數(shù)圖象的兩個分支分別位于第一、三象限,則一次函數(shù)的圖象大致是(
)A. B.C. D.二、多選題(7小題,每小題2分,共計14分)1、如圖所示,AB是⊙O的直徑,D,E是半圓上任意兩點,連接AD,DE,AE與BD相交于點C,要使與相似,可以添加一個條件下列添加的條件中正確的是(
)A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD?CD2、如圖所示,AB為斜坡,D是斜坡AB上一點,斜坡AB的坡度為i,坡角為,于點C,下面正確的有(
)A. B.C. D.3、在Rt△ABC中,∠C=90°,∠A、∠B、∠C所對的邊分別為a、b、c,下列等式一定不能成立的有()A.sinA=sinB B.a(chǎn)=c?sinBC.sin2A+cos2B=1 D.sinA=tanA?cosA4、如圖,已知等邊三角形ABC的邊長為2,DE是它的中位線.則下面四個結論中正確的有()A.DE=1 B.AB邊上的高為C.△CDE∽△CAB D.△CDE的面積與△CAB面積之比為1:45、已知Rt△ABC中,∠C=90°,AC=2,BC=3,則下列各式中,不正確的是()A.sinB= B.cosB= C.tanB= D.以上都不對6、如圖,在△ABC中,點D,E分別在邊AB、AC上,下列條件中能判斷△AED∽△ABC的是()A.∠AED=∠ABC B.∠ADE=∠ACBC. D.7、運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時間t(單位:s)之間的關系如下表:t01234567…h(huán)08141820201814…下列結論正確的是(
)A.足球距離地面的最大高度為20mB.足球飛行路線的對稱軸是直線C.足球被踢出9s時落地D.足球被踢出1.5s時,距離地面的高度是11m第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、若一元二次方程(b,c為常數(shù))的兩根滿足,則符合條件的一個方程為_____.2、若拋物線的圖像與軸有交點,那么的取值范圍是________.3、如圖,有長為24米的籬笆,一面利用墻(墻的最大可用長度為10米),圍成中間隔有一道籬笆的長方形花圃.設花圃的寬AB為x米,面積為S平方米.則S與x的函數(shù)關系式是____________,自變量x的取值范圍是____________.4、拋物線是二次函數(shù),則m=___.5、在平面直角坐標系中,已知和是拋物線上的兩點,將拋物線的圖象向上平移n(n是正整數(shù))個單位,使平移后的圖象與x軸沒有交點,則n的最小值為_____.6、如圖,在△ABC中,∠B=45°,tanC=,AB=,則AC=_____.7、二次函數(shù)的部分圖象如圖所示,由圖象可知,方程的解為___________________;不等式的解集為___________________.四、解答題(6小題,每小題10分,共計60分)1、如圖所示,拋物線的對稱軸為直線,拋物線與軸交于、兩點,與軸交于點.(1)求拋物線的解析式;(2)連結,在第一象限內(nèi)的拋物線上,是否存在一點,使的面積最大?最大面積是多少?2、(1)方法導引:問題:如圖1,等邊三角形的邊長為6,點是和的角平分線交點,,繞點任意旋轉(zhuǎn),分別交的兩邊于,兩點.求四邊形面積.討論:①小明:在旋轉(zhuǎn)過程中,當經(jīng)過點時,一定經(jīng)過點.②小穎:小明的分析有道理,這樣我們就可以利用“”證出.③小飛:因為,所以只要算出的面積就得出了四邊形的面積.老師:同學們的思路很清晰,也很正確.在分析和解決問題時,我們經(jīng)常會借用特例作輔助線來解決一般問題:請你按照討論的思路,直接寫出四邊形的面積:________.(2)應用方法:①特例:如圖2,的頂點在等邊三角形的邊上,,,邊于點,于點,求的面積.②探究:如圖3,已知,頂點在等邊三角形的邊上,,,記的面積為,的面積為,求的值.③應用:如圖4,已知,頂點在等邊三角形的邊的延長線上,,,記的面積為,的面積為,請直接寫出與的關系式.
