版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省舞鋼市中考數(shù)學(xué)真題分類(勾股定理)匯編專項練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖所示,將一根長為24cm的筷子,置于底面直徑為5cm,高為12cm的圓柱形水杯中,設(shè)筷子露在外面的長為hcm,則h的取值范圍是()A.0<h≤11 B.11≤h≤12 C.h≥12 D.0<h≤122、如圖,已知點E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.803、《九章算術(shù)》是我國古代數(shù)學(xué)名著,記載著這樣一個問題:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適與岸齊.問水深、葭長各幾何?”大意是:有一個水池,水面是一個邊長為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點,它的頂端恰好到達池邊的水面.水的深度與這根蘆葦?shù)拈L度分別是多少?設(shè)蘆葦?shù)拈L度為x尺,則可列方程為()A.x2+52=(x+1)2 B.x2+102=(x+1)2C.x2﹣52=(x﹣1)2 D.x2﹣102=(x﹣1)24、如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內(nèi)的點F處,連接CF,則CF的長為()A. B. C. D.5、若直角三角形的三邊長分別為2,4,x,則x的可能值有(
)A.1個 B.2個 C.3個 D.4個6、如圖,矩形中,的平分線交于點E,,垂足為F,連接.下列結(jié)論:①;②;③;④;⑤若,則.其中正確的結(jié)論有(
)A.2個 B.3個 C.4個 D.5個7、如圖,P是等邊三角形內(nèi)的一點,且,,,以為邊在外作,連接,則以下結(jié)論中不正確的是(
)A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,滑竿在機械槽內(nèi)運動,∠ACB為直角,已知滑竿AB長2.5米,頂點A在AC上滑動,量得滑竿下端B距C點的距離為1.5米,當(dāng)端點B向右移動0.5米時,滑竿頂端A下滑________米.2、勾股定理最早出現(xiàn)在商高的《周髀算經(jīng)》:“勾廣三,股修四,經(jīng)隅五”.觀察下列勾股數(shù):3,4,5;5,12,13;7,24,25;…,這類勾股數(shù)的特點是:勾為奇數(shù),弦與股相差為1,柏拉圖研究了勾為偶數(shù),弦與股相差為2的一類勾股數(shù),如:6,8,10;8,15,17;…,若此類勾股數(shù)的勾為2m(m≥3,m為正整數(shù)),則其弦是________(結(jié)果用含m的式子表示).3、有一個水池,水面是一個邊長為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點,它的頂端恰好到達池邊的水面,這根蘆葦?shù)拈L度為_____尺.4、對角線互相垂直的四邊形叫做“垂美”四邊形,現(xiàn)有如圖所示的“垂美”四邊形ABCD,對角線AC、BD交于點O.若AD=3,BC=5,則____________.5、如圖所示,在△ABC中,∠B=90°,AB=3,AC=5,將△ABC折疊,使點C與點A重合,折痕為DE,則△ABE的周長為.6、《九章算術(shù)》中有“折竹抵地”問題:“今有竹高一丈,末折抵地,去根三尺,問折者高幾何?”題意是:有一根竹子原來高1丈(1丈=10尺),中部有一處折斷,竹梢觸地面處離竹根3尺,試問折斷處離地面多高?