難點解析人教版8年級數(shù)學(xué)上冊《全等三角形》同步訓(xùn)練試題(含解析)_第1頁
難點解析人教版8年級數(shù)學(xué)上冊《全等三角形》同步訓(xùn)練試題(含解析)_第2頁
難點解析人教版8年級數(shù)學(xué)上冊《全等三角形》同步訓(xùn)練試題(含解析)_第3頁
難點解析人教版8年級數(shù)學(xué)上冊《全等三角形》同步訓(xùn)練試題(含解析)_第4頁
難點解析人教版8年級數(shù)學(xué)上冊《全等三角形》同步訓(xùn)練試題(含解析)_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《全等三角形》同步訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,已知,,,是上的兩個點,,,若,,,則的長為(

)A. B. C. D.2、下列命題的逆命題一定成立的是(

)①對頂角相等;②同位角相等,兩直線平行;③全等三角形的周長相等;④能夠完全重合的兩個三角形全等.A.①②③ B.①④ C.②④ D.②3、如圖,若,則下列結(jié)論中不一定成立的是(

)A. B. C. D.4、如圖為了測量B點到河對面的目標(biāo)A之間的距離,在B點同側(cè)選擇了一點C,測得∠ABC=65°,∠ACB=35°,然后在M處立了標(biāo)桿,使∠MBC=65°,∠MCB=35°,得到△MBC≌△ABC,所以測得MB的長就是A,B兩點間的距離,這里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA5、如圖,在△ABC中,∠C=90°,O為△ABC的三條角平分線的交點,OD⊥BC,OE⊥AC,OF⊥AB,點D、E、F分別是垂足,且AB=10cm,BC=8cm,CA=6cm,則點O到邊AB的距離為(

)A.2cm B.3cm C.4cm D.5cm第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、在△ABC中,AB=4,AC=3,AD是△ABC的角平分線,則△ABD與△ACD的面積之比是_____.2、如圖,PM⊥OA,PN⊥OB,∠BOC=30°,PM=PN,則∠AOB=_________.3、如圖,在△ABC中,AC=BC,∠ABC=54°,CE平分∠ACB,AD平分∠CAB,CE與AD交于點F,G為△ABC外一點,∠ACD=∠FCG,∠CBG=∠CAF,連接DG.下列結(jié)論:①△ACF≌△BCG;②∠BGC=117°;③S△ACE=S△CFD+S△BCG;④AD=DG+BG.其中結(jié)論正確的是_____________(只需要填寫序號).4、如圖,中,以點O為圓心,任意長為半徑作弧,交于點M,交于點N,分別以點M,N為圓心,以大于的長為半徑作弧,兩弧交于點C,作射線,過點C作于點D.交于點E,若,則的度數(shù)為_______________.5、如圖,在和中,,,直線交于點M,連接.以下結(jié)論:①;②;③;④平分.其中正確的是___________(填序號).三、解答題(5小題,每小題10分,共計50分)1、如圖,在中,,,分別過點B,C向過點A的直線作垂線,垂足分別為點E,F(xiàn).(1)如圖①,過點A的直線與斜邊BC不相交時,求證:①;②.(2)如圖②,其他條件不變,過點A的直線與斜邊BC相交時,若,,試求EF的長.2、【閱讀理解】課外興趣小組活動時,老師提出了如下問題:如圖,△ABC中,若AB=8,AC=6,求BC邊上的中線AD的取值范圍.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:如圖,延長AD到點E,使DE=AD,連結(jié)BE.請根據(jù)小明的方法思考:(1)由已知和作圖能得到的理由是(

).A.SSS

B.SAS

C.AAS

D.ASA(2)AD的取值范圍是(

).A.

B.

C.