3、如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點P⊙O上,∠1=∠C.(1)求證:CB∥PD;(2)若∠ABC=55°,求∠P的度數(shù).4、如圖,Rt△ABO的頂點A是反比例函數(shù)的圖象與一次函數(shù)的圖象在第二象限的交點,AB⊥x軸于點B,且.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)求一次函數(shù)與反比例函數(shù)圖象的兩個交點A,C的坐標.5、如圖,已知中,,點在邊上,滿足求證:(1)(2).6、在矩形中,于點,點是邊上一點.(1)若平分,交于點,PF⊥BD,如圖(1),證明四邊形是菱形;(2)若,如圖(2),求證:.-參考答案-一、單選題1、A【解析】【分析】由二次函數(shù)的解析式可知,二次函數(shù)圖象經(jīng)過原點,則只有選項A,D可能正確,B,C不符合舍去,然后對A,D選項,根據(jù)二次函數(shù)的圖象確定a和b的符號,然后根據(jù)一次函數(shù)的性質(zhì)看一次函數(shù)圖象的位置是否正確,若正確,說明它們可在同一坐標系內(nèi)存在.【詳解】解:由二次函數(shù)的解析式可知,二次函數(shù)圖象經(jīng)過原點,則只有選項A,D符合,B,C不符合舍去,A、由二次函數(shù)y=ax2+bx的圖象得a>0,再根據(jù)>0得到b<0,則一次函數(shù)y=ax+b經(jīng)過第一、三、四象限,所以A選項正確;D、由二次函數(shù)y=ax2+bx的圖象得a<0,再根據(jù)<0得到b<0,則一次函數(shù)y=ax+b經(jīng)過第二、三、四象限,所以D選項錯誤.故選:A.【考點】本題考查了二次函數(shù)的圖象:二次函數(shù)的圖象為拋物線,可能利用列表、描點、連線畫二次函數(shù)的圖象.也考查了二次函數(shù)圖象與系數(shù)的關系.2、B【解析】【分析】令x的指數(shù)為2,系數(shù)不為0,列出方程與不等式解答即可.【詳解】由題意得:m2-6m-5=2;且m+1≠0;解得m=7或-1;m≠-1,∴m=7,故選:B.【考點】利用二次函數(shù)的定義,二次函數(shù)中自變量的指數(shù)是2;二次項的系數(shù)不為0.3、B【解析】【分析】根據(jù)tan45°=1求出即可.【詳解】∵∠A為銳角,tanA=1,∴∠A=45°.故選B.【考點】本題考查了特殊角的三角函數(shù)值,主要考查學生的記憶能力和計算能力.4、C【解析】【分析】直接利用相似圖形的性質(zhì)分別分析得出答案.【詳解】A.任意兩個等邊三角形相似,說法正確;B.有一個銳角是40°的兩個直角三角形相似,說法正確;C.有一個角是30°的兩個等腰三角形相似,30°有可能是頂角或底角,故說法錯誤;D.任意兩個正方形相似,說法正確.故選:C.【考點】本題主要考查了圖形的相似,正確把握相似圖形的判定方法是解題關鍵.5、A【解析】【分析】求出AB=2BC=4cm,分兩種情況:①當∠EDB=∠ACB=90°時,DE∥AC,△EBD∽△ABC,得出AE=BE=AB=2cm,即可得出t=2s;②當∠DEB=∠ACB=90°時,證出△DBE∽△ABC,得出∠BDE=∠A=30°,因此BE=BD=cm,得出AE=3.5cm,t=3.5s;即可得出結果.【詳解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∴AB=2BC=4cm,分兩種情況:①當∠EDB=∠ACB=90°時,DE∥AC,所以△EBD∽△ABC,E為AB的中點,AE=BE=AB=2cm,∴t=2s;②當∠DEB=∠ACB=90°時,∵∠B=∠B,∴△DBE∽△ABC,∴∠BDE=∠A=30°,∵D為BC的中點,∴BD=BC=1cm,∴BE=BD=0.5cm,∴AE=3.5cm,∴t=3.5s;綜上所述,當以B、D、E為頂點的三角形與△ABC相似時,t的值為2或3.5,故選A.