如圖,設(shè)折斷處距離地面x尺,根據(jù)題意,可列方程為______.7、如圖,在四邊形ABCD中,,,,,,那么四邊形ABCD的面積是___________.8、一根直立于水中的蘆節(jié)(BD)高出水面(AC)2米,一陣風(fēng)吹來,蘆葦?shù)捻敹薉恰好到達水面的C處,且C到BD的距離AC=6米,水的深度(AB)為________米三、解答題(7小題,每小題10分,共計70分)1、如圖,是一塊草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求這塊草坪的面積.2、如圖,把長方形紙片沿折疊,使點落在邊上的點處,點落在點處.(1)試說明;(2)設(shè),,,試猜想,,之間的關(guān)系,并說明理由.3、如圖,某商家想在商場大樓上懸掛一塊廣告牌,廣告牌高.根據(jù)商場規(guī)定廣告牌最高點不得高于地面20m,經(jīng)測量,測角儀支架高,在F處測得廣告牌底部點B的仰角為30°,在E處測得標語牌頂部點A的仰角為45°,,請計算說明,商家這樣放廣告牌是否符合規(guī)定?(圖中點A,B,C,D,E,F(xiàn),G,H在同一平面內(nèi))4、如圖是一個長方形的大門,小強拿著一根竹竿要通過大門.他把竹竿豎放,發(fā)現(xiàn)竹竿比大門高1尺;然后他把竹竿斜放,竹竿恰好等于大門的對角線的長.已知大門寬4尺,請求出竹竿的長.5、我市《道路交通管理條例》規(guī)定:小汽車在城市街道上的行駛速度不得超過60km/h.如圖,一輛小汽車在一條城市街道上沿直道行駛,某一時刻剛好行駛到車速檢測點A正前方30m的C處,2秒后又行駛到與車速檢測點A相距50m的B處.請問這輛小汽車超速了嗎?若超速,請求出超速了多少?6、如圖,點是內(nèi)一點,把繞點順時針旋轉(zhuǎn)得到,且,,.(1)判斷的形狀,并說明理由;(2)求的度數(shù).7、如圖所示,△ABC的兩條高AD,BE相交于點F,AC=BC.(1)求證:△ADC≌△BEC.(2)若CD=1,BE=2,求線段AC的長.-參考答案-一、單選題1、B【解析】【分析】根據(jù)題意畫出圖形,先找出h的值為最大和最小時筷子的位置,再根據(jù)勾股定理解答即可.【詳解】解:當(dāng)筷子與杯底垂直時h最大,h最大=24﹣12=12cm.當(dāng)筷子與杯底及杯高構(gòu)成直角三角形時h最小,如圖所示:此時,AB===13cm,∴h=24﹣13=11cm.∴h的取值范圍是11cm≤h≤12cm.故選:B.【考點】本題考查了勾股定理的實際應(yīng)用問題,解答此題的關(guān)鍵是根據(jù)題意畫出圖形找出何時h有最大及最小值,同時注意勾股定理的靈活運用,有一定難度.2、C【解析】【詳解】解:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選:C.3、C【解析】【分析】首先設(shè)蘆葦長x尺,則水深為(x?1)尺,根據(jù)勾股定理可得方程(x?1)2+52=x2.【詳解】解:設(shè)蘆葦長x尺,由題意得:(x?1)2+52=x2,即x2﹣52=(x﹣1)2故選:C.【考點】此題主要考查了勾股定理的應(yīng)用,解題的關(guān)鍵是讀懂題意,從題中抽象出勾股定理這一數(shù)學(xué)模型.4、C【解析】【分析】連接BF,(見詳解圖),由翻折變換可知,BF⊥AE,BE=EF,由點E是BC的中點,可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進而可得到BF的長度;結(jié)合題意可知FE=BE=EC,進而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點E為BC的中點,∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為:【考點】此題考查矩形的性質(zhì)和折疊問題,解題關(guān)鍵在于利用好折疊的性質(zhì),對應(yīng)點的連線被折痕垂直平分.5、B【解析】【詳解】分析:x可為斜邊也可為直角邊,因此解本題時要對x的取值進行討論.解答:解:當(dāng)x為斜邊時,x2=22+42=20,所以x=2;當(dāng)4為斜邊時,x2=16-4=12,x=2.