D.(3)【感悟】解題時,條件中若出現(xiàn)“中點”、“中線”字樣,可以考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論轉(zhuǎn)化到同一個三角形中.【問題解決】如圖,AD是△ABC的中線,BE交AC于點E,交AD于F,且AE=EF.求證:AC=BF.3、如圖1,點P、Q分別是邊長為4cm的等邊三角形ABC的邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s.(1)連接AQ、CP交于點M,則在P,Q運動的過程中,證明≌;(2)會發(fā)生變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);(3)P、Q運動幾秒時,是直角三角形?(4)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則變化嗎?若變化說明理由,若不變,則求出它的度數(shù)。4、已知如圖,△ABC中,AB=AC,D、E分別是AC、AB上的點,M、N分別是CE、BD上的點,若MA⊥CE,AN⊥BD,AM=AN.求證:EM=DN.5、如圖,已知.(1)請用尺規(guī)作圖.在內(nèi)部找一點,使得點到、、的距離相等,(不寫作圖步驟,保留作圖痕跡);(2)若的周長為,面積為,求點到的距離.-參考答案-一、單選題1、B【解析】【分析】由題意可證可得可求EF的長.【詳解】解:在和中,故選:B.【考點】本題考查了全等三角形的判定和性質(zhì),熟練運用全等三角形的判定是本題的關(guān)鍵.2、C【解析】【分析】求出各命題的逆命題,然后判斷真假即可.【詳解】解:①對頂角相等,逆命題為:相等的角為對頂角,是假命題不符合題意;②同位角相等,兩直線平行,逆命題為:兩直線平行,同位角相等,是真命題,符合題意;③全等三角形的周長相等.逆命題為:周長相等的兩個三角形全等,是假命題,不符合題意;④能夠完全重合的兩個三角形全等.逆命題為:兩個全等三角形能夠完全重合,是真命題,符合題意;故逆命題成立的是②④,故選C.【考點】本題主要考查命題與定理,熟悉掌握逆命題的求法是解本題的關(guān)鍵.3、A【解析】【分析】根據(jù)翻三角形全等的性質(zhì)一一判斷即可.【詳解】解:∵△ABC≌△ADE,∴AD=AB,AE=AC,BC=DE,∠ABC=∠ADE,∴∠BAD=∠CAE,∵AD=AB,∴∠ABD=∠ADB,∴∠BAD=180°-∠ABD-∠ADB,∴∠CDE=180°-∠ADB-ADE,∵∠ABD=∠ADE,∴∠BAD=∠CDE故B、C、D選項不符合題意,故選:A.【考點】本題考了三角形全等的性質(zhì),解題的關(guān)鍵是三角形全等的性質(zhì).4、D【解析】【分析】利用全等三角形的判定方法進行分析即可.【詳解】解:在△ABC和△MBC中,∴△MBC≌△ABC(ASA),故選:D.【考點】本題考查了全等三角形的應(yīng)用,熟練掌握三角形全等的判定定理是解題的關(guān)鍵.5、A【解析】【分析】根據(jù)角平分線的性質(zhì)得到OE=OF=OD,設(shè)OE=x,然后利用三角形面積公式得到S△ABC=S△OAB+S△OAC+S△OCB,于是可得到關(guān)于x的方程,從而可得到OF的長度.【詳解】解:∵點O為△ABC的三條角平分線的交點,∴OE=OF=OD,設(shè)OE=x,∵S△ABC=S△OAB+S△OAC+S△OCB,∴∴5x+3x+4x=24,∴x=2,∴點O到AB的距離等于2.故選:A.【考點】本題考查了角平分線的性質(zhì):角平分線上的點到這個角兩邊的距離相等,面積法的應(yīng)用是解題的關(guān)鍵.二、填空題1、4:3【解析】【分析】根據(jù)角平分線的性質(zhì),可得出△ABD的邊AB上的高與△ACD的AC上的高相等,估計三角形的面積公式,即可得出△ABD與△ACD的面積之比等于對應(yīng)邊之比.【詳解】∵AD是△ABC的角平分線,∴設(shè)△ABD的邊AB上的高與△ACD的AC上的高分別為h1,h2,∴h1=h2,∴△ABD與△ACD的面積之比=AB:AC=4:3,故答案為4:3.2、60°或60度【解析】【分析】根據(jù)到角的兩邊距離相等的點在角的平分線上判斷出OC平分∠AOB,再根據(jù)角平分線的定義可得∠AOB=2∠BOC.