【考點】本題考查了相似三角形的判定、平行線的性質(zhì)、含30°角的直角三角形的性質(zhì)等知識;熟記相似三角形的判定方法是解決問題的關鍵,注意分類討論.6、D【解析】【分析】根據(jù)題意可得,進而根據(jù)一次函數(shù)圖像的性質(zhì)可得的圖象的大致情況.【詳解】反比例函數(shù)圖象的兩個分支分別位于第一、三象限,∴一次函數(shù)的圖象與y軸交于負半軸,且經(jīng)過第一、三、四象限.觀察選項只有D選項符合.故選D【考點】本題考查了反比例函數(shù)的性質(zhì),一次函數(shù)圖像的性質(zhì),根據(jù)已知求得是解題的關鍵.二、多選題1、ABD【解析】【分析】根據(jù)有兩組角對應相等的兩個三角形相似可對A選項判斷;根據(jù)圓周角定理和有兩組角對應相等的兩個三角形相似可對B選項判斷;根據(jù)兩組對應邊的比相等且夾角對應相等的兩個三角形相似可對C、D選項判斷.【詳解】解:A、,,,故A選項的添加條件正確;B、,,而,,,故B選項的添加條件正確;C、∵AD·AB=CD·BD,∴AD∶BD=CD∶AB,又∵∠ADC≠∠B,∴無法證明與相似,故C選項的添加條件不正確;D、∵,,又,,故D選項的添加條件正確.故選:ABD.【考點】本題考查了相似三角形的判定:兩組對應邊的比相等且夾角對應相等的兩個三角形相似;有兩組角對應相等的兩個三角形相似.也考查了圓周角定理.2、BCD【解析】【分析】根據(jù)坡度的定義解答即可.【詳解】交于點,交于點,,,,,,∴BCD正確.故選:BCD.【考點】本題考查了解直角三角形的應用-坡度坡角問題,熟記坡度的定義是解題的關鍵.3、ABC【解析】【分析】在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.【詳解】解:、時,,故錯誤,符合題意;、,故錯誤,符合題意;、,胡錯誤,符合題意;、,故正確,不符合題意;故選:ABC.【考點】本題考查銳角三角函數(shù)的定義及運用,解題的關鍵是掌握在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.4、ABCD【解析】【分析】根據(jù)圖形,利用三角形中位線定理,可得DE=1,A成立;AB邊上的高,可利用勾股定理求出等于,B成立;DE是△CAB的中位線,可得DE∥AB,利用平行線分線段成比例定理的推論,可得△CDE∽△CAB,C成立;由△CDE∽△CAB,且相似比等于1:2,那么它們的面積比等于相似比的平方,就等于1:4,D也成立.【詳解】解:∵DE是它的中位線,∴DE=AB=1,故A正確,∴DE∥AB,∴△CDE∽△CAB,故C正確,∴S△CDE:S△CAB=DE2:AB2=1:4,故D正確,∵等邊三角形的高=,故B正確.故選ABCD.【考點】本題利用了:1、三角形中位線的性質(zhì);2、相似三角形的判定:一條直線與三角形一邊平行,則它所截得三角形與原三角形相似;3、相似三角形的面積等于對應邊的比的平方;4、等邊三角形的高=邊長×sin60°.5、ABD【解析】【分析】根據(jù)勾股定理求出AB的值,再根據(jù)銳角三角函數(shù)定義求出的三個函數(shù)值,進行判斷即可得.【詳解】解:如圖所示,在中,AC=2,BC=3,根據(jù)勾股定理,,A、,選項說法錯誤,符合題意;B、,選項說法錯誤,符合題意;C、,選項說法正確,不符合題意;D、選項C說法正確,選項說法錯誤,符合題意;故選ABD.【考點】本題考查了銳角三角形函數(shù)的定義,解題的關鍵是掌握勾股定理和銳角三角函數(shù)的定義.6、ABD【解析】【分析】根據(jù)三角形相似的判斷方法判斷即可.【詳解】解:A、∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC,符合題意;B、∵∠ADE=∠AC,∠A=∠A,∴△AED∽△ABC,符合題意;C、,不能判定△AED∽△ABC,不符合題意;D、∵,∠A=∠A,∴△AED∽△ABC,符合題意.故選:ABD.