故選B.點評:本題考查了勾股定理的應(yīng)用,注意要分兩種情況討論.6、D【解析】【分析】根據(jù)AE平分∠DAE,可得,從而得到AB=BE,進而得到,可得①正確;然后證明△ABE≌△AFD,可得AB=BE=AF=FD,從而得到∠AED=∠CED,故②正確;再證得△DEF≌△DEC,可得③正確;再根據(jù)△ABF≌△DCF,可得BF=CF,故④正確;過點F作FG⊥BC于點G,可得,從而得到,進而得到,可得⑤正確;即可求解.【詳解】解:在矩形中,∠BAD=∠ADC=∠ABC=90°,AD=BC,AD∥BC,∵AE平分∠DAE,∴,∵AD∥BC,∴∠DAE=∠AEB=45°,∴∠AEB=∠BAE=45°,∴AB=BE,∴,∵,∴AE=AD,故①正確;在△ABE和△AFD中,∵∠BAE=∠DAE,∠ABE=∠AFD,AE=AD,∴△ABE≌△AFD(AAS),∴BE=DF,∴AB=BE=AF=FD,∴,∴∠AED=∠CED,故②正確;∵∠DAE=45°,DF⊥AE,∴∠ADF=45°,∴∠CDF=45°,∠EDF=∠ADE-∠ADF=22.5°,∴∠CDE=∠FDE=22.5°,∵∠AEB=45°,∠AED=67.5°,∴∠CED=67.5°,∴∠AED=∠CED,∵DE=DE,∴△DEF≌△DEC,∴DF=CD,∴DE⊥CF,故③正確;∵AB=CD,∠BAE=∠CDF=45°,AF=DF,∴△ABF≌△DCF,∴BF=CF,故④正確;如圖,過點F作FG⊥BC于點G,∴FG∥AB,∴∠EFG=∠BAE=45°,∴∠EFG=∠FEG,∴FG=GE,∵△DEF≌△DEC,∴CE=EF,∴,∴,∵BF=CF,∴BG=CG,∴,∵AB=1,,∴,,解得:,∴.故⑤正確;∴正確的有5個.故選:D【考點】本題主要考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),勾股定理等知識,熟練掌握相關(guān)知識點是解題的關(guān)鍵.7、C【解析】【分析】根據(jù)△ABC是等邊三角形,得出∠ABC=60°,根據(jù)△BQC≌△BPA,得出∠CBQ=∠ABP,PB=QB=4,PA=QC=3,∠BPA=∠BQC,求出∠PBQ=60°,即可判斷A;根據(jù)勾股定理的逆定理即可判斷B;根據(jù)△BPQ是等邊三角形,△PCQ是直角三角形即可判斷D;求出∠APC=150°-∠QPC,和PC≠2QC,可得∠QPC≠30°,即可判斷C.【詳解】解:∵△ABC是等邊三角形,∴∠ABC=60°,∵△BQC≌△BPA,∴∠CBQ=∠ABP,PB=QB=4,PA=QC=3,∠BPA=∠BQC,∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,所以A正確,不符合題意;PQ=PB=4,PQ2+QC2=42+32=25,PC2=52=25,∴PQ2+QC2=PC2,∴∠PQC=90°,所以B正確,不符合題意;∵PB=QB=4,∠PBQ=60°,∴△BPQ是等邊三角形,∴∠BPQ=60°,∴∠APB=∠BQC=∠BQP+∠PQC=60°+90°=150°,所以D正確,不符合題意;∠APC=360°-150°-60°-∠QPC=150°-∠QPC,∵PC=5,QC=PA=3,∴PC≠2QC,∵∠PQC=90°,∴∠QPC≠30°,∴∠APC≠120°.所以C不正確,符合題意.故選:C.【考點】本題是三角形綜合題,考查了全等三角形的性質(zhì)、等邊三角形的性質(zhì)、勾股定理的逆定理,解決本題的關(guān)鍵是綜合應(yīng)用以上知識.二、填空題1、0.5【解析】【詳解】結(jié)合題意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC===2(米).∵BD=0.5米,∴CD=2米,∴CE===1.5(米),∴AE=AC-EC=0.5(米).故答案為0.5.點睛:本題考查正確運用勾股定理.