【詳解】解:∵PM⊥OA,PN⊥OB,PM=PN,∴OC平分∠AOB,∴∠AOB=2∠BOC,又∠BOC=30°,∴∠AOB=60°.故答案為:60°.【考點】本題考查了角平分線的判定,掌握角平分線的判定是解題的關(guān)鍵.3、①②④【解析】【分析】根據(jù)條件求得∠BAC=∠ABC=54°,∠ACB=72°,∠ACE=∠BCE=36°,∠CAF=∠BAF=27°,利用ASA證明△ACF≌△BCG,再根據(jù)SAS證明△CDF≌△CDG,據(jù)此即可推斷各選項的正確性.【詳解】解:在△ABC中,AC=BC,∠ABC=54°,∴∠BAC=∠ABC=54°,∠ACB=180°-54°-54°=72°,∵AC=BC,CE平分∠ACB,AD平分∠CAB,∴∠ACE=∠BCE=∠ACB=36°,∠CAF=∠BAF=∠BAC=27°,∵∠ACD=∠FCG=72°,∴∠BCG=∠FCG-36°=36°,在△ACF和△BCG中,,∴△ACF≌△BCG(ASA);故①正確;∴∠BGC=∠AFC=180°-36°-27°=117°,故②正確;∴CF=CG,AF=BG,在△CDF和△CDG中,,∴△CDF≌△CDG(SAS),∴DF=DG,∴AD=DF+AF=DG+BG,故④正確;∵S△CFD+S△BCG=S△CFD+S△ACF=S△ACD,而S△ACE不等于S△ACD,故③不正確;綜上,正確的是①②④,故答案為:①②④.【考點】本題考查了全等三角形的判定和性質(zhì),三角形內(nèi)角和定理,角平分線的定義,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,4、65°或65度【解析】【分析】根據(jù)作圖先得出OC平分∠AOB,根據(jù),得出,根據(jù)為的外角,得出,即可求出,根據(jù),得出,即可求解.【詳解】解:根據(jù)作圖可知,OC平分∠AOB,∴,∵,,,為的外角,,,,,.故答案為:.【考點】本題主要考查了角平分線的基本作圖,平行線的性質(zhì),三角形外角的性質(zhì),直角三角形的性質(zhì),根據(jù)題意求出是解題的關(guān)鍵.5、①②③【解析】【分析】由SAS證明△AOC≌△BOD得出∠OAC=∠OBD,AC=BD,①②正確;由全等三角形的性質(zhì)得出∠OAC=∠OBD,由三角形的外角性質(zhì)得:∠AMB+∠OBD=∠OAC+∠AOB,得出∠AMB=∠AOB=α,可得③正確;作OG⊥AM于G,OH⊥DM于H,利用全等三角形的對應(yīng)高相等得出OG=OH,由角平分線的判定方法得∠AMO=∠DMO,假設(shè)OM平分∠BOC,則可求出∠AOM=∠DOM,由全等三角形的判定定理可得△AMO≌△DMO,得AO=OD,而OC=OD,所以O(shè)A=OC,而OA<OC,故④錯誤;即可得出結(jié)論.【詳解】解:∵∠AOB=∠COD=α,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,AC=BD,故①②正確;由三角形的內(nèi)角和定理得:∠AMB+∠OBD=∠OAC+∠AOB,∵∠OAC=∠OBD,∴∠AMB=∠AOB=α,,故③正確;作OG⊥AM于G,OH⊥DM于H,如圖所示,△AOC≌△BOD,∴結(jié)合全等三角形的對應(yīng)高可得:OG=OH,∴MO平分∠AMD,∴∠AMO=∠DMO,假設(shè)OM平分∠BOC,則∠BOM=∠COM,∵∠AOB=∠COD,∴∠AOB+∠BOM=∠COD+∠COM,即∠AOM=∠DOM,在△AMO與△DMO中,,∴△AMO≌△DMO(ASA),∴OA=OD,∵OC=OD,∴OA=OC,而OA<OC,故④錯誤;正確的個數(shù)有3個;故答案為:①②③.【考點】本題屬于三角形的綜合題,是中考填空題的壓軸題,本題考查了全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)、角平分線的判定等知識,證明三角形全等是解題的關(guān)鍵.