【考點】此題考查了三角形相似的判斷方法,解題的關鍵是熟練掌握三角形相似的判定方法.7、BC【解析】【分析】由題意,拋物線經(jīng)過(0,0),(9,0),所以可以假設拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判斷.【詳解】解:由題意,拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故A錯誤,∴拋物線的對稱軸t=4.5,故B正確,∵t=9時,h=0,∴足球被踢出9s時落地,故C正確,∵t=1.5時,h=11.25,故D錯誤.∴正確的有②③,故選:BC【考點】本題考查二次函數(shù)的應用、求出拋物線的解析式是解題的關鍵,屬于中考??碱}型.三、填空題1、(答案不唯一)【解析】【分析】設與交點為,根據(jù)題意關于y軸對稱和二次函數(shù)的對稱性,可找到的值(只需滿足互為相反數(shù)且滿足即可)即可寫出一個符合條件的方程【詳解】設與交點為,根據(jù)題意則的對稱軸為故設則方程為:故答案為:【考點】本題考查了二次函數(shù)的對稱性,二次函數(shù)與一元二次方程的關系,熟悉二次函數(shù)的性質(zhì)和找到兩根的對稱性類比二次函數(shù)的對稱性是解題的關鍵2、【解析】【分析】由拋物線的圖像與軸有交點可知,從而可求得的取值范圍.【詳解】解:∵拋物線的圖像與軸有交點∴令,有,即該方程有實數(shù)根∴∴.故答案是:【考點】本題考查了二次函數(shù)與軸的交點情況與一元二次方程分的情況的關系、解一元一次不等式,能由已知條件列出關于的不等式是解題的關鍵.3、
S=-3x2+24x
≤x<8【解析】【詳解】可先用籬笆的長表示出BC的長,然后根據(jù)矩形的面積=長×寬,得出S與x的函數(shù)關系式,并根據(jù)墻的最大可用長度為10米,列不等式組即可得出自變量的取值范圍.解:由題可知,花圃的寬AB為x米,則BC為(24?3x)米.∴S=x(24?3x)=?3x2+24x.∵0<24?3x≤10,解得≤x<8,故答案為S=-3x2+24x,≤x<8.4、3【解析】【分析】根據(jù)二次函數(shù)的定義:一般地,形如(a、b、c是常數(shù)且a≠0)的函數(shù)叫做二次函數(shù),進行求解即可.【詳解】解:∵拋物線是二次函數(shù),∴,∴,故答案為:3.【考點】本題主要考查了二次函數(shù)的定義,解題的關鍵在于能夠熟知二次函數(shù)的定義.5、4【解析】【分析】通過A、B兩點得出對稱軸,再根據(jù)對稱軸公式算出b,由此可得出二次函數(shù)表達式,從而算出最小值即可推出n的最小值.【詳解】∵A、B的縱坐標一樣,∴A、B是對稱的兩點,∴對稱軸,即,∴b=-4.∴拋物線解析式為:.∴拋物線頂點(2,-3).∴滿足題意n的最小值為4,故答案為:4.【考點】本題考查二次函數(shù)對稱軸的性質(zhì),頂點式的變形及拋物線的平移,關鍵在于根據(jù)對稱軸的性質(zhì)從題意中判斷出對稱軸.6、【解析】【分析】先過點A作AD⊥BC,垂足是點D,得出AD2+BD2=AB2=2,再根據(jù)∠B=45°,得出AD=BD=1,然后根據(jù)tanC=,得出=,CD=2,最后根據(jù)勾股定理即可求出AC.【詳解】過點A作AD⊥BC,垂足是點D,∵AB=,∴AD2+BD2=AB2=2,∵∠B=45°,∴∠BAD=∠B=45°,∴AD=BD,∴AD2=BD2=1,∴AD=BD=1,∵tanC=,∴=,∴CD=2,∴AC===.故答案為.【考點】此題考查了解直角三角形,用到的知識點是勾股定理、解直角三角形等,關鍵是作出輔助線,構造直角三角形.7、
,