善于觀察題目的信息是解題以及學(xué)好數(shù)學(xué)的關(guān)鍵.2、m2+1【解析】【分析】2m為偶數(shù),設(shè)其股是a,則弦為a+2,根據(jù)勾股定理列方程即可得到結(jié)論.【詳解】∵2m為偶數(shù),∴設(shè)其股是a,則弦為a+2,根據(jù)勾股定理得,(2m)2+a2=(a+2)2,解得a=m2-1,∴弦長為m2+1,故答案為:m2+1.【考點】本題考查了勾股數(shù),勾股定理,熟練掌握勾股定理是解題的關(guān)鍵.3、13【解析】【分析】找到題中的直角三角形,設(shè)水深為x尺,根據(jù)勾股定理解答.【詳解】解:設(shè)水深為尺,則蘆葦長為尺,根據(jù)勾股定理得:,解得:,蘆葦?shù)拈L度(尺,答:蘆葦長13尺.故答案為:13.【考點】本題考查正確運用勾股定理.善于觀察題目的信息是解題以及學(xué)好數(shù)學(xué)的關(guān)鍵.4、34【解析】【分析】在Rt△COB和Rt△AOB中,根據(jù)勾股定理得BO2+CO2=CB2,OD2+OA2=AD2,進一步得BO2+CO2+OD2+OA2=9+25,再根據(jù)AB2=BO2+AO2,CD2=OC2+OD2,最后求得AB2+CD2=34.【詳解】解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,在Rt△COB和Rt△AOB中,根據(jù)勾股定理得,BO2+CO2=CB2,OD2+OA2=AD2,∴BO2+CO2+OD2+OA2=9+25,∵AB2=BO2+AO2,CD2=OC2+OD2,∴AB2+CD2=34;故答案為:34.【考點】本題考查勾股定理的應(yīng)用,熟練掌握勾股定理在實際問題中的應(yīng)用,從題中抽象出勾股定理這一數(shù)學(xué)模型是解題關(guān)鍵.5、7【解析】【分析】根據(jù)勾股定理求得BC,再根據(jù)折疊性質(zhì)得到AE=CE,進而由三角形的周長=AB+BC求解即可.【詳解】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC=.∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周長=AB+BC=3+4=7.故答案是:7.【考點】本題考查勾股定理、折疊性質(zhì),熟練掌握勾股定理是解答的關(guān)鍵.6、【解析】【分析】根據(jù)勾股定理即可得出結(jié)論.【詳解】解:設(shè)未折斷的竹干長為尺,根據(jù)題意可列方程為:.故答案為:.【考點】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實際問題時勾股定理與方程的結(jié)合是解決實際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.7、+24【解析】【分析】連結(jié)BD,可求出BD=6,再根據(jù)勾股定理逆定理,得出△BDC是直角三角形,兩個三角形面積相加即可.【詳解】解:連結(jié)BD,∵,∴,∵,,∴BD=6,∵BD2=36,CD2=64,BC2=100,BD2+CD2=BC2,∴∠BDC=90°,S△ABD=,S△BDC=,四邊形ABCD的面積是=S△ABD+S△BDC=+24故答案為:+24.【考點】本題考查勾股定理以及逆定理,三角形的面積等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.8、8【解析】【分析】先設(shè)水深x米,則AB=x,則有BD=AD+AB=x+2,由題條件有BD=BC=x+2,又根據(jù)蘆節(jié)直立水面可知BD⊥AC,則在直角△ABC中,利用勾股定理即可求出x.【詳解】解:設(shè)水深x米,則AB=x,則有:BD=AD+AB=x+2,即有:BD=BC=x+2,根據(jù)蘆節(jié)直立水面,可知BD⊥AC,且AC=6,則在直角△ABC中:,即:,解得x=8,即水深8米,故答案為8.