三、解答題1、(1)①見詳解;②見詳解;(2)7【解析】【分析】(1)①由條件可求得∠EBA=∠FAC,利用AAS可證明△ABE≌△CAF;②利用全等三角形的性質(zhì)可得EA=FC,EB=FA,利用線段的和差可證得結(jié)論;(2)同(1)可證明△ABE≌△CAF,可證得EF=FA?EA,代入可求得EF的長.【詳解】(1)證明:①∵BE⊥EF,CF⊥EF,∴∠AEB=∠CFA=90°,∴∠EAB+∠EBA=90°,∵∠BAC=90°,∴∠EAB+∠FAC=90°,∴∠EBA=∠FAC,在△AEB與△CFA中∵,∴△ABE≌△CAF(AAS),②∵△ABE≌△CAF,∴EA=FC,EB=FA,∴EF=AF+AE=BE+CF;(2)解:∵BE⊥AF,CF⊥AF∴∠AEB=∠CFA=90°∴∠EAB+∠EBA=90°∵∠BAC=90°∴∠EAB+∠FAC=90°∴∠EBA=∠FAC,在△AEB與△CFA中,∴△ABE≌△CAF(AAS),∴EA=FC,EB=FA,∴EF=FA?EA=EB?FC=10?3=7.【考點】本題主要考查全等三角形的判定和性質(zhì),掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(zhì)(即全等三角形的對應(yīng)邊相等、對應(yīng)角相等)是解題的關(guān)鍵.2、(1)B(2)C(3)見解析【解析】【分析】(1)根據(jù)AD=DE,∠ADC=∠BDE,BD=DC推出△ADC和△EDB全等即可;(2)根據(jù)全等得出BE=AC=6,AE=2AD,由三角形三邊關(guān)系定理得出8-6<2AD<8+6,求出即可;(3)延長AD到M,使AD=DM,連接BM,根據(jù)SAS證△ADC≌△MDB,推出BM=AC,∠CAD=∠M,根據(jù)AE=EF,推出∠CAD=∠AFE=∠BFD,求出∠BFD=∠M,根據(jù)等腰三角形的性質(zhì)求出即可.(1)∵在△ADC和△EDB中,∴△ADC≌△EDB(SAS),故選B;(2)∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,AB=8,由三角形三邊關(guān)系定理得:8-6<2AD<8+6,∴1<AD<7,故選:C.(3)延長AD到點M,使AD=DM,連接BM.∵AD是△ABC中線∴CD=BD∵在△ADC和△MDB中∴∴BM=AC(全等三角形的對應(yīng)邊相等)∠CAD=∠M(全等三角形的對應(yīng)角相等)∵AE=EF,∴∠CAD=∠AFE(等邊對等角)∵∠AFE=∠BFD,∴∠BFD=∠M,∴BF=BM(等角對等邊)又∵BM=AC,∴AC=BF.【考點】本題考查了三角形的中線,三角形的三邊關(guān)系定理,等腰三角形性質(zhì)和判定,全等三角形的性質(zhì)和判定等知識點,主要考查學(xué)生運用定理進行推理的能力.3、(1)見解析;(2)∠CMQ=60°,不變;(3)當(dāng)?shù)诿牖虻诿霑r,△PBQ為直角三角形;(4)∠CMQ=120°,不變.【解析】【分析】(1)利用SAS可證全等;(2)先證△ABQ≌△CAP,得出∠BAQ=∠ACP,通過角度轉(zhuǎn)化,可得出∠CMQ=60°;(3)存在2種情況,一種是∠PQB=90°,另一種是∠BPQ=90°,分別根據(jù)直角三角形邊直角的關(guān)系可求得t的值;(4)先證△PBC≌△ACQ,從而得出∠BPC=∠MQC,然后利用角度轉(zhuǎn)化可得出∠CMQ=120°.【詳解】(1)證明:在等邊三角形ABC中,AB=AC,∠B=∠CAP=60°又由題中“點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s.”可知:AP=BQ∴≌;(2)∠CMQ=60°不變∵等邊三角形中,AB=AC,∠B=∠CAP=60°又由條件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°;(3)設(shè)時間為t,則AP=BQ=t,PB=4-t,①當(dāng)∠PQB=90°時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論