或【解析】【分析】根據(jù)拋物線的對稱軸和拋物線與x軸一個交點求出另一個交點,再通過二次函數(shù)與方程的兩根,二次函數(shù)與不等式解集的關系求得答案.【詳解】∵拋物線的對稱軸為,拋物線與x軸一個交點為(5,0)∴拋物線與x軸另一個交點為(-1,0)∴方程的解為:,由圖像可知,不等式的解集為:或.故答案為:,;或.【考點】本題考查了二次函數(shù)的圖像性質(zhì),掌握二次函數(shù)與方程的兩根,二次函數(shù)與不等式的解集關系,是解決問題的關鍵.四、解答題1、(1);(2)存在,當時,面積最大為16,此時點點坐標為.【解析】【分析】(1)用待定系數(shù)法解答便可;(2)設點的坐標為,連結、、.根據(jù)對稱性求出點B的坐標,根據(jù)得到二次函數(shù)關系式,最后配方求解即可.【詳解】解:(1)∵拋物線過點,∴.∵拋物線的對稱軸為直線,∴可設拋物線為.∵拋物線過點,∴,解得.∴拋物線的解析式為,即.(2)存在,設點的坐標為,連結、、.∵點A、關于直線對稱,且∴.∴.∵∴當時,面積最大為16,此時點點坐標為.【考點】本題主要考查了二次函數(shù)的圖象與性質(zhì),待定系數(shù)法,三角形面積公式以及二次函數(shù)的最值求法,根據(jù)圖形得出由此得出二次函數(shù)關系式是解答此題的關鍵.2、(1);(2)①的面積;②xy=12;③.【解析】【分析】(1)連接、,利用ASA證出,從而得出的面積與四邊形的面積相等,過點作于點,利用銳角三角函數(shù)求出OH即可求出△OBC的面積,從而得出結論;(2)①根據(jù)等邊三角形的性質(zhì)可得,從而求出∠BOD,然后根據(jù)30°所對的直角邊是斜邊的一半和勾股定理即可求出OD和BD,從而求出結論;②過點作于,于,根據(jù)相似三角形判定定理可得,根據(jù)相似三角形的性質(zhì)列出比例式,變形可得,然后根據(jù)三角形的面積公式即可求出結論;③過點作交的延長線于,于,根據(jù)相似三角形的判定定理可得,根據(jù)相似三角形的性質(zhì)列出比例式,變形可得,分別求出OM和ON,再結合三角形的面積公式即可求出結論.【詳解】解:(1)連接、∵是等邊三角形,∴∵是和的角平分線交點∴∴,∴∴∴的面積與四邊形的面積相等過點作于點∵,∴∵,∴,∴∴四邊形的面積為.故答案為:.(2)①∵是等邊三角形,∴∵于點,∴∵,∴,,∴的面積②過點作于,于.由①得:,同理:∵是等邊三角形,∴∵,∴∴,∴∴,∴∴③過點作交的延長線于,于.∵,∴∴,∵∴,∴∴∵,,∴,∴∵,,∴,∴∴【考點】此題考查的是全等三角形的判定及性質(zhì)、等邊三角形的性質(zhì)、相似三角形的判定及性質(zhì)和銳角三角函數(shù),掌握全等三角形的判定及性質(zhì)、等邊三角形的性質(zhì)、相似三角形的判定及性質(zhì)和銳角三角函數(shù)是解決此題的關鍵.3、(1)證明見解析;(2)35°【解析】【詳解】試題分析:(1)要證明CB∥PD,只要證明∠1=∠P;由∠1=∠C,∠P=∠C,可得∠1=∠P,即可解決問題;(2)在Rt△CEB中,求出∠C即可解決問題.試題解析:(1)如圖,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD;(2)∵CD⊥AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 職業(yè)規(guī)劃精要版
- 醫(yī)學營養(yǎng)專業(yè)就業(yè)前景
- 數(shù)據(jù)庫性能優(yōu)化流程及技巧
- 刑事圖像技術課程
- 切粒機維修培訓
- 新月體腎炎的護理信息學應用
- 開心的春節(jié)初一作文600字14篇
- 中國人民大學校醫(yī)院招聘2人附答案詳解
- 分形技術與油田構造描述
- 微商機器人上崗培訓課件
- 2025內(nèi)蒙古鄂爾多斯市委政法委所屬事業(yè)單位引進高層次人才3人模擬筆試試題及答案解析
- 跆拳道訓練服裝要求規(guī)范
- 《物流安全培訓》課件
- 新員工入職安全培訓資料
- 野外尋找水源課件
- 攀枝花市旺城旅游發(fā)展有限責任公司2025年公開招聘工作人員筆試歷年參考題庫附帶答案詳解
- 生態(tài)環(huán)境保護課件
- 常德職業(yè)技術學院單招《語文》考試復習題庫(含答案)
- 地產(chǎn)住宅項目精裝修施工圖審圖要點
- 2026年中考數(shù)學解密之尺規(guī)作圖
- 2025年地鐵車站物業(yè)管理合同協(xié)議
評論
0/150
提交評論