【考點】本題考查了勾股定理的應(yīng)用,從現(xiàn)實圖形中抽象出勾股定理這一模型是解答本題的關(guān)鍵.三、解答題1、216平方米【解析】【分析】連接AC,根據(jù)勾股定理計算AC,根據(jù)勾股定理的逆定理判定三角形ABC是直角三角形,根據(jù)面積公式計算即可.【詳解】連接AC,∵AD=12,CD=9,∠ADC=90°,∴AC==15,∵AB=39,BC=36,AC=15∴,∴∠ACB=90°,∴這塊空地的面積為:==216(平方米),故這塊草坪的面積216平方米.【考點】本題考查了勾股定理及其逆定理,熟練掌握定理并靈活運用是解題的關(guān)鍵.2、(1)證明見解析;(2),,之間的關(guān)系是.理由見解析.【解析】【分析】(1)根據(jù)折疊的性質(zhì)、平行的性質(zhì)及等角對等邊即可說明;(2)根據(jù)折疊的性質(zhì)將AE、AB、BF都轉(zhuǎn)化到直角三角形中,由勾股定理可得,,之間的關(guān)系.【詳解】(1)由折疊的性質(zhì),得,,在長方形紙片中,,∴,∴,∴,∴.(2),,之間的關(guān)系是.理由如下:由(1)知,由折疊的性質(zhì),得,,.在中,,所以,所以.【考點】本題主要考查了勾股定理,靈活利用折疊的性質(zhì)進行線段間的轉(zhuǎn)化是解題的關(guān)鍵.3、,不符合規(guī)定【解析】【分析】根據(jù)勾股定理即可求解.【詳解】解:設(shè)且解得:商家這樣放廣告牌不符合規(guī)定.【考點】本題考查了勾股定理、一元一方程等內(nèi)容,解決問題的關(guān)鍵在于理解題意,找到等量關(guān)系,列出方程.4、尺【解析】【分析】根據(jù)題中所給的條件可知,竹竿斜放恰好等于門的對角線長,可與門的寬和高構(gòu)成直角三角形,運用勾股定理可求出門高,進而解答即可.【詳解】解:設(shè)門高為x尺,則竹竿長為(x+1)尺,根據(jù)勾股定理可得:x2+42=(x+1)2,即x2+16=x2+2x+1,解得:x=7.5,∴門高7.5尺,竹竿高=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年新疆北屯額河明珠國有資本投資有限公司中層管理人員選聘備考題庫及參考答案詳解1套
- 2025年重慶交通大學(xué)誠聘英才80人備考題庫及答案詳解參考
- 2025年渭南市各級體育運動學(xué)校教練員專項招聘備考題庫及參考答案詳解1套
- 2025年北京語言大學(xué)面向副高級及以上專業(yè)技術(shù)職務(wù)人員事業(yè)編制公開招聘備考題庫有答案詳解
- 宜賓市科技人才集團有限公司2025年第三批員工公開招聘的備考題庫及1套完整答案詳解
- 2025年荊門屈家?guī)X產(chǎn)業(yè)發(fā)展集團有限公司招聘備考題庫及參考答案詳解一套
- 2025年四川工商學(xué)院招聘黨委宣傳部工作人員備考題庫及答案詳解1套
- 2025年關(guān)于公開招聘編外臨床護士的備考題庫及參考答案詳解1套
- 2025年中國傳媒大學(xué)財務(wù)處、信息化處、校醫(yī)院其他專業(yè)技術(shù)崗招聘備考題庫及參考答案詳解一套
- 安全證書制度詳解講解
- 2024-2025學(xué)年人教版七年級數(shù)學(xué)上冊期末達標測試卷(含答案)
- 正常順產(chǎn)護理個案
- DL∕T 1396-2014 水電建設(shè)項目文件收集與檔案整 理規(guī)范
- 科技奧運成果推廣
- DL-T5181-2017水電水利工程錨噴支護施工規(guī)范
- 走近核科學(xué)技術(shù)智慧樹知到期末考試答案2024年
- 牛肉丸項目市場營銷方案
- 三通、大小頭面積計算公式
- 軟件無線電原理與應(yīng)用(第3版)-習(xí)題及答案匯總 第1-9章 虛擬人-軟件無線電的新發(fā)展 認知無線電
- 各部門目標與關(guān)鍵業(yè)績指標考核表
- 簡單酒水購銷合同
評論